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Foreword 

In the last decade three-dimensional computer graphics has emerged from research laboratories and has 

quickly become a part of our experience. Today, it is routine to find realistic, computer-generated images 

on television and in the movies. Synthetic images are also routinely used in scientific and engineering 

applications, such as medicine, astronomy, and mechanical engineering. Of particular interest these days is 

the creation, manipulation, and display of virtual environments such as cities, campuses, buildings, and 

rooms. These environments have obvious applications in architecture, but they may also be used to 

organize large information landscapes and virtual communities. 

Underlying all these applications is the computer technology, both software and hardware, to create 

realistic pictures. In the strongest use of the term, realism may be interpreted to mean indistinguishable 

form the real world. Many of us are routinely fooled into thinking a digital artifact is, in fact, a photo of a 

real event or place. The goals of realistic rendering, however, go beyond mere duplication. Our perceptual 

system responds to many complex visual cues, such as perspective, shading, texturing, and shadows, and 

these are used to perceive attributes and relationships of objects and the environment in which they are 

embedded. To the designer, these visual cues may be used to communicate space and form. This ability to 

use visual metaphors to connect to our perceptual system is why there are so many applications of three-

dimensional graphics. 

The majority of the computer graphics technology revolving around imagery manipulates images 

directly. Images or drawing primitives are input, and images are output. Three-dimensional graphics are 

quite different in that the process involves creating a computer model of the scene and running an 

algorithm to produce an image from that model. To produce an interesting image, the computer model must 

describe a complex environment with diverse objects. The objects must have interesting shapes and be 

made from interesting materials. Also input are the position and properties of a digital camera and a set of 

digital lights. The objects that comprise the computer model are not that different, in principle, from the 

“objects” that a director manipulates to produce a scene in a film. 
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The next step, rendering, produces the images from the model. The rendering process simulates the 

action of a digital camera: Virtual light is focused onto virtual film to create virtual image. Virtual light is 

emitted from sources, interacts with material objects, and eventually arrives at the camera’s film plane. The 

key to three-dimensional rendering is modeling light. 

Two major techniques have been developed for modeling light on a computer, ray tracing and radiosity. 

Ray tracing was the first of the two, and is well known to anyone interested in computer graphics. Ray-

tracing systems model light rays traveling from the eye to the light sources. As the rays propagate they may 

be blocked by intervening occluders, or they may be reflected or refracted according to the classic laws of 

optics. Radiosity is a more recent innovation. Radiosity systems model the interreflections of light from 

matte or diffuse surfaces. A matte surface reflects light equally in all directions. The key advantage of a 

radiosity algorithm is that multiple bounces of light can be modeled. Thus it is possible to capture very 

subtle, but dramatic, illumination effects such as soft shadows and indirect light. These lighting effects are 

what create the ambience of many of the environments in which we live. 

This book is the first attempt to bring radiosity algorithms to a wide audience. It provide a lively and 

accessible description of the basic ideas and techniques. But more important, the book is not merely a 

collection of formulas and references, but contains C++ source code that implements a complete radiosity 

system on readily available PCs. If the reader is interested in three-dimensional graphics, and likes to learn 

through experimenting with real programs, this is the book. 

Princeton, New Jersey Pat Hanrahan 

 



Preface 
The soul’s radiance in a wintry hour 
Flings a sweet summer halo round us 

Miscellaneous Poems 
B. Cornwell, 1822 

What is Radiosity? 

There are two approaches to generating photorealistic images–digital pictures that are difficult to 

distinguish from real photographs–in computer graphics. The first approach involves ray tracing 

techniques; the second approach is radiosity. 

The use of photorealistic images in television and print advertising has left us somewhat inured to the 

capabilities of ray tracing techniques. We see images that look almost, but not quite, like reality every day. 

Look carefully, however, at the cover and color plates of this book. Notice the accurate rendition of diffuse 

reflections and color bleeding between surfaces, realistic penumbrae along shadow boundaries and detailed 

shading within shadows. These subtle but important visual effects, so difficult to achieve with conventional 

ray tracing techniques, are inherent attributes of the radiosity approach. 

Radiosity offers more than mere realism, however. Imagine creating a virtual reality stroll through the 

lobby, halls and rooms of an international-class hotel. The building exists only as a set of architectural 

CAD drawings. What you want is an animated sequence of images, a video where every frame is as richly 

detailed as the images shown in this book. If you use ray tracing techniques, each frame has to be traced 

pixel by pixel. Ray tracing techniques are view-dependent; the number of ray-surface intersection 

calculations can increase geometrically with the complexity of the scene. In contrast, the radiosity approach 

is view-independent. Most of the lighting calculations are performed only once for a given environment. 

Once they have been completed, it is a relatively simple task to render a view of the environment as seen 

from any camera position. The effort required to generate a sequence of images can be considerably less 

than that needed using ray tracing techniques. 

This is not a theoretical example that requires some future supercomputer. The cover of this book is 

courtesy of the architectural firm of Hellmuth, Obata and Kassabaum, Inc. They are using radiosity-based 
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rendering software that runs on desktop graphics workstations to create promotional stills and videos for 

their clients. The radiosity approach is being used today. 

Few of us are rich or fortunate enough to have a thirty-thousand dollar graphics workstation sitting on 

our desk. For now at least, we will have to let the professionals create their photorealistic and richly 

detailed videos. We can, however, create high resolution color images using nothing more expensive than 

an off-the-shelf desktop personal computer. 

What sort of images? The color plates in this book imply that the radiosity approach is useful primarily 

as an architectural design and illustration tool. This emphasis reflects the original development of radiosity 

as a computer graphics tool. Architectural interiors provided convenient and impressive demonstrations of 

radiosity’s strengths. Since then, the radiosity approach has been applied to entertainment productions, 

virtual reality systems, diagnostic medicine, scientific research and engineering studies. Research into the 

applications of radiosity has really just begun. 

Radiosity and Ray Tracing 

Radiosity is in a sense the complement of ray tracing. Ray tracing techniques excel in the rendition of 

point light sources, specular reflections and refraction effects. Radiosity methods accurately model area 

light sources, diffuse reflections, color bleeding effects and realistic shadows. It follows that the best use of 

radiosity may lie in a combination of radiosity methods and ray tracing techniques. Fortunately, most 

scenes of everyday interest include few specular surfaces and transparent objects. We can potentially use 

radiosity methods to visualize a scene, followed where necessary by a ray tracing pass to more accurately 

render the specular highlights and refraction effects. The number of rays that must be traced is far fewer 

than if the scene was visualized using ray tracing techniques alone. 

Looking to the future, virtual reality systems will be expected to offer photorealistic images at real-time 

display rates. The radiosity approach allows us to create such images using “progressive refinement” 

techniques, where each image initially appears as an approximate rendering of the scene. The radiosity 

algorithm is then iterated to progressively “refine” the image. The longer we focus our attention on a scene, 

the closer it will approach reality. We will be able to combine this ability with motion compensation and 
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other video data compression techniques to create seemingly smooth zoom and pan sequences through our 

virtual worlds. 

Critics have argued that radiosity methods require inordinate amounts of memory and processing 

power. Their complaints were justified when the first of these methods was proposed a decade ago. Times 

have changed, however, and will continue to do so. We have affordable personal computers with memory, 

processing power and video display capabilities undreamt of a decade ago sitting on our desktops. We also 

have practical radiosity methods that can be easily implemented on these computers. Radiosity is no longer 

the domain of academic researchers with their multiprocessor workstations and dedicated hardware 

graphics accelerators. We can experiment and work with radiosity today using off-the-shelf personal 

computers.  

A Few Limitations 

The radiosity approach has several limitations when compared to ray tracing techniques. To begin with, 

radiosity theory is based on the assumption that all surfaces are ideal diffuse reflectors. Accurately 

modeling specular surfaces and transparent materials requires a combination of radiosity methods and ray 

tracing techniques. These combinations–extended radiosity methods–offer the best features of radiosity and 

ray tracing, but often at the expense of impractical processing requirements. 

Another limitation involves the representation of surfaces. Whereas ray tracing techniques can use 

implicit equations to define curved surfaces, most radiosity methods require all surfaces–curved and flat–to 

be modeled as typically nonuniform polygon meshes. This is not a fundamental limitation, since any flat or 

curved surface can be approximated by a polygon mesh. Nevertheless, a complex curved surface defined as 

a mesh usually requires a fair amount of memory. The same surface represented by an implicit equation 

(e.g., a Bézier or quadric surface) requires memory for only a few parameters. 

A more serious limitation is that these polygon meshes must be carefully chosen to avoid aliasing 

artifacts in the rendered images. Choosing an appropriate mesh for each surface is a non-trivial problem 

that depends on the geometrical relationship between surfaces, the placement of light sources and surface 

reflectance properties. Fortunately, the meshing process can be automated to some extent using “adaptive 

subdivision” techniques. 
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On the positive side, there is a popular misconception that radiosity approach requires a closed 

environment, where every ray of light must eventually intersect at least one surface. In fact, it is just that–a 

misconception. Radiosity can model any environment that ray tracing can. 

Given these limitations, the radiosity approach is clearly not a panacea for generating photorealistic 

images of arbitrary scenes. As a rule of thumb, it is best suited for those applications where the majority of 

objects have surfaces that are flat, opaque and diffusely reflective. Many architectural scenes fall nicely 

into this category, which explains why most artistic examples of radiosity feature office interiors and the 

like. Scenes featuring mostly curved objects with specular or semi-specular surfaces and transparent 

materials such as glass are more appropriately rendered using ray tracing techniques. 

This is not to say that radiosity approach should be considered only for architectural design and 

illustration. More esoteric applications include thermal engineering analysis, solar atmospheric studies, 

computer-aided tomography and virtual reality simulations. After ten years of research, we are just 

beginning to see radiosity methods applied to real-world problems. It will be interesting to see where future 

work will take us. 

Higher Mathematics Not Required 

Radiosity is very much a computer graphics tool. Consequently, this book examines the gamut of 

radiosity methods in depth, beginning with the basics of radiosity theory and ending somewhere in the 

frontiers of current research. The algorithms are rigorously and clearly explained, implementation details 

are examined at length, and C++ source code is presented for a complete radiosity-based renderer–

HELIOS–that runs under Microsoft Windows 3.1 and Windows NT. Moreover, most of the code is 

platform-independent and designed for 32-bit environments, which means that it can be ported to other 

development and target platforms with minimal effort. In short, this book is itself a programmer’s tool for 

exploring radiosity. 

Many advanced computer graphics techniques rely heavily on sophisticated mathematics; this is not 

true for radiosity. Understanding radiosity requires no more than a basic knowledge of vectors and 

matrices, plus an ability to visualize in three dimensions. Please do not let the brief excursions into higher 

mathematics deter you. If you remember your high-school algebra, you have all the mathematical tools you 
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need. The occasional text box provides a brief explanation of possibly unfamiliar mathematical notation 

and concepts. At worst, the mathematics can be skipped altogether with minimal loss of continuity. 

This book is aimed at computer science undergraduates and computer enthusiasts of all ages. There are 

no classroom exercises to spoil the fun–we all learn best by doing. The radiosity renderer presented in this 

book offers endless opportunities. Take it apart, see how it works, and rebuild it ... add features, 

experiment with different algorithms and profile their performance. Learn from your experiences and 

discoveries, and above all else enjoy what you are doing. Remember: radiosity is easy to understand and 

fascinating to experiment with. 

What You Need 

In terms of today’s personal desktop computer technology, what you need to compile and run HELIOS 

are minimal. They are: 

• an IBM PC-AT clone with a ‘386 CPU and 4 megabytes of RAM and a ‘387 floating point 

coprocessor (‘486 or Pentium CPU recommended) 

• minimum 256-color display adapter and color monitor (65,536 or 16.7 million [24-bit] colors 

recommended) 

• Microsoft Windows 3.1 or Windows NT 

• a C++ compiler capable of generating Windows 3.1 or Windows NT executables 

These are minimum requirements. An IBM PC-AT clone with a 66 MHz ‘486-DX2 CPU rendered the 

photorealistic image shown in Color Plate 1 in 40 seconds. A computer with a 16 MHz ‘386-SX CPU will 

take considerably longer. 

HELIOS uses Microsoft’s BMP graphics file format to both display and store 24-bit color images. It 

can also generate color dithered images suitable for 16-bit (65,356 color) and 15-bit (32,768 color) 

displays. However, it does not directly support 256-color displays. The images it does display on 

computers with these adapters will appear posterized. 

Nevertheless, a computer with a 256-color display adapter can be used. The accompanying diskette 

includes a standalone utility (with fully documented C++ source code) for generating 8-bit (256 color) 

BMP files from the 24-bit BMP files that HELIOS produces. (It would take very little work to add this 
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capability to HELIOS itself. However, both programs require a fair amount of memory. On a machine with 

4 megabytes of memory, it is probably better to run each program separately to avoid those dreaded “out of 

memory” error messages.) 

This book is about radiosity and the implementation of radiosity methods in C++. It is not about 

programming in or for any particular environment. There are some 7,000 lines of draft ANSI C++ source 

code, of which only 1,700-odd lines are devoted to the graphical user interface provided by MS-Windows. 

The remainder is devoted to the underlying computer graphics software needed to implement the radiosity 

renderer. 

The MS-Windows interface is written in ANSI C, and compiles without modification under either 

Microsoft Visual C++ Version 1.5 or Borland C++ Version 4.0. No use whatsoever is made of any 

compiler-specific functions or class libraries other than those required for generic MS-Windows programs. 

More importantly, the interface code is completely encapsulated in its own set of classes. 

Are you programming for another environment? HELIOS also compiles as a Microsoft Win32s or 

Windows NT program without modification. You only need to specify a global #define to create a 32-bit 

executable. As such, the platform-independent C++ radiosity code should properly compile under any C++ 

compiler. All you have to add is a graphical user interface. 

A radiosity algorithm can be written in about a dozen lines of pseudocode. A functional radiosity-based 

rendering program, on the other hand, requires much more. In particular, it requires the support of a 

complete 3-D viewing system. While the algorithms have been published before, few computer graphics 

programming texts have attempted to address the complexities of writing the necessary code. The effort 

needed to develop a ray tracing program pales in comparison. Neverthless, it is all here. 

From Beginning to End 

Regardless of the subject, a programmer’s perspective must consider more than implementing 

pseudocode in C++. While the basics of radiosity can be explained in five hundred words or less–see the 

introduction–we need to understand its underlying and fundamental principles. We will see that these 

principles can be expressed in one unifying phrase: radiosity models light. 
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Radiosity models light. Chapter One, Measuring Light begins with an overview of light–what is it and 

how do we measure it? We will examine the parallel sciences of radiometry and photometry in detail, with 

a brief excursion into radiometric field theory. The concepts are simple but extremely important to what 

follows. 

Chapter Two, Radiosity Theory explains radiosity in terms of the geometrical nature of light, using a 

minimum of mathematics. Mathematical proofs of key concepts are provided as optional reading. 

Most radiosity methods expect only one type of graphic primitive: three-dimensional polygons. Chapter 

Three, Building An Environment presents the basic algorithms needed to represent them. These algorithms 

are not part of the radiosity approach per se. Neverthess, they are needed to describe complex 3-D scenes 

and to view them afterwards. Fortunately, they are simple to understand and straightforward to implement. 

We will also need many of the basic algorithms used in 3-D computer-aided drafting programs. Chapter 

Four, A Viewing System reviews synthetic cameras, windowing and clipping, hidden surface elimination, 

scan conversion and incremental shading techniques. From these, it builds a complete 3-D viewing system 

for MS-Windows 3.1 and Windows NT. With it, we will be able to view wireframe images, shaded 3-D 

models and photorealistic renderings. 

Form factors are the heart and soul of radiosity theory. Imagine two polygons floating in space. If one 

polygon is emitting light, how much of it will be intercepted by the other one? This is a simple question 

with no easy answer. Believe it or not, it took mathematicians over 230 years to find a equation that solves 

for the general case of two arbitrarily-oriented polygons! Fortunately, there are much simpler solutions for 

our needs. Chapter Five, Form Factor Determination looks at a number of efficient calculation methods, 

including hemi-cubes, cubic tetrahedrons and ray casting. 

Chapter Six, Solving the Radiosity Equation details several radiosity algorithms and associated 

techniques that have been developed over the past ten years. The first method, full radiosity, was an 

academic curiosity derived from radiant heat transfer theory. The subsequent improvements and 

modifications represent a fascinating tour de force of mathematical insight and programming ingenuity. 

The chapter concludes with three fully functional versions of HELIOS. 

Aliasing is an ever-present problem for the radiosity approach. Surfaces are described as polygon 

meshes. If the mesh is too coarse, the mesh outline will be visible in the rendered surface. If the mesh is too 
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fine, the radiosity methods must perform unnecessary calculations. Chapter Seven, Meshing Strategies 

examines the issues involved and explores substructuring techniques that attempt to create optimal meshes 

for surfaces. 

Finally, Chapter Eight looks to the future of both HELIOS and the radiosity approach in general. It 

proposes a number of enhancements that you might consider as programming projects, and concludes with 

a look at the “bleeding edge” of radiosity research. 
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Introduction 

I.0 Radiosity: A Tenth Anniversary 

This year marks the tenth anniversary of radiosity as recognized by the computer graphics community. 

It began more or less as a mathematical curiosity that could laboriously render the interior of an empty box 

(Goral et al. [1984]). Today, radiosity is entering the marketplace as a powerful computer graphics tool for 

synthesizing photorealistic images from architectural drawings. 

Despite this inherent power, radiosity has remained almost exclusively a university research topic. Each 

passing year has seen the publication of more effective and ingenious radiosity-based algorithms. 

Nevertheless, the number of radiosity-based rendering programs available to individual computer graphics 

enthusiasts has remained almost insignificant. As of 1994, there are apparently only two public domain 

packages for UNIX-based machines, both available on the Internet from their authors. (There are also 

several implementations of Radiance, a superlative public domain ray tracing program with radiosity-

related effects.) None of these programs, however, explore the radiosity approach in depth. 

Why is this? There is certainly no shortage of public domain ray tracing programs. DKBTrace (e.g., 

Lindley [1992]) and its successor, Persistence of Vision (Wells and Young [1993]) are two well-known 

examples that can produce outstanding ray-traced imagery. These are complex programs with many 

options and capabilities. The effort put into their development likely exceeds that needed to develop a fully 

functional radiosity-based rendering program by an order of magnitude. If this is so, why are there no 

radiosity programs available? 

Perhaps the answer can be found in this quote from Shenchang Eric Chen of Apple Computer, Inc. 

(Chen [1991]): 

While a naive ray tracer can be implemented fairly easily and compactly (as in the case of Paul 
Heckbert, who has a ray tracer printed on his business card), implementing a radiosity program is 
generally regarded as an enormous task. This is evident in that there still is no public domain radiosity 
code available … 

This sounds reasonable; public domain programs usually begin as small weekend programming projects 

that quietly grow into major undertakings. The critical factor is that first tentative release. If it has any 
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merit whatsoever, a cadre of loyal users will prompt the author to fix one more bug and add another 

handful of features. The project soon becomes a group effort that continues to grow until it rivals its 

commercial counterparts. 

A radiosity-based renderer, on the other hand, is not something you do in a weekend. It is a major 

undertaking requiring many long and tedious hours of planning, design, development and testing. Worse, 

there are no intermediate stages of development. The first synthesized image appears only when the entire 

project nears completion. 

This is saddening. The widespread availability of affordable ray tracing programs has brought us many 

captivating images by talented artists, both amateur and professional. They have also captured the 

imagination of many young students, encouraging them to pursue their interests in computer graphics and 

related fields of enquiry. A capable radiosity-based rendering program could only encourage this pool of 

talented individuals. 

In celebration then of radiosity’s tenth anniversary: HELIOS, an affordable radiosity-based renderer, 

complete with over 7,000 lines of C++ source code and 500 pages of documentation (this book). 

HELIOS is both a celebration and a challenge. The celebration is two-fold: radiosity’s anniversary and 

HELIOS’s own marriage of radiosity with Microsoft Windows 3.1 and Windows NT. The challenge … 

well, we will get to that in a moment. 

Shenchang Chen got it right–developing HELIOS was indeed “an enormous task.” As such, it deserves 

more than a few pages of hastily prepared user documentation. It needs every page of the book you are 

now holding to properly describe its underlying algorithms and design philosophy. 

This book was written concurrently with the program’s development. Each paragraph bears with it the 

immediate (and often frustrating) experience of having implemented the algorithms being discussed. The 

subtitle “A Programmer’s Perspective” means precisely what it says. 

The challenge in writing the program was to ensure that the code remained as generic as possible. True, 

HELIOS has been implemented as an MS-Windows program. However, very little of the code is specific to 

MS-Windows. This comes from the first draft specification for the program’s design: 



Introduction 3 
________________________________________________________________________ 

[The program] shall be implemented such that the display device and environment dependencies are 

minimized. Wherever possible, these dependencies shall be encapsulated in clearly defined and well-

documented C++ classes. 

Most of the code in this book is written in draft ANSI C++. More importantly, it was expressly 

designed for ease of porting to other computer environments. It compiles without any errors or warnings 

for both 16-bit (Windows 3.1) and 32-bit (Windows NT and Win32s) target environments. The goal was to 

develop a radiosity renderer that could be implemented on any platform that supports bitmap graphics 

displays. HELIOS explicitly supports this design philosophy. 

The real challenge is to you. This book provides an abundance of radiosity algorithms and 

implementations. Some features are discussed but not implemented. Others are implemented but not 

incorporated in HELIOS. They range from small but significant performance enhancements to major 

software development projects. While HELIOS is a fully functional program, it lacks some of the bells and 

whistles we normally associate with a commercial product. Thes are opportunities; you can enhance 

HELIOS and learn while you do so. 

First, however, it might be a good idea to explain what radiosity is … 

I.1 Capturing Reality 

Think of an empty and darkened room. It has a fluorescent light fixture mounted on the ceiling and a 

table sitting on the floor underneath it. The light fixture is turned off. There are no windows, open doors or 

any other source of illumination. Now, turn on the light. 
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Figure I.1 - Modeling the flow of light in a room 

We all know what happens next. Light flows from the light fixture, filling every corner of the room at 

the speed of … well, light. It directly illuminates the walls, floor and table top. The sides of the table are in 

shadow, and the ceiling is not directly illuminated. Depending on the surface reflectances, some of the light 

will be reflected back into the room; the rest will be absorbed. The reflected light will “bounce” from 

surface to surface until it is completely absorbed. In the process, it indirectly illuminates the entire room, 

including the table sides and ceiling. 

Within this simple model is the realm of our visual experience. Of this light, an almost infinitesimal 

portion will find its way to our eye’s retina. Converted into electrochemical signals, it provides visual 

images to our brain: we perceive the room in all its visual complexity. 

Note the term “perceive”. This is an important but often neglected point. We visually see light that 

impinges on our retina; electrochemical reactions generate nerve impulses that travel along the optic nerves 

to the visual cortex in our brain. From this, we consciously perceive the information that it conveys. 

If you think about it for a moment, we are surrounded by a three-dimensional field of light that we can 

never directly perceive. A flashlight beam is invisible until it is reflected by a surface, shines through 

translucent glass, or passes through smoke or airborne dust. We can only experience those material objects 

that direct light towards our eye; the light itself is an invisible agent in this process. 

We commonly think in terms of rays of light that are emitted by a light source. Each ray follows a 

straight line through space, possibly bouncing from surface to surface, until it is either completely absorbed 

or enters our eye (Fig. I.2). Those rays we see are focused by the cornea onto the retina; together, they 

form an image of the objects we perceive. 
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Figure I.2 - Perceiving objects through rays of light 

From this, it should be evident that we can look at a photograph and perceive the objects it portrays. If 

each ray of light reflected from the photograph towards our eye exactly mimics those rays we see from the 

original scene, then we should not be able to tell the difference between the photograph and the original 

objects. 

Of course, nature is rarely so kind. Our binocular vision immediately tells us that the photograph is a 

two-dimensional surface with no perceptual depth. The relative positions of the objects in the photograph 

remain unchanged as we move our heads. These and a thousand other visual cues tell us that a photograph 

is a photograph and not the objects it portrays. 

Nevertheless, we appreciate these images and value them for both their aesthetic and informational 

content. They take us to places where we cannot go, remind us of past events and convey images of reality 

we cannot see or otherwise imagine. More recently, they have shown us images of virtual realities–

photorealistic renditions of imaginary worlds that exist only as bits of information in the memory of our 

computers. 

We value these images most when they portray the world as we think it should be. A view of an 

architectural interior should exhibit all the characteristics of the real world. Specular reflections from glass 

and polished wood, diffuse reflections from matte finishes, fine details and textures in every object and 

realistic shadows are but a few of these. Capturing these nuances is a considerable challenge to the 

computer scientist and artist alike. While much progress has been made since the first crude line drawings 
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were displayed on the cathode ray tube screen of MIT’s WhirlWind I computer in 1950 (Newmann and 

Sproull [1979]), the current state of the art reveals that we still have far to go. 

In the meantime, we have the knowledge and computing power to synthesize photorealistic images 

using nothing more than our artistic sense and a personal desktop computer. We might say that these 

images allow us to capture reality. It will take several hundred pages of higher mathematics and some 

rather convoluted source code to explain how, but the results will be rewarding and extremely satisfying. 

I.2 Rays of Light 

The first attempts to capture reality in the form of photorealistic images relied on the basic principles of 

geometric optics. Using Figure I.1 as an example, each ray of light emitted by the light source was 

faithfully followed as it traversed the room (Whitted [1980]). At each point where it intersects a surface, 

the physical properties of that surface determine how much of the ray is absorbed and the direction and 

color of the remainder. A black surface will obviously reflect much less light than a white one. Similarly, a 

red surface will reflect mostly red light, even though the color of the light source may have been white. A 

transparent object behaves in the same manner, except that the remaining light is transmitted through its 

volume rather than reflected from its surface. 

The problem with this approach is that it is shockingly inefficient. Most of the rays will be fully 

absorbed before they ever reach our eye. Why follow them if they cannot be seen? This leads to the 

concept of backwards ray tracing. Knowing how a ray is reflected or transmitted by each object it 

encounters on its path from the light source to our eye, we can trace it backwards through space and time 

from our eye (Fig. I.3). We then have to consider only those rays that we can actually see. 
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Figure I.3 - Backwards ray tracing 

Unfortunately, this leads to a second problem. Figures I.2 and I.3 show a single ray being reflected 

from the surface, but this is a gross simplification. Physical surface finishes vary from microscopically 

smooth to roughly textured. A smooth and polished surface acts much like a mirror–it is a specular 

reflector of light. A single ray of light incident on the surface will be reflected as a single ray. This is a 

trivial event for a ray tracing program, since the angle of reflection can be calculated very easily. 

More often, however, physical surfaces will act as semi-specular and diffuse reflectors (Fig. I.4). Here, 

an incident ray is reflected as an infinite number of rays. The intensity of each reflected ray will vary, 

depending on the angle of the incident ray, the angle of the reflected ray and the surface reflectance 

properties. This makes ray tracing somewhat more difficult, to say the least. 

Specular Semi-specular Diffuse  

Figure I.4 - Reflection from specular and diffuse surfaces 

The overall effect of light being repeatedly reflected from semi-specular and diffuse surfaces is to fill 

the room with rays going in every direction. This fill light, to use the artist’s term for it, provides the soft 

shadows and subtle shadings we associate with realistic images. Without it, most shadows are black and 

featureless. 
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It becomes computationally infeasible to trace any significant number of these diffusely-reflected rays 

for complex scenes (or environments) involving hundreds or thousands of non-specular surfaces. This 

highlights an important limitation of ray tracing techniques: they have difficulty in accurately modeling 

semi-specular and diffuse reflections. 

Most ray tracing programs do not attempt to model these reflections directly. Instead, numerous 

techniques have been developed to simulate their contribution to indirect illumination. One popular 

approach is to simply assume that all surfaces are evenly illuminated by a completely diffuse but hidden 

light source. This ambient lighting term has no physical basis; it simply attempts to make the objects in the 

environment look more realistic. 

Other, more sophisticated ray tracing algorithms can be used to simulate soft shadows and diffuse 

reflections. Again, however, they are often ad hoc techniques without a firm physical basis. The results are 

not always satisfactory–many ray traced images exhibit the characteristic signature of plastic-looking 

surfaces, and their shadows may be less than convincing. 

This is not to disparage ray tracing techniques. Computer graphics practitioners have been extremely 

successful in using these techniques to create an astounding assortment of images. What we need to 

recognize is that they have their limitations, and to consider the possible alternatives where necessary. 

These are our radiosity methods, a fundamentally different approach to photorealistic image synthesis. 

I.3 Radiosity Explained 

Figure I.5 shows our empty room again, but with three significant refinements: 1) all surfaces are 

assumed to be ideal diffuse and opaque reflectors; 2) the light source is an ideal diffuse emitter of light, and 

3) each surface is subdivided into a mesh of elements called patches. 
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Figure I.5 - A room with subdivided surfaces 

The assumption that all surfaces are ideal diffuse (or Lambertian) reflectors is important. These 

reflectors have a unique and very interesting property: they reflect light equally in all directions, regardless 

of the angle of the incident ray or rays of light illuminating the surface. 

Look at the paper this page is printed on–it is a reasonable approximation of an ideal diffuse reflector. 

Try holding it under an incandescent desk lamp and tilting the book back and forth. If you keep it at a 

constant distance from the lamp, the visual “brightness” of the paper will not change significantly. A spot 

light meter will tell you the same thing; the amount of light reflected in any direction is independent of the 

angle of the incident light. 

This will prove extremely useful to us. The total quantity of light reflected from a Lambertian surface is 

equal to the quantity of the incident light times the surface reflectance. Period. A grey Lambertian surface 

with a surface reflectance of 20 percent reflects precisely 20 percent of any incident light, and distributes it 

equally in all directions. 

An ideal diffuse emitter is identical to a Lambertian reflector, except that it emits light equally in all 

directions. Some fluorescent light fixtures are reasonable approximations of ideal diffuse emitters. Most 

light sources, however, are not. Neverthless, it is a useful concept that will help us understand the radiosity 

approach. 

So what does this give us? Well, consider that it is very easy to calculate how much light is emitted in 

any given direction by a Lambertian emitter or reflector. (The details are presented in Chapter One.) If we 

know the geometry of the room and the constituent elements of its surfaces, we can determine how much 

light each element receives from the light source. Note that we do not have to trace individual rays, since 
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all the information we need is contained in the room and element geometry. (See Chapter Five for a 

detailed exposition.) Most of the elements will receive some light. A few, however, will be hidden from 

view (as seen from the light source) by other elements, and so they receive no direct illumination. 

So far, so good. Now, each of these elements will absorb some of the light it receives and reflect the 

remainder back into the room. If we know the reflectance of each surface, we can calculate the precise 

amount. Each illuminated element now become a secondary ideal diffuse emitter that “sends” its light to 

those elements visible to it. 

This process is clearly iterative, and proceeds until all of the reflected light from all of the elements is 

finally absorbed. If we keep a tally of how much light each element reflects and/or emits, we end up 

knowing how “bright” it will appear when viewed from any direction. Loosely speaking, this is the 

element’s radiosity. 

Finally, we know the geometry of each element in the room–in computer graphics parlance, it is a 

three-dimensional polygon. If we know its brightness, we can use a 3-D graphics package to directly render 

a photorealistic image of the room (as a collection of 3-D polygons) from any viewpoint. 

That’s all there is to it! Radiosity explained in five hundred words or less. Mark this section for future 

reference. 

I.4 Ray Tracing Versus Radiosity 

There are both obvious and subtle differences between ray tracing and radiosity. In ray tracing, the 

viewer is paramount. All rays are traced from the view position into the environment. Changing the view 

position or orientation by more than a small amount usually requires repeating the entire ray tracing 

process from scratch. As such, most ray tracing techniques represent a view-dependent process. 

Radiosity is the exact opposite. Our light transfer calculations are based solely on the geometry of the 

environment. There is no view position or viewer. Radiosity considers only the interaction of light with 

surfaces in the environment. 

This has an important consequence. Given an environment, we can calculate the visual brightness of 

each of its surface elements. These calculations may take some time, but we only need to perform them 

once. After that, we can position and orient ourselves anywhere in the environment and synthesize a 
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photorealistic image almost as quickly as we can draw and shade 3-D polygons on our computer screen. 

Radiosity methods therefore represent a view-independent process. 

On the other side of the coin, efficient radiosity methods are limited to modeling Lambertian surfaces. 

They can model semi-specular surfaces, but only with roughly the same amount of effort as is required by 

ray tracing techniques. Also, radiosity methods fail completely to model those specular reflections that are 

ray tracing’s forte. 

In short, we should consider ray tracing and radiosity as two complementary approaches to 

photorealistic image synthesis. Researchers are still refining existing algorithms and developing new ones. 

In the future, we will likely rely on a hybrid approach that combines the best features of both–radiosity for 

diffuse reflections and ray tracing for specular highlights. Here, our interest is in radiosity–its theory and 

implementation. 

I.5 Radiosity Models Light 

There is a fundamental aspect of the radiosity approach that has been so far overlooked in the computer 

graphics literature. Consider that ray tracing techniques model objects. An individual ray must interact with 

objects in the environment before it can convey any information. Without detailed knowledge of these 

objects, their geometry and physical properties, we cannot create an image. 

Radiosity is different. Yes, we still need to know the geometry and physical properties of the objects. 

However, radiosity allows us to render an image of the environment from any viewpoint. Seen thus, it is 

evident that radiosity is not modelling the objects within the environment. Instead, it is modelling the three-

dimensional field of light that permeates the environment. More to the point, we will see in Chapter One 

that it can in theory model this field exactly and completely. This then becomes a central theme of this 

book: radiosity models light. 

I.6 A Programmer’s Perspective 

In explaining the radiosity approach, we necessarily had to gloss over a few minor implementation 

details ... well, maybe not so minor. In fact, it will take the remainder of this book to discuss them. It will 

involve the occasional excursion into higher mathematics, including analytic geometry, elementary 

calculus, matrix theory, four dimensional … come back here! It will not be as difficult as you might think. 
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If anything, the sheer volume of C++ source code will prove to be more of challenge. Implementing a 

functional radiosity-based renderer is no easy task, as the size of this book attests. Besides, all of the key 

mathematical concepts and terminology are explained in strategically positioned text boxes. 

The radiosity approach is firmly based on simple geometrical concepts that can be explained without 

the aid of mathematics. The mathematics are there because we have to explain these simple concepts to 

some very stupid acquaintances: our computers. Read the text first so that you understand the principles 

involved. The reasoning behind the mathematics should readily follow. 

Enough however of generalities; it is time to begin. 
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 P A R T 

I 
Radiosity Models Light 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Here there be dragons. Beware! 

Radiosity models light. To fully appreciate the significance of this contention, we first need to 

understand what light is and how it is measured. Chapter One examines the concepts of radiometry and 

photometry, with a brief excursion into radiometric field theory. These concepts provide a foundation for 

Chapter Two, which explains radiosity in terms of the geometrical nature of light. 

For some readers, there may indeed be dragons here. Differential equations, area integrals and other 

topics from college-level mathematics are not everyday fare for most programmers. Fear not, however. The 

accompanying text boxes tame them with high school algebra and trigonometry. 

 



Chapter 1 
Measuring Light 

1.0 Introduction 

light, n. 1. The natural agent that stimulates the sense of sight. 2. Medium or condition of space in 
which sight is possible. 

The Concise Oxford English Dictionary 
Oxford University Press, 1964 

There have been many theories concerning the nature of light. Aristotle [384-322 BC] believed 

that it consisted of “corpuscles” that emanated from the eye to illuminate the world. Today, we favor 

the theory of quantum mechanics (e.g., Hecht and Zajac [1987]), or perhaps the possibility that light 

may be vibrations in the fifth dimension of ten-dimensional hyperspace (e.g., Kaku [1994]). Even so, 

the true nature of light remains a mystery. It is perhaps appropriate that the pre-eminent dictionary of 

the English language describes light so loosely: “the natural agent that stimulates the sense of sight.” 

Whatever it may be, our interest in light is much more parochial. We simply want to model what 

we see and perceive. While we may think in terms of objects, what we see is light. Ray tracing models 

objects; radiosity models light. The distinction is subtle but important. If we are to understand 

radiosity, we must first understand the basics. What is light and how do we measure it? 

The material in this chapter is somewhat removed from the computer graphics mainstream. 

Nevertheless, it is vitally important to understand what it is we are trying to model. The key concepts 

in radiosity are radiant exitance (also known as radiosity) and luminance. Unfortunately, these 

concepts must be carefully described in fairly rigorous terms using a variety of arcane definitions. So, 

grab a cup of coffee or another mental stimulant and we can begin. 

1.1 What Is Light? 

Light is electromagnetic radiation. What we see as visible light is only a tiny fraction of the 

electromagnetic spectrum, extending from very low frequency radio waves through microwaves, 
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infrared, visible and ultraviolet light to x-rays and ultra-energetic gamma rays. Our eyes respond to 

visible light; detecting the rest of the spectrum requires an arsenal of scientific instruments ranging 

from radio receivers to scintillation counters. 

A rigorous and exact description of electromagnetic radiation and its behavior requires a thorough 

knowledge of quantum electrodynamics and Maxwell’s electromagnetic field equations. Similarly, a 

complete understanding of how we peceive the light our eyes see delves deeply into the physiology 

and psychology of the human visual system. There is an enormous body of literature related to the 

physical aspects of light as electromagnetic radiation (e.g., Hecht and Zajac [1987]) and an equally 

enormous amount devoted to how we perceive it (e.g., Cornsweet [1977]). Fortunately, our interests 

are extremely modest. We simply want to measure what we see and perceive. 

1.2 Radiometry 

Radiometry is the science of measuring light in any portion of the electromagnetic spectrum. In 

practice, the term is usually limited to the measurement of infrared, visible and ultraviolet light using 

optical instruments. 

There are two aspects of radiometry: theory and practice. The practice involves the scientific 

instruments and materials used in measuring light, including radiation thermocouples, bolometers, 

photodiodes, photosensitive dyes and emulsions, vacuum phototubes, charge-coupled devices and a 

plethora of others. What we are interested in, however, is the theory. 

Radiometric theory is such a simple topic that most texts on physics and optics discuss it in a few 

paragraphs. Unfortunately, a certain historical bias has left us with a theory that is conceptually simple 

but sometimes difficult to understand. In essence, the problem is one of separating light from objects. 

To appreciate this bias, we first need to review the fundamental radiometric concepts. 

1.2.1 Radiant Energy 

Light is radiant energy. Electromagnetic radiation (which can be considered both a wave and a 

particle, depending on how you measure it) transports energy through space. When light is absorbed 

by a physical object, its energy is converted into some other form. A microwave oven, for example, 

heats a glass of water when its microwave radiation is absorbed by the water molecules. The radiant 
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energy of the microwaves is converted into thermal energy (heat). Similarly, visible light causes an 

electric current to flow in a photographic light meter when its radiant energy is transferred to the 

electrons as kinetic energy. 

Radiant energy is measured in joules. 

1.2.2 Radiant Flux (Radiant Power) 

Energy per unit time is power, which we measure in joules per second, or watts. A laser beam, for 

example, has so many milliwatts or watts of radiant power. Light “flows” through space, and so 

radiant power is more commonly referred to as the “time rate of flow of radiant energy”, or radiant 

flux. It is defined as: 

dtdQ=Φ  (1.1) 

where Q is radiant energy and t is time. 

If your background doesn’t include college-level calculus, think of the above differential equation 

as follows. You might walk m meters in t minutes. The velocity v at which you walk may vary, but 

your average velocity  is the distance m divided by the time t, or: avgv

tmvavg =  

In each minute, you may walk  meters, where m∆ m∆  varies from minute to minute. Your average 

velocity for each minute is given by: 

tmvavg ∆∆=  

where ∆  is the interval of time over which t m∆  is measured. We can clearly shorten the interval of 

time (seconds, milliseconds, etc.) until it is infinitesimally small. The distance traveled is then 

infinitesimally short. If we denote the time interval as  (indicating a differential interval of time) dt

and the distance as dm , we have the instantaneous velocity v: 

dtdmv =  

Looking again at Equation 1.1, the radiant energy Q is the total “amount of work done” (the 

definition of energy). The radiant flux Φ  is the infinitesimal amount of work done ( ) in an dQ

differential amount of time ( ). dt
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In terms of a photographic light meter measuring visible light, the instantaneous magnitude of the 

electric current is directly proportional to the radiant flux. The total amount of current measured over a 

period of time is directly proportional to the radiant energy absorbed by the light meter during that 

time. This is how a photographic flash meter works–it measures the total amount of radiant energy 

received from a camera flash. 

The flow of light through space is often represented by geometrical rays of light such as those used 

in computer graphics ray tracing. They can be thought of as infinitesimally thin lines drawn through 

space that indicate the direction of flow of radiant energy (light). They are also mathematical 

abstractions–even the thinnest laser beam has a finite cross-section. Nonetheless, they provide a useful 

aid to understanding radiometric theory. 

1.2.3 Radiant Flux Density (Irradiance and Radiant Exitance) 

Radiant flux density is the radiant flux per unit area at a point on a surface, where the surface can 

be real or imaginary (i.e., a mathematical plane). There are two possible conditions. The flux can be 

arriving at the surface (Fig. 1.1a), in which case the radiant flux density is referred to as irradiance. 

The flux can arrive from any direction above the surface, as indicated by the rays. Irradiance is 

defined as: 

dAdE Φ=  (1.2) 

where  is the radiant flux arriving at the point and dA  is the differential area surrounding the point. Φ

The flux can also be leaving the surface due to emission and/or reflection (Fig. 1.1b). The radiant 

flux density is then referred to as radiant exitance. As with irradiance, the flux can leave in any 

direction above the surface. The definition of radiant exitance is: 

dAdM Φ=  (1.3) 

where  is the radiant flux leaving the point and dA  is the differential area surrounding the point. Φ
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dA  dA  
Figure 1.1a - Irradiance Figure 1.1b - Radiant exitance 

The importance of a “real or imaginary” surface cannot be overstated. It means that radiant flux 

density can be measured anywhere in three-dimensional space. This includes on the surface of 

physical objects, in the space between them (e.g., in air or a vacuum) and inside transparent media 

such as water and glass. 

Radiant flux density is measured in watts per square meter. 

1.2.4 Radiance 

Radiance is best understood by first visualizing it. Imagine a ray of light arriving at or leaving a 

point on a surface in a given direction. Radiance is simply the amount of radiant flux contained in this 

ray. Period. 

A more formal definition of radiance requires that we think of the ray as being an infinitesimally 

narrow (“elemental”) cone with its apex at a point on a real or imaginary surface. This cone has a 

differential solid angle ωd  that is measured in steradians. 

A solid angle is the 3-D analog of a two-dimensional angle. Figure 1.2a shows two lines radiating 

from the center of a circle of radius r. The angle θ between the lines can measured in terms of the 

length of the chord c between them. If c = r, then the angle is one radian. The circumference of a 

circle is 2πr.; therefore, there are 2π radians in a circle. 

Similarly, Figure 1.2b shows a cone radiating from the center of a sphere of radius r. The solid 

angle ω of the cone (which can have any cross-sectional shape) can be measured in terms of the 

surface area A of the sphere it intersects as 2rA=ω . If 2rA = , then the solid angle is one 

steradian. The area of a sphere is ; therefore, there are 4π steradians in a sphere. 24 rπ
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Figure 1.2a - 2-D angle Figure 1.2b - 3-D solid angle 

We must also note that the ray is intersecting the surface at an angle. If the area of intersection 

with the surface has an differential cross-sectional area dA, the cross-sectional area of the ray is 

θcosdA , where θ is the angle of between the ray and the surface normal, as shown in Figure 1.3. (The 

ray cross-sectional area θcosdA  is called the projected area of the ray-surface intersection area dA. 

The same term is used when referring to finite areas ∆A.) 

Φ

dA cos θ

θ

dA

n

Projected area

 
Figure 1.3 - A ray of light intersecting a surface 

With these preliminaries in mind, we can imagine an elemental cone ωd  containing a ray of light 

that is arriving at or leaving a surface (Figs. 1.4a and 1.4b). The definition of radiance is then: 

([ )]θω cos2 ddAdL Φ=  (1.4) 

where Φ is the radiant flux,  is the differential area surrounding the point, dA ωd  is the differential 

solid angle of the elemental cone and θ is the angle between the ray and the surface normal n at the 

point. 

The superscript ‘2’ in Equation 1.4 doesn’t mean that anything is being squared. Rather, it 

indicates that the infinitesimal amount of flux Φd  is divided by the differential area  and the dA

differential solid angle ωd . 
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Figure 1.4a - Radiance (arriving) Figure 1.4b - Radiance (leaving) 

Unlike radiant flux density, the definition of radiance does not distinguish between flux arriving at 

or leaving the surface. In fact, the formal definition of radiance (ANSI/IES [1986]) states that it can be 

“leaving, passing through or arriving at” the surface. 

Another way of looking at radiance is to note that the radiant flux density at a point on a surface 

due to a single ray of light arriving (or leaving) at an angle θ to the surface normal is ( )θcosdAdΦ . 

The radiance at that point for the same angle is then ( )[ ]θω cos2 dAdd Φ , or radiant flux density per 

unit solid angle. 

Radiance is measured in watts per square meter per steradian. 

1.2.5 Radiant Intensity 

We can imagine an infinitesimally small point source of light that emits radiant flux in every 

direction. The amount of radiant flux emitted in a given direction can be represented by a ray of light 

contained in an elemental cone. This gives us the definition of radiant intensity: 

ωddI Φ=  (1.5) 

where dω is the differential solid angle of the elemental cone containing the given direction. From the 

definition of a differential solid angle ( 2rdA=ωd ), we get: 

22 rIdrddAdE =Φ=Φ= ω  (1.6) 

where the differential surface area dA is on the surface of a sphere centered on and at a distance r from 

the source and E is the irradiance at that surface. More generally, the radiant flux will intercept dA at 

an angle θ (Fig. 1.5). This gives us the inverse square law for point sources: 

2cos dIE θ=  (1.7) 
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where I is the intensity of the source in the given direction and d is the distance from the source to the 

surface element dA. 

θd

n

dA
 

Figure 1.5 - Inverse square law for point sources 

We can further imagine a real or imaginary surface as being a continuum of point sources, where 

each source occupies a differential area dA (Fig. 1.6). Viewed at an angle θ from the surface normal n, 

the source has a projected area of θcosdA . Combining the definitions of radiance (Eqn. 1.4) and 

radiant intensity (Eqn. 1.5) gives us an alternative definition of radiance: 

( )θcosdAdIL =  (1.8) 

where dI is the differential intensity of the point source in the given direction. 

θ

n

dA

dI

 

Figure 1.6 - Radiance of a point source 

Radiant intensity is measured in watts per steradian. 

1.3 Illumination Versus Thermal Engineering 

The above definitions are those commonly used in illumination engineering, and are in accordance 

with the American National Standard Institute publication “Nomenclature and Definitions for 

Illuminating Engineering” (ANSI/IES [1986]). Unfortunately, these definitions differ somewhat from 

those used in thermal engineering (e.g., Siegel and Howell [1981]). Radiative heat transfer theory (i.e., 

infrared light) does not use the point source concept. Thermal engineers instead use the term “radiant 

intensity ” to describe radiance (watts per unit area per unit solid angle). 
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The different terminology was of little consequence until the computer graphics community 

adapted the concepts of radiative heat transfer to create radiosity theory. In the process of doing so it 

adopted thermal engineering’s terminology. This is an unfortunate situation, since computer graphics 

also relies on the point source concept for ray tracing. 

This book defines radiant intensity as “watts per unit solid angle” and radiance as “watts per unit 

area per unit solid angle” to maintain consistency between radiosity and ray tracing theory. You 

should remember, however, that many papers and texts on radiosity theory and some computer 

graphics texts instead define “radiant intensity” as “watts per unit area per unit solid angle”. 

1.4 Photometry 

Photometry is the science of measuring visible light in units that are weighted according to the 

sensitivity of the human eye. It is a quantitative science based on a statistical model of the human 

visual response to light–that is, our perception of light under carefully controlled conditions.. 

The human visual system is a marvelously complex and highly nonlinear detector of 

electromagnetic radiation with wavelengths ranging from about 380 to 770 nanometers (nm). We see 

light of different wavelengths as a continuum of colors ranging through the visible spectrum: 650 nm 

is red, 540 nm is green, 450 nm is blue, and so on. 

The sensitivity of the human eye to light varies with wavelength. A light source with a radiance of 

one watt/m2-steradian of green light, for example, appear much brighter than the same source with a 

radiance of one watt/m2-steradian of red or blue light. In photometry, we do not measure watts of 

radiant energy. Rather, we attempt to measure the subjective impression produced by stimulating the 

human eye-brain visual system with radiant energy. 

This task is complicated immensely by the eye’s nonlinear response to light. It varies not only with 

wavelength, but also with the amount of radiant flux, whether the light is constant or flickering, the 

spatial complexity of the scene being perceived, the adaptation of the iris and retina, the psychological 

and physiological state of the observer, and a host of other variables. 

Nevertheless, the subjective impression of seeing can be quantified for “normal” viewing 

conditions. In 1924, the Commission Internationale d’Eclairage (International Commission on 
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Illumination, or CIE) asked over one hundred observers to visually match the “brightness” of 

monochromatic light sources with different wavelengths under controlled conditions. The statistical 

result–the so-called “CIE photometric curve” shown in Figure 1.7–shows the photopic luminous 

efficiency of the human visual system as a function of wavelength. It provides a weighting function 

that can be used to convert radiometric into photometric measurements. 
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390 440 490 540 590 640 690 740

 
Figure 1.7 - CIE photometric curve 

Photometric theory does not address how we perceive colors. The light being measured can be 

monochromatic or a combination or continuum of wavelengths; the eye’s response is determined by 

the CIE weighting function. This underlines a crucial point: the only difference between radiometric 

and photometric theory is in their units of measurement. With this thought firmly in mind, we can 

quickly review the fundamental concepts of photometry. 

1.4.1 Luminous Intensity 

The foundations of photometry were laid in 1729 by Pierre Bouguer. In his “L’Essai d’Optique”, 

Bouguer discussed photometric principles in terms of the convenient light source of his time: a wax 

candle. This became the basis of the point source concept in photometric theory. 

Wax candles were used as national light source standards in the 18th and 19th centuries. England, 

for example, used spermaceti (a wax derived from sperm whale oil). These were replaced in 1909 by 

an international standard based on a group of carbon filament vacuum lamps, and again in 1948 by a 

crucible containing liquid platinum at its freezing point. Today, the international standard is a 

theoretical point source that has a luminous intensity of one candela (the Latin word for candle). It 

emits monochromatic radiation with a frequency of 540 × 1012 Hertz (or approximately 555 nm, 
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corresponding with the wavelength of maximum photopic luminous efficiency) and has a radiant 

intensity (in the direction of measurement) of 1/683 watts per steradian. 

Together with the CIE photometric curve, the candela provides the weighting factor needed to 

convert between radiometric and photometric measurements. Consider for example a monochromatic 

point source with a wavelength of 510 nm and a radiant intensity of 1/683 watts per steradian. The 

photopic luminous efficiency at 510 nm is 0.503. The source therefore has a luminous intensity of 

0.503 candela. 

1.4.2 Luminous Flux (Luminous Power) 

Luminous flux is photometrically weighted radiant flux (power). Its unit of measurement is the 

lumen, defined as 1/683 watts of radiant power at a frequency of 540 × 1012 Hertz. As with luminous 

intensity, the luminous flux of light with other wavelengths can be calculated using the CIE 

photometric curve. 

A point source having a uniform (isotropic) luminous intensity of one candela in all directions 

(i.e., a uniform intensity distribution) emits one lumen of luminous flux per unit solid angle 

(steradian). 

1.4.3 Luminous Energy 

Luminous energy is photometrically weighted radiant energy. It is measured in lumen-seconds. 

1.4.4 Luminous Flux Density (Illuminance and Luminous Exitance) 

Luminous flux density is photometrically weighted radiant flux density. Illuminance is the 

photometric equivalent of irradiance, while luminous exitance is the photometric equivalent of radiant 

exitance. 

Luminous flux density is measured in lumens per square meter.  

1.4.5 Luminance 

Luminance is photometrically weighted radiance. In terms of visual perception, we perceive 

luminance. It is an approximate measure of how “bright” a surface appears when we view it from a 

given direction. Luminance used to be called “photometric brightness”. This term is no longer used in 
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illumination engineering, since the subjective sensation of visual brightness is influenced by many 

other physical, physiological and psychological factors. 

Luminance is measured in lumens per square meter per steradian. 

1.5 Lambertian Surfaces 

A Lambertian surface is a surface that has a constant radiance or luminance that is independent of 

the viewing direction. In accordance with the definition of radiance (luminance), the radiant 

(luminous) flux may be emitted, transmitted and/or reflected by the surface. 

A Lambertian surface is also referred to as an ideal diffuse emitter or reflector. In practice there are 

no true Lambertian surfaces. Most matte surfaces approximate an ideal diffuse reflector, but typically 

exhibit semispecular reflection characteristics at oblique viewing angles. Nevertheless, the Lambertian 

surface concept will prove useful in our development of radiosity theory. 

Lambertian surfaces are unique in that they reflect incident flux in a completely diffuse manner 

(Fig. 1.8). It does not matter what the angle of incidence θ of an incoming geometrical ray is–the 

distribution of light leaving the surface remains unchanged. 

We can imagine a differential area dA of a Lambertian surface. Being infinitesimally small, it is 

equivalent to a point source and so the flux leaving the surface can be modeled as geometrical rays. 

The intensity  of each ray leaving the surface at an angle θ from the surface normal is given by 

Lambert’s Cosine Law: 

θI

θθ cosnII =  (1.9) 

where  is the intensity of the ray leaving in a direction perpendicular to the surface. nI
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θ

n

dA  
Figure 1.8 - Reflection from a Lambertian surface 

The derivation of equation 1.9 becomes clear when we remember that we are viewing dA from an 

angle θ. For a differential area dA with a constant radiance or luminance, its intensity must vary in 

accordance with its projected area, which is θcosdA . This give us: 

( ) dAdIdAdIL n== θcos  (1.10) 

for any Lambertian surface. 

There is a very simple relation between radiant (luminous) exitance and radiance (luminance) for 

flux leaving a Lambertian surface: 

LM π=  (1.11) 

where the factor of π is a source of endless confusion to students of radiometry and photometry. 

Fortunately, there is an intuitive explanation. Suppose we place a differential Lambertian emitter dA 

on the inside surface of an imaginary sphere S (Fig. 1.9). The inverse square law (Eqn. 1.6) provides 

the irradiance E at any point P on the inside surface of the sphere. However, θcosDd = , where D is 

the diameter of the sphere. Thus: 

( ) θθθ θθ coscoscos 22 DIDIE ==  (1.12) 

and from Lambert’s Cosine Law (Eqn. 1.9), we have: 

22 coscos DIDIE nn == θθ  (1.13) 

which simply says that the irradiance (radiant flux density) of any point P on the inside surface of S is 

a constant. 
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Figure 1.9 - A Lambertian emitter illuminating the interior of a sphere 

This is interesting. From the definition of irradiance (Eqn. 1.2), we know that  for 

constant flux density across a finite surface area A. Since the area A of the surface of a sphere with 

radius r is given by: 

EA=Φ

224 DrA ππ ==  (1.14) 

we have: 

nn IDDIEA ππ ===Φ 22  (1.15) 

Given the definitions of radiant exitance (Eqn. 1.3) and radiance for a Lambertian surface (Eqn. 

1.10), we have: 

LdAdIdAdM n ππ ==Φ=  (1.16) 

This explains, clearly and without resorting to integral calculus, where the factor of π comes from. 

1.6 Volume Light Sources 

We see light only through its effects on physical objects. In looking at the world, we “see” 

physical objects. More precisely, we perceive the luminance of their surfaces. Bouguer and other early 

investigators made this apparent truism an integral part of photometric theory by defining illuminance, 

luminous exitance and luminance in terms of physical surfaces. 

Physicists later became interested in other aspects of light, including that emitted by plasmas. 

What is the luminous exitance or luminance of an electric arc? The glowing gas has no definable 

surface! The same goes for the sky overhead, where the blue light we see is due to sunlight scattered 

by air and dust molecules from the ground to the outer reaches of the atmosphere. These are clearly 

volume sources of light. The definitions of luminous flux density and luminance do not seem to apply. 

 



28 Measuring Light 
_____________________________________________________________________ 

This problem was overcome by introducing the concept of an imaginary surface, a mathematical 

plane drawn in space. It can be positioned and oriented in 3-D space as required, including inside a 

volume light source. The traditional photometric definitions were thus retained intact. 

The question is, why? Photometric and radiometric theory does not address the properties of any 

surface, real or imaginary. Is it necessary to consider surfaces at all? The answer is simple and 

unequivocal: no. 

1.7 Radiometric Field Theory 

Field theory is one of the most powerful mathematical methods used in physics today. At the time 

of its development however, most of our present-day radiometric and photometric theory was already 

firmly established. Based mainly on the work of Johann Heinrich Lambert [1760] and geometrical 

optics, radiometry and photometry make no use of field theory. 

Mehmke [1898] was the first to suggest that field theory might have applications in illumination 

engineering. His suggestion was later developed into a formal theoretical framework for radiometric 

field theory by Yamauti [1932] and Gershun [1936]. Moon and Spencer continued to develop this 

theory for another forty-odd years, culminating in their publication of “The Photic Field” (Moon and 

Spencer [1981]). 

Radiometric field theory does not address light coming from point sources. Rather, it considers a 

field of light that permeates three-dimensional space. Yamauti and Gershun referred to this field as a 

“light field”, while Moon and Spencer [1981] called it a “photic” field. Photic fields are rigorously 

described by Maxwell’s electromagnetic field equations for the special case of zero wavelength 

(Moon and Spencer [1981]). They are also 5-D scalar fields, where scalar measurements (irradiance 

and radiance) are made in five dimensions: three axes for position (x, y, and z) and two axes for 

orientation (vertical and horizontal). 

As you might have guessed, the full mathematical details of radiometric field theory are complex 

and abstract. This complexity has made it more of a curiosity than a useful tool for everyday 

illumination engineering. Very few illumination engineers are even aware of its existence. 
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Nevertheless, radiometric field theory has something to offer: a different view of radiometry and 

photometry. This becomes evident when we reconsider radiometry (and by extension photometry) 

from first principles. 

1.8 Radiometry Reconsidered 

The validity of radiant energy and radiant flux is self-evident, since they do not refer to surfaces. 

Electromagnetic radiation transports energy through space. We can therefore imagine a field of light–a 

photic field–in three-dimensional space, with geometrical rays indicating its direction of flow. 

We can monitor this flow with an instrument that detects the radiant flux incident on a small 

surface area (its “active surface”). The flux is converted into an electric current I that we can measure 

with an ammeter M (Fig. 1.10). By dividing the measured flux by the surface area, we can calculate 

the average irradiance at the surface.  

Our instrument can be placed anywhere in space; the amount of radiant flux it receives it measures 

clearly depends on its position and orientation. If we make the active surface area infinitesimally 

small, we can in theory measure irradiance at a mathematical point. 

M
I

 

Figure 1.10 - An irradiance meter 

The radiant flux must come from physical objects, either directly from emissive sources or 

indirectly through reflection, refraction, diffraction or scattering. Remember however that we are 

measuring light; where it comes from is immaterial. We are only interested in measuring radiant flux 

and irradiance at a point in space. 

In measuring irradiance, our instrument “sees” an entire hemisphere of space. That is, it is 

sensitive to rays of light arriving from any direction above the surface of the imaginary plane defined 
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by the position and orientation of the instrument’s active surface. However, we are measuring 

irradiance as a property of a photic field. We do not need to relate this measurement to any surface, 

real or imaginary. 

This is a subtle but very important point. Radiometric field theory does not change the definition 

of radiant flux density (irradiance and radiant exitance). Instead, it changes the way we interpret it. 

Radiant flux density is an intrinsic property of a photic field. Its relation to any physical surface is 

almost coincidental. We should therefore refer to irradiance or radiant exitance at a surface rather than 

of a surface. 

1.9 Radiance Redefined 

This interpretation of radiant flux density can be extended to the definition of radiance with 

interesting results. Suppose we use an opaque shield (oriented perpendicular to the active surface) to 

restrict our irradiance meter’s field of view to a finite solid angle ω (Fig. 1.11). It then measures the 

average radiance at the active surface for the directions contained within the field of view. 

ω

ΦOpaque shieldM

 

Figure 1.11 - A radiance meter 

By using a differential solid angle dω and a differential active surface area dA, we can in theory 

measure the radiance at a mathematical point for radiant flux arriving from directly above the surface. 

Since the solid angle dω defines a geometrical ray of light that is perpendicular to the active surface, 

the area dA coincides with the differential cross-sectional area of the ray. In other words, our 

instrument measures the radiance of a ray of light at a point in space. The interpretation is clear: 

radiance is an intrinsic property of a geometrical ray of light. It is not a property of any surface, real or 

imaginary. 

Radiometric field theory simplifies the definition of radiance. It becomes: 

1.9.1 Radiance (of a geometrical ray) 

The radiance of a geometrical ray at a point in space is defined as: 
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ωdAddL Φ= 2  (1.17) 

where Φ is the radiant flux of the ray at the point, dA is the differential cross-sectional area of the ray 

and dω is the differential solid angle of an elemental cone containing the ray. 

Moon [1942] referred to this definition of radiance as helios. However, it is merely a special case 

of the more general definition of radiance (Eqn. 1.4). In particular, it only considers radiant flux 

arriving at a point, and it has an implicit divisor of θcos  (where the angle θ is zero). 

To answer the obvious question, the name of the radiosity rendering program presented in this 

book–HELIOS–is in honor of the pioneering work done by Moon and Spencer in the fields of 

photometry and radiometry. 

1.10 Field Theory and Radiosity 

If nothing else, radiometric field theory clearly demonstrates the following axiom: 

Radiometry and photometry measure intrinsic properties of a field of light in space. These 

measurements are independent of any surface, real or imaginary. 

There is an interesting corollary to this axiom: radiometric and photometric theory does not 

require a point source. This was implicitly demonstrated in the order of presentation of the 

radiometric definitions, where radiant intensity was presented almost as an afterthought. Without a 

point source, we would not need to define radiant intensity at all. 

The photometric definitions began with luminous intensity only because photometric theory 

defines the candela as a basic unit of measurement and derives the definition of lumens from it. This is 

a historical artifact from the time of Pierre Bouguer and his wax candles. (We still draw point sources 

as a candle with geometrical rays radiating from the flame!) The lumen can be defined from first 

principles without resorting to point sources; the candela is just another name for lumens per 

steradian. 

The inconsequential nature of the point source is important for two reasons. First, there are no 

point sources in nature. Even the distant stars have a finite width that can be measured if the telescope 
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aperture is large enough. We will see in the next chapter that radiosity theory does not require a point 

source. In this sense, radiometric field theory provides a clearer understanding of radiosity. 

Second, point sources are objects. Ray tracing techniques rely on point sources as the ultimate 

source of radiant flux within an environment. The illuminance at a surface due to a point source can 

be determined using Lambert’s inverse square law, but only if we know the exact distance from the 

surface to the source. This is simple enough for single point sources, but becomes difficult for 

extended line and area sources and intractable for volume sources if they are modeled as an array or 

continuum of point sources. 

The radiosity approach emphasizes light over objects. As we see in the next chapter, the 

geometrical relations between objects in an environment are required only to determine their mutual 

“form factors”. Radiosity then models the photic field within the environment with no further 

reference to these objects. This is the proof of our contention: radiosity models light. 

1.11 What is Radiosity? 

ANSI/IES [1986] does not define or even mention “radiosity”. This is not unusual–there are many 

photometric and radiometric terms whose use is no longer encouraged. Illuminance, for example, used 

to be called “illumination”. It was changed to illuminance to avoid confusion with “the act of 

illuminating or the state of being illuminated” (ANSI/IES [1986]). 

When Moon wrote “The Scientific Basis of Illumination Engineering” in 1936, luminous exitance 

was called “luminosity”. Curiously, there was no equivalent term for radiant exitance, so he coined the 

term “radiosity” to describe the density of radiant flux leaving a surface. 

The illumination engineering community ignored Moon’s proposal. Luminosity was changed to 

“luminous emittance” and later to luminous exitance, with radiant exitance following as a consequent. 

Meanwhile, the thermal engineering community adopted radiosity (e.g., Siegel and Howell [1981]). 

It’s all very confusing. Fortunately, we only need to remember that: 

 Radiosity is radiant exitance. 

This book takes exception, perhaps unwisely, to the computer graphics community’s use of the 

term “radiosity” to describe radiant exitance. While it is an accepted term within the thermal 
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engineering community, it is not acceptable to illumination engineers for a variety of historical 

reasons. The computer graphics and illumination engineering communities have many common 

interests. If we are to communicate effectively, we must use a common lexicon of definitions. That 

lexicon is ANSI/IES [1986]. 

1.12 Measuring and Perceiving Color 

An irradiance or radiance meter is carefully designed to respond equally to light of any wavelength 

within the visible spectrum. As such, the meter measures radiant flux, regardless of whether we are 

measuring sunlight, monochromatic laser radiation or any other source of visible light. 

Suppose that we are using a radiance meter to measure sunlight reflected from a surface, where the 

radiant flux consists of a continuum of wavelengths across the visible spectrum (e.g., Fig. 1.12). We 

can filter this light such that it has a very narrow bandwidth. For example, we can use a “multilayer 

interference” filter that is only transparent to light with wavelengths between 632 nm and 633 nm. If 

we could make the filter bandwidth infinitesimally narrow (a physical impossibility), we could 

measure spectral radiance, which is expressed in watts per square meter per steradian per nanometer 

(ANSI/IES [1986). Following Equation 1.4, spectral radiance is expressed mathematically as: 

( )[ ]λθωλ dddAdL cos3Φ=  (1.18) 

where λ is the wavelength. (On second thought, it might be better to remember the concept rather than 

the equation!) 

The sum of spectral radiance for each infinitesimally narrow band across the visible spectrum is of 

course equal to the radiance we would measure without a filter. In practice, we can divide the 

spectrum into bands of finite width and achieve approximately the same result. Suppose we measure 

average spectral radiance through red, green and blue filters, where each filter is almost transparent 

within its bandwidth and the amount of overlap between the color bands is minimized. The sum of 

these averages will closely approximate the measured radiance. 

In measuring the distribution of spectral radiance across the visible spectrum, we are measuring 

the physical “color” of the radiant flux. The relative amounts of spectral radiance determine what we 

perceive as the color of the surface. Red, for example, indicates a preponderance of spectral radiance 
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at wavelengths between 580 nm and 700 nm, while blue indicates a preponderance of spectral 

radiance between 400 nm and 480 nm. According to Figure 1.12, our surface will appear to be 

distinctly reddish. 

Measuring the color of radiant flux is a relatively straightforward task. However, it is often 

difficult to determine what our perception of the color will be. As with photometric quantities, our 

response to spectral radiance distribution (color) depends on a host of physical and psychological 

variables. The subjective impression of color perception can only be quantified (in a statistical sense) 

for carefully controlled “normal” viewing conditions. 
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Figure 1.12 - Spectral radiance distribution 

A full discussion of how we perceive color requires at least a book in itself (e.g., Judd and 

Wyszecki [1975] or Burnham et al. [1963]). For the purposes of photorealism, however, our viewing 

environment is somewhat controlled–typically a color monitor, a photographic print or a color 

transparency. Foley et al. [1990], Hill [1990], Watt [1990] and other tutorial and reference texts offer 

informative overviews of color theory for the computer graphics enthusiast. Perhaps the best reference 

on the subject, however, is Hall [1989]. 

You might question the brevity of this discussion on color theory, especially since this book is 

devoted to the subject of photorealistic images. If so, you are absolutely correct. Unfortunately, the 

topic of radiosity and its implementation fills a book in itself. As interesting and important as the topic 

of color theory is, there is simply no space to discuss it in any greater depth. 

1.13 Spectral Radiant Exitance 

Given the definition of spectral radiance, we can compare it with the definition of radiant exitance 

and derive the definition of spectral radiant exitance as: 
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( )λλ dAddM Φ= 2  (1.19) 

which is measured in watts per square meter per nanometer. 

This is one of the two key concepts in radiosity theory (the other is luminance). More specifically, 

it is the concept of an average spectral radiant exitance that is measured through a red, green or blue 

filter. The importance of these concepts will become evident in the next chapter. 

We can remember this concept in a colloquial sense: the average spectral radiant exitance of a real 

or imaginary surface is simply the amount of radiant flux–visible light–per square meter leaving the 

surface, where the light is within a given band of colors (e.g., red, green or blue). 

1.14 Reflectance and Transmittance 

Having seen that radiometric and photometric quantities are intrinsic properties of a field of light 

in space, we must remind ourselves that: 

Reflectance and transmittance are intrinsic properties of physical objects. They are independent of 

any surrounding field of light. 

In the simplest case, we have opaque objects with ideal diffuse or ideal specular surfaces. Here, 

reflectance is a dimensionless number that indicates the percentage of incident radiant flux reflected 

from each surface. 

The reflectance of any given surface typically varies with wavelength. Thus, we can refer to 

inherent spectral reflectance as the reflectance of a surface within an infinitesimally narrow band of 

wavelengths. We can further refer to the spectral reflectance distribution as the “color” of the surface. 

Defined in this manner, color is an intrinsic property of physical surfaces that is independent of any 

surrounding field of light. We know from experience that the perceived color of an object can vary, 

depending on the spectral irradiance distribution of the light illuminating it. For example, an object 

that appears blue in sunlight will be jet black when viewed under a monochromatic red light. This, 

however, is a consequence of the surrounding photic field, not the object itself. 

There is more to reflectance than this, of course. In general, the reflectance of an opaque object 

with semispecular surfaces is a function of the angle of incidence of the illuminating flux and the 
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viewing angle. This must be expressed as a multidimensional bidirectional reflectance distribution 

function, or BRDF. 

Transparent and translucent objects complicate matters even further, especially when the objects 

are inhomogeneous. We can easily measure and express the transmittance of an ideal transparent 

object with specular surfaces. For ideal transparent objects with semispecular surfaces, we can express 

transmittance as a multidimensional bidirectional transmittance distribution function. In real life, the 

problem becomes more intractable. Reflection, refraction, diffraction, scattering and polarization 

effects all contribute to the distribution of radiant flux within and through transparent and translucent 

objects. Accurately modeling these effects typically requires a physically accurate model of the object 

being illuminated. 

We shall find in the next chapter, however, that the radiosity approach is best suited to modeling 

environments with opaque and ideally diffuse surfaces. Thus, while we should be aware of the 

reflectance and transmittance of physical objects, we can consider reflectance in its simplest form: the 

percentage of (spectral) radiant flux reflected from an ideal diffuse surface. 

1.15 Conclusions 

The material presented in this chapter is unquestionably tedious reading for someone interested 

solely in computer programming. Clearly though, the fundamental definitions of radiometry and 

photometry are required reading if we are to fully understand radiosity theory. 

The very brief introduction to radiometric field theory is recommended reading. Defining 

radiometric and photometric theory in terms of a photic field is more than mere semantic juggling; it 

offers a new paradigm for lighting research and radiosity studies. More importantly, it clarifies the 

contention that “radiosity models light.” 
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Chapter 2 
Radiosity Theory 

2.0 Introduction 

Radiosity models light. More specifically, the radiosity approach models the field of light–the photic 

field–within an environment. We saw this on an informal basis in the introduction; it is now time to 

develop a firm mathematical foundation for our intuition. 

Our understanding of how light is measured allows us to consider both ray tracing and radiosity in 

greater detail. Returning to our empty room (Fig. 2.1), we can now ask how we might model both the flow 

of light and the photic field within it. 

 

Figure 2.1 - Modeling the flow and field of light in an empty room 

2.1 Ray Tracing Techniques 

Light flows through space and optically homogeneous media (air, water, glass, and so forth) in a 

straight line, which we model as a geometrical ray. This is the essence of the ray tracing approach. 

We can model the direct illumination in an environment using conventional ray tracing techniques. We 

know that the illuminance at a point on any surface due to a single point source can be calculated using the 

inverse square law (Eqn. 1.7). We can model the light fixture (an area source) as a finite 2-D array of n 

point sources (e.g., Verbeck and Greenberg [1984]). 
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Figure 2.2 - Modeling an area source as an array of point sources 

The illuminance at a point on a surface is then given by: 

(∑
=

=
n

i
iii dIE

1

2cosθ )  (2.1) 

where Ii is the luminous intensity of point source Si in its given direction. In other words, we simply add 

together the contributions of the n point sources to determine the illuminance E. 

Another quick note on mathematical terminology. The “Σ” symbol (pronounced “sigma”) indicates 

summation. If, for example, we have n variables xi, where 1 ≤ i ≤ n, then the expression: 

∑
=

=
n

i
ixy

1
 

means that y is equal to the sum of the variables xi, or y = x1 + x2 + x3 + ... + xn. The lower and upper 

subscripts correspond to the lower and upper limits of the summation. 

You may sometimes see the sigma symbol without these limits, but only when they are obvious and 

therefore implied. 

There are a few complications, of course. We need to determine whether each point source i is visible 

from the surface being illuminated (that is, its visibility), and we need to know its distance  from the 

point on the surface. We also need to know the luminous intensity  for each source in its given direction. 

Modeling an area source as a 2-D array of point sources is a straightforward but computationally expensive 

technique. 

id

iI
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Modeling the indirect illumination is more challenging. A ray of light reflected from an ideal specular 

surface remains a single ray. In general however, most physical surfaces are semispecular or diffuse 

reflectors. This means that a single ray of light will be reflected as an infinite number of rays (Fig. 2.3). 

Specular Semi-specular Diffuse  

Figure 2.3 - Reflection from specular and diffuse surfaces 

We saw in the introduction that this represents a nearly intractable computation problem. We can trace 

as many rays as we want or have time for, but this will still represent a vanishingly small portion of the 

number of rays actually in the environment. Yes, ray tracing accurately models the flow of light in an 

environment. However, it provides at best an almost insignificant sampling of the field of light that 

permeates it. 

Backwards ray tracing (e.g., Glassner [1989) provides a partial solution by tracing a finite number of 

rays from the eye to the objects being modeled. As such, it attempts to sample the photic field at a specific 

point in space. Consider, however, what this means. A ray of light is traced backwards from the eye to the 

object is originated from. In Figure I.2, the ray luminance at the point of intersection was due to two rays 

from the point source and a specular surface. In reality, however, life is more complex. The ray luminance 

at the point of intersection is due to the direct illuminance from the source (which is in general an area or 

volume source) and the indirect illuminance due to multiple reflections from many semi-specular and 

diffuse objects in the environment (Fig. 2.4). 
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Figure 2.4 - Backward ray tracing through multiple reflections 

This is the dilemma of ray tracing techniques. Each and every reflection from a diffuse or semi-specular 

surface results in an infinity of rays from a single incident ray. The ray tracing approach can only sample 

these rays at each surface. Each reflection results in a geometric decrease in the overall size of the sample 

(infinity, infinity square, infinity cubed, …). As such, it cannot accurately model the photic field at a 

specific point in space, since in general the entire field contributes to its value at any point in space. 

This explains the inability of ray tracing techniques to accurately model soft shadows and other subtle 

effects of lighting (such as color bleeding). These effects can only be achieved through the use of ad hoc 

techniques that are better at generating visually appealing imagery than they are at modeling the physical 

reality of light. 

Once again, this is not to disparage ray tracing techniques. The dual of the above argument is that 

specular highlights are essential to truly photorealistic images. In a sense, however, they represent the 

luminance of individual rays of light. Considering Figure 2.2 and Equation 2.1, the illuminance at a point 

in space (i.e., our eye) is due to the sum of many of rays. The contribution of any single ray is minuscule. 

Nevertheless, we may perceive one or more individual rays as being dazzlingly luminous against a muted 

background. 

This is where the ray tracing approach excels. We see–at least to within the limits of resolution of the 

human eye–the luminance of individual rays of light; we do not see or perceive the illuminance of our 
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retinae. The ray tracing approach is essential if we are to accurately model the luminance of specularly-

reflected rays. 

In summary, ray tracing accurately models the flow of light in an environment. Unfortunately, it does 

not and cannot model the field of light with the same degree of accuracy. For this, we need a fundamentally 

different approach. 

2.2 The Radiosity Approach 

… and so we return again to our empty room, with each surface neatly divided into a mesh of elements 

that we shall call patches (Fig. 2.5). We also assume that each surface is a Lambertian reflector, and that 

the light source is a Lambertian emitter. 

 

Figure 2.5 - An empty room with surfaces subdivided into patches 

The assumption that all surfaces are Lambertian is important–remember that these surfaces have a 

constant luminance (or, more generally, radiance) that is independent of the viewing direction. For a 

Lambertian reflector, the reflected luminous (radiant) flux is independent of the angle of the incident flux. 

From the point of view of a single patch, it does not matter where the light is coming from–if we know its 

illuminance (irradiance) and reflectance, we can calculate its luminous (radiant) exitance and luminance 

(radiance). For the sake of convenience, we shall henceforth discuss radiosity in radiometric terms; the 

substitution of photometric quantities is inconsequential. 

We know that the distribution of flux leaving a Lambertian surface is given by Lambert’s Cosine Law 

(Eqn. 1.9). We can therefore calculate the flux emitted in any given direction by the light source patch. 

Simple geometry allows us to determine which patches are visible from each light source patch; this allows 
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us to determine their irradiances. Each irradiated patch in turn reflects some of its incident flux back into 

the room. Again using Lambert’s Cosine Law, we can determine the irradiances of all the patches visible to 

it. 

This process is clearly iterative, and proceeds until all of the reflected flux is finally absorbed. If we 

keep a record of how much flux each patch reflects and/or emits, we end up knowing its radiant exitance 

M. Since the patch is Lambertian, we can divide M by π to determine its radiance L (from Equation 1.11). 

Confused? Read “Radiosity Explained” in the introduction and try again. The two explanations are 

equivalent, except that the above uses the more rigorous terminology we developed in the previous chapter. 

Finally, we know the geometry of each patch in the room. If we know its radiance (and consequently its 

luminance), we can use a 3-D graphics package to directly render a photorealistic image of the room (as a 

collection of shaded 3-D polygons) from any viewpoint. 

The restriction of Lambertian surfaces is not fundamental. As presented above, it simply allows us to 

employ Lambert’s Cosine Law as a computational convenience. Suppose, for example, that we have a non-

Lambertian light source whose spatial flux distribution characteristics are known. Again using the room 

geometry, we can determine the flux (i.e., the direct illumination) incident on any given patch. If the 

projected width of the patch as seen from the source is small enough in comparison to the distance between 

then, we can “shoot” a ray from the source to the center of the patch. The luminance of this ray will be 

approximately the same as the infinite number of other source rays which directly illuminate the patch, and 

so we can approximate the incident flux as the ray luminance times the patch’s projected area (with 

appropriate allowances for occluding objects). By considering any non-emitting patch that reflects flux as a 

“secondary light source”, we can generalize this concept to any semi-specular or specular surface. 

That’s all there is to it! We have exactly paraphrased our discussion in the introduction, this time 

adding the proper radiometric/photometric terminology and a few explanatory comments. True, we have 

necessarily glossed over a few minor implementation details ... well, maybe not so minor. We will examine 

these details in depth in the following chapters. 

Summarizing once again, it is evident that radiosity accurately models the field of light within an 

environment. The contribution of the entire photic field is taken into account at every point in space, and so 
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the subtle lighting effects of soft shadows and color bleeding are naturally accounted for. Moreover, the 

radiosity approach solves for the entire photic field at all points in space. We can choose any point and 

direction in the environment and generate a photorealistic view without having to repeat the radiosity 

calculations. 

In that ray tracing techniques model the flow of light in an environment, we might visualize ray tracing 

as a dynamic process that follows photons of light as they interact with objects in the environment. In 

contrast, radiosity is a static process. The incessant generation and flow of photons results in a static field 

that permeates the environment. Radiosity models the intrinsic nature of this photic field. 

Radiosity and ray tracing are in a sense dual processes (Smits et al. [1992]). In practical terms, radiosity 

models the field of light that determines the wide brush of lighting and its subtle nuances. Ray tracing, its 

indispensable complement, is needed to provide the specular highlights as finishing touches. Only together 

are they are capable of providing truly photorealistic images … with a few exceptions. 

2.3 What Radiosity Cannot Do 

To be honest, existing radiosity methods model the field of light in a purely reflective environment. 

Nowhere in the above discussion is there any mention of the refraction of light through transparent objects. 

There is also no mention of scattering, diffraction or other optical phenomena that are easily modeled with 

ray tracing techniques. 

If you think about it, these phenomena are most often localized to the objects and their immediate 

environs. A prism casts a rainbow of light on a surface; a glass sphere projects a circle of light on a 

tabletop and presents a topsy-turvy view of the environment seen through it. While we see and perceive 

these phenomena as prominent visual effects, they rarely influence the surrounding photic field to any 

significant extent. Their effect on the global environment is localized to those ray of light that directly 

interact with them. 

There are hybrid techniques that combine radiosity methods with ray tracing techniques to accurately 

model these phenomena (e.g., Wallace et al. [1987], Rushmeier and Torrance [1990] and Chen et al. 

[1991]). Once you understand both approaches, it is not difficult to create a hybrid rendering program. 
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These, however, are future challenges for the motivated reader. In this book, our concern will be 

understanding and implementing the radiosity approach. 

2.4 An Aside: Local Versus Global Illumination 

The computer graphics community has traditionally divided the problem of modeling the flow of light 

into two separate subproblems: local and global illumination. Local illumination is that light which travels 

directly from the source to the surface being illuminated. In other words, direct illumination. Global 

illumination is light that has been reflected, refracted, scattered, diffracted or whatever by one or more 

objects. In other words, indirect illumination. 

To some extent, this division reflects the viewpoint and heritage of ray tracing techniques and their 

emphasis on point sources and objects. If we approach the problem in terms of a photic field, the division 

between local and global illumination becomes less important. 

The radiosity approach is often characterized in the literature as a solution to the global illumination 

problem. In a sense, it is. However, it is more productive to remember that ray tracing models objects, 

while radiosity models light. 

2.5 Form Factors 

Perhaps the greatest surprise in developing a radiosity rendering program comes from realizing that its 

most difficult aspect has nothing whatsoever to do with light per se. The claim in Section 2.2 that “simple 

geometry allows us to determine which patches are visible from each patch” is true, but only in an intuitive 

sense. Solving this problem analytically is anything but! 

Stated in more formal terms, the problem is this: knowing the radiant exitance of one Lambertian patch, 

what portion of its flux will be received by a second patch in an environment? 

Figure 2.6 shows this problem in its simplest form. The relative position and orientation of the two 

patches  and  is entirely arbitrary. Patch  is a Lambertian emitter that is emitting some quantity of 

flux , while patch  is receiving a portion of its emitted flux, 

iE jE iE

iΦ jE ijΦ . The dimensionless fraction 

iΦijΦ  is called the form factor from  to , and is denoted as either  or, more compactly, . iE jE EjEiF − ijF
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Figure 2.6 - Patch  receiving flux  from patch  jE ijΦ iE

The problem is deceptively simple. The total flux emitted by patch  is iE iii AM=Φ , where  is its 

radiant exitance and  is its area. The flux received by  is 

iM

iA jE iij ijF Φ=Φ . Unfortunately, calculating 

, can be an extremely difficult problem in analytic geometry. It is so difficult, in fact, that a general 

solution was not found until 1993 (Schröder and Hanrahan [1993]), over 260 years after the problem was 

first formulated by Johann Lambert! 

ijF

We will devote all of Chapter Five to calculating the form factor between two patches in an 

environment. In the following section, we will develop the underlying mathematics that we will later need. 

2.5.1 Form Factor Geometry 

A word of encouragement. While the following equations involve rudimentary calculus, you do not 

need any knowledge of this subject to understand them. Look carefully: the terms of these equations are 

treated no differently than any others in algebra. 

Remember also that these equations describe physical concepts. As long as you understand these 

concepts, the formal mathematics are of secondary importance. 

Consider the two differential area (that is, infinitesimally small) patches dE  and  shown in Figure 

2.7, where  is a Lambertian emitter. The fraction of flux emitted by  that is received by  is the 

differential form factor from  to , denoted as . 

i

i

jdE

idE dE jdE

idE jdE dEjdEidF −
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Figure 2.7 - Form factor geometry between two differential elements 

Recalling the discussion of solid angles and projected areas from the previous chapter, the solid angle 

ωd  subtended by  as seen from dE  is: jdE i

d dAj j rω θ= cos 2  (2.2) 

where dA  is the differential area of . From Equation 1.4, the differential flux j jdE ( )iθΦ  leaving  in 

the direction 

idE

iθ  is: 

( ) ( ) ijiiii ddAL Φ==Φ ωθθθ cos  (2.3) 

where ( )iL θ  is the radiance of  in the direction idE iθ . Since  is a Lambertian emitter, idE ( ) ii LL =θ  (a 

constant) for all directions iθ . Substituting this and Equation 2.2 for ωd  gives: 

2coscos rdAdAL jijiiij θθ=Φ  (2.4) 

Since  is a Lambertian emitter, the total emitted flux idE iΦ  is given by Equation 1.16, or: 

Φ i i i i iM dA L dA= = π  (2.5) 

The form factor  for two differential area patches is thus: dEjdEidF −

dF
L dA dA

L dA r
dA rdEi dEj

i i j i j

i i
i j j− = =

cos cos
cos cos

θ θ
π

θ θ π2
2  (2.6) 

which is a satisfying simple result. 

Now, suppose that  is the Lambertian emitter and  is receiving its flux, namely . We can 

determine the reciprocal differential form factor  by simply reversing the patch subscripts in 

jdE idE jiΦ

dEidEjdF −
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Equation 2.6. Doing so illustrates the reciprocity relation for form factors between any two differential 

areas dE  and : i

idFdA

jdE

dEj dA=

dEidF
j

∫EjdEi−

Ej

EjdEi− ∑
∞

=1

cos

jE

r

dEi

dEjn

dEidEjjdEi dF −−  (2.7) 

This is an extremely important result for radiosity theory. Why this is so will be seen in the next section and 

again in Chapter Six. 

Now the fun begins. We can compute the form factor  from a differential Lambertian emitter 

 to a finite area  by integrating over the area of : 

EjdEiF −

jidE jE E

j
A

ji

A
dEj dA

r
F

j

∫== − 2

coscos

π

θθ
 (2.8) 

Equation 2.8 is an area integral equation. What it says is this: divide the finite area  into an infinite jE

number of differential areas, calculate their differential form factors, and add the results together to obtain 

dEiF −  for the finite area  (Fig. 2.8). It is equivalent to: jE

jn
jn jn

jnin dA
r

F = 2

cos

π

θθ
 

where  is divided into an infinite number of infinitesimal areas , each with its own angles jndE inθ  and 

jnθ , and distance . jn

This is all you need to know about integral calculus in order to understand radiosity theory! 

Ej

 

Figure 2.8 - Determining the form factor  by area integration over  EjdEiF − jE
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Next, we need to determine the form factor  from a finite area Lambertian emitter  with a 

uniform radiance distribution across its surface to a differential area patch . We note that the total flux 

 emitted by  is: 

dEjEiF − iE

jdE

iΦ iE

Φ i i iM A=  (2.9) 

while the flux Φ  received by  is: ij jdE

i
A

dEjdEiiij dAdFM
i

∫ −=Φ  (2.10) 

(Note that we are now integrating over the area of  rather than .) iE jE

From our definition of a form factor, we then have: 

∫
∫

−

−

− ==
Φ

Φ
=

i

i

A
idEjdEi

iii

A
idEjdEii

i

ij
dEjEi dAdF

AAM

dAdFM

F 1  (2.11) 

which yields: 

i
A

ji

i

j
dEjEi dA

rA
dA

F
i

∫=− 2

coscos

π

θθ
 (2.12) 

Of course, our interest is in patch-to-patch form factors, or the form factor from a finite area  to 

another finite area . For this, we need to integrate over the areas of  and . (In physical terms, we 

need to consider the contribution of each differential area of  to the illuminance of ). The flux 

received by  is then: 

iE

jE iE jE

iE jE

jE

i
A

EjdEiiij dAFM
i

∫ −=Φ  (2.13) 

so that the form factor  is: EjEiF −

∫
∫

−

−

− ==
i

i

A
iEjdEi

iii

A
iEjdEii

EjEi dAF
AAM

dAFM

F 1  (2.14) 

From Equation 2.8, this yields the double area integral equation: 
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ij
A A

ji

i
EjEi dAdA

rA
F

i j

∫ ∫=− 2

coscos1
π

θθ
 (2.15) 

The reciprocal form factor  is obtained by reversing the patch subscripts. This demonstrates that 

the reciprocity relation (Equation 2.7) also holds true for finite area patches. In other words: 

EiEjF −

jijiji FAFA =  (2.16) 

The importance of the reciprocity relation cannot be overstated. It says that if we can somehow 

calculate the form factor  from an patch  to another patch , then we can trivially calculate the 

reciprocal form factor . This is a key concept in radiosity theory. 

ijF

ji

iE jE

F

The above equations implicitly assume that the two patches  and  are fully visible to each other. 

In a complex environment, two patches may be partially hidden by one or more occluding objects. If so, 

then a suitable term must be added to account for the occlusions, such as: 

iE jE

ijij
A A

ji

i
EjEi dAdAHID

rA
F

i j

∫ ∫=− 2

coscos1
π

θθ
 (2.17) 

where the term  accounts for the possible occlusion of each point of patch  as seen from each 

point of patch . 

ijHID

iE

jE

We now know the relation between the geometry of two patches and their form factors. However, 

equations involving double integration are often difficult to solve, and Equation 2.17 is no exception, with 

or without occlusion. For our needs, there are no practical analytic solutions for this equation. This leaves 

us with numerical integration, which will be the primary topic of Chapter Five. 

As a final comment, Equation 2.17 does not consider the medium separating the two patches. In the 

example of our empty room, the medium is air. Each ray of light traveling from patch to patch does so in a 

straight line without absorption, refraction or scattering. In other words, the medium is considered to be 

non-participating. This is not always the case; airborne dust, smoke and fog are a few examples of 

participating media. These introduce complications that the radiosity approach can handle only with severe 

computational difficulty (e.g., Rushmeier and Torrance [1987]). The issues involved are unfortunately well 

beyond the scope of this book. 
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To summarize: 

1. The form factor from a differential area  to another differential area  is given by: idE jdE

 2coscos rdAdF jjidEjdEi πθθ=−  

 where iθ  and jθ  are the angles between a line connecting  and  and their respective surface idE jdE

normals (Fig. 2.7), and  is the differential area of . jdA jdE

2. The form factor from a finite area patch  to another finite area patch  is given by: iE jE

 ij
A A

ji

i
ij dAdA

rA
F

i j

∫ ∫= 2

coscos1
π

θθ
 

 There are no practical analytic solutions for this equation. It must typically be solved using numerical 

methods (see Chapter Five). 

3. The reciprocity relation states that: 

  jijiji FAFA =

 applies for both differential and finite area patches  and . iE jE

4. The form factor concept assumes that the medium separating the patches does not absorb, refract or 

scatter light. In other words, it is a non-participating medium. 

2.5.2 Form Factor Properties 

A form factor is a dimensionless constant representing the fraction of flux emitted by one surface patch 

that is received by another–and no more. It takes into account the shape and relative orientation of both 

surfaces and the presence of any obstructions, but is otherwise independent of any surface properties. 

Form factors were first developed for use in thermal and illumination engineering (see Section 2.7), 

where they have been variously called shape, configuration, angle and view factors. The thermal 

engineering literature is filled with discussions of form factor algebra, of which the reciprocity relation is 

only one example. Most of these discussions relate to a time when form factors were calculated by hand. 

Some properties, however, are still useful. For example, the summation relation states that: 
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Fij
j

n

=
∑ =

1

1 (2.18) 

for any patch  in a closed environment with n patches. (A closed environment is one where all of the 

flux emitted by any one patch must be received by one or more patches in the environment. In other words, 

none of it can escape into space.) This summation includes the form factor , which is defined as the 

fraction of flux emitted by  that is also directly received by . Clearly,  can only be nonzero if  

is concave. Thus: 

iE

iiF

iiFiE iE iE

Fii = 0  if E  is planar (i.e., flat) or convex, and i

Fii ≠ 0  if E  is concave i

Most radiosity methods model surfaces as two-dimensional grids of planar polygons (see Chapter 

Three), so that  is always zero. iiF

2.6 The Radiosity Equation 

If patches E  and  are both Lambertian surfaces, the form factor  indicates the fraction of flux 

emitted by  that is received by . Similarly, the reciprocal form factor  indicates the fraction of 

flux emitted by  that is received by . However, form factors in themselves do not consider the flux 

that is subsequently reflected from these receiving patches. 

i jE ijF

iE jE jiF

jE iE

Remember that we are trying to determine the radiant exitance  of each patch  in an n-patch 

environment. This exitance is clearly due to the flux initially emitted by the patch plus that reflected by it. 

The reflected flux comes from all of the other patches  visible to  in the environment. 

iM

iE

iE

jE

Consider any patch  that is fully visible to . The flux leaving patch  is . The 

fraction of this flux received by patch  is 

jE iE

M

jE jjj AM=Φ

iE jijjji FA=Φ . Of this, the flux subsequently reflected by 

 is iE jijji FAMρ , where iρ  is the reflectance of . This gives us: iE

M M A F Aij i j j ji i= ρ  (2.19) 

where  is defined as the exitance of  due to the flux received from . Using the reciprocity 

relation, we can rewrite this as: 

ijM iE jE
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M M Fij i j ij= ρ  (2.20) 

To calculate the final exitance  of patch , we must consider the flux received by  from all 

other patches . Thus: 

iM iE iE

jE

M M M Fi oi i j
j

n

ij= +
=
∑ρ

1

 (2.21) 

where  is the initial exitance of patch  due to its emitted flux only. Rearranging terms results in: oiM iE

∑
=

−=
n

j
ijjiioi FMMM

1
ρ  (2.22) 

We can express this equation for all the patches  through  as a set of n simultaneous linear 

equations: 

1E nE
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which we can write in matrix form as: 
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 (2.24) 

In matrix notation, this can be succinctly expressed as: 

( )MTIM −=o  (2.25) 

where I is the  identity matrix, M is the final nn× 1×n  exitance vector,  is the initial  exitance 

vector, and T is an  matrix whose (i,j)th element is . (If you find this terminology confusing, see 

Section 3.10 for a quick review of elementary matrix theory.) 

oM 1×n

n×n iji Fρ
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This is the elegantly simple radiosity equation: a set of simultaneous linear equations involving only 

surface reflectances1, patch form factors and patch exitances. Solving these equations provides us with the 

radiant exitance, radiance and ultimately luminance of every patch in the environment it describes. 

It is evident that we first require the initial patch exitances . Clearly, only those patches that emit 

radiant flux will have non-zero values, which we can obtain from the description of the light sources. 

oiM

Second, we must determine the form factors  for each pair of patches in the environment. Equation 

2.22 implies that we must determine  form factors for an environment with n patches. However, the 

reciprocal form factors  can be trivially determined using the reciprocity relation, thus providing n(n-

1)/2 factors. Also, if the patches are flat or convex, the form factors  are zero. We are then left with: 

ijF

2n

jiF

iiF

( ) ( ) 22321 22 nnnnnnn ≈−=−−−  (2.26) 

form factors that must be determined from the patch geometries. To put this into perspective, a reasonably 

complex environment with 10,000 patches requires some fifty million form factor determinations. 

This is a very big number for desktop computers. Allowing four bytes per floating point number for 

each form factor means we need some 190 megabytes of random access memory. Even if we had this 

amount of memory, it would take a very long time to calculate 50 million numbers. 

Fortunately, there are a variety of acceleration techniques for form factor determination that allow us to 

circumvent these time and memory constraints. We will closely examine several of these techniques in 

                                                           
1The reflectance of a surface generally varies according to the wavelength of light–this is what gives a 

surface its color when viewed under “white light” illumination. Recalling the discussion of spectral 

reflectance distribution from the previous chapter, we can divide the spectrum into three component 

bands–red, green and blue–and determine an average spectral reflectance value for each band. (This 

approach maps directly onto the familiar red-green-blue [RGB] color model of computer graphics. Other, 

more sophisticated color models may use four or more spectral bands.) The radiosity equation can then be 

solved independently for each color band. 
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Chapter Five. Even so, you should be aware that form factor determination typically consumes some ninety 

percent of the CPU time required to render a radiosity-based image. 

On the other hand, there is no reason to be discouraged by these numbers. A personal desktop computer 

with four megabytes of RAM is more than adequate for producing photorealistic images in a few minutes 

or less. The image shown in Color Plate 1 took 40 seconds to render on a 66 MHz ‘486 IBM PC-AT clone. 

Compare this to the hours of computation time often needed to render a single ray traced image! 

Our problem then is to solve the radiosity equation for the final patch exitances . The matrix is 

typically too large for direct methods such as Gaussian elimination. However, it is ideally suited for 

iterative techniques such as the Jacobi and Gauss-Seidel methods (e.g., Golub and Van Loan [1983], Varga 

[1962]). These methods are guaranteed to converge to a solution, since the matrix is always strictly 

diagonally dominant for flat and convex patches. That is,  is always less than one, while  is 

always zero. Furthermore, they converge very quickly, typically in six to eight iterations (Cohen and 

Greenberg [1985]). We will examine these methods and a more powerful and useful variation called 

progressive refinement in Chapter Six. 

iM

iji Fρ iiF

This then is our basic radiosity algorithm: any one of several iterative techniques that solve the 

radiosity equation. There are strong connections between these techniques and the physical flow of light in 

an environment. Again, however, we will have to wait until Chapter Six before we can examine them in 

detail. 

2.6.1 Understanding the Radiosity Equation 

Solving the radiosity equation for an environment is equivalent to determining its “energy balance”. 

The amount of radiant flux reflected and absorbed by a patch must equal the amount of flux incident on its 

surface. Flux is energy per unit time. If this balance is not maintained, the patch will steadily accumulate or 

lose energy over time. The final solution to the radiosity equation therefore ensures that the flow of energy 

is balanced for all patches in the environment. 

The radiosity equation reveals why most radiosity methods are view-independent. Once we have 

determined the form factors for an environment and solved for the final patch exitances, we can quickly 

render a photorealistic image of the environment as a collection of 3-D polygons from any viewpoint. The 
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solution to the radiosity equation thus describes the photic field permeating the environment. In doing so, it 

allows us to move anywhere within this field and visualize it in any direction. 

Equation 2.24 also shows that radiosity methods model light rather than objects. The radiosity equation 

solves for the field of light–the photic field–within an environment. The only contribution made by the 

objects comprising the environment is in defining the form factors and surface reflectances. 

Recall from Section 1.9 that we can place an irradiance meter (Fig. 1.10) anywhere in physical space 

and orient it in any direction. We can then measure the irradiance at that point in space. Here, we have a 

virtual space defined by the description of patches in a computer file. Virtual or not, we can place a 

differential patch with zero reflectance anywhere in this space and orient as we please. By determining the 

form factors from the surrounding environment to this patch, we can calculate its irradiance. 

We can similarly calculate the radiance at any point P in any direction in a virtual space with the 

mathematical analogue of a radiance meter (Fig. 1.11). If we assume that the normal of our differential 

patch intersects a point Q on some surface in the environment, the radiance at the point P in the given 

direction is equal to the radiance of the ray of light emanating from the point Q and intersecting our patch.  

A photic field is completely characterized by its radiance at any point and direction in the space 

containing the field. In physical space, we can measure irradiance and radiance. In virtual space, we can 

calculate these properties by solving the radiosity equation. Clearly then, radiosity models light. 

One problem with the radiosity approach in general is that each patch must necessarily have a finite 

area. An implicit assumption of the radiosity equation is that each patch then has a uniform irradiance and 

radiant exitance distribution across its surface. This is not true in real life–illuminated surfaces exhibit 

continuous gradations of radiance. Accurately modeling these smooth changes within the radiosity 

equation requires the use of extremely small patches–and an ever larger matrix to solve. (There are a 

number of elegant solutions to this problem. However, they are at the forefront of current radiosity research 

and so beyond the scope of this book. The best that can be done is to provide a brief survey in Chapter 

Eight.) 

On a more positive note, it is evident that we need to determine the form factors for a particular 

environment only once. The radiosity equation then allows us to quickly change the patch reflectances and 

initial patch exitances without any further calculations other than solving the equation. In more colloquial 
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terms, we can quickly dim, brighten and turn off lights, change the light source colors, change the surface 

reflectance and color of any object in the environment, and even redefine which objects emit light. The 

details of this magic–which can be difficult at best using ray tracing techniques–are also discussed in 

Chapter Eight. 

2.6.2 Time and Space Considerations 

We need to discuss one more concept regarding radiosity theory, this time from computer science. 

Actually, there are two closely related concepts to consider: time and space complexity. 

Time complexity is a measure of how long it will take a computer to solve a problem using a specific 

algorithm. It is not a measure of time per se, but rather a measure of how many elementary CPU operations 

(add, multiply, divide and so forth) that must be performed to solve the problem. Similarly, space 

complexity is a measure of the maximum amount of memory the algorithm requires in order to solve the 

problem. 

The radiosity equation solves for the final exitances of n patches. Solving this equation using (for 

example) Gaussian elimination would require  operations, where c is a constant. However, constant 

factors are not considered in complexity calculations. This ensures that the time and space complexity 

measures are independent of the CPU or compiled program used to implement the algorithm. The time 

complexity of Gaussian elimination is thus expressed as O . This so-called “big-O” notation is thus a 

measure of how much time is required to solve the problem relative to the number of patches n.  

3cn

)( 3n

This also demonstrates one reason why Gaussian elimination is ill-suited to solving the radiosity 

equation. If an environment with 10,000 patches requires t minutes to solve its corresponding radiosity 

equation, an environment with 100,000 patches (which is a large but not unreasonable number for complex 

architectural scenes) will require approximately one thousand times as long to solve. We might with clever 

programming reduce this to five hundred times, but the basic issue remains–the Gaussian elimination 

method does not “scale well” to larger problems. 

The Gauss-Seidel method is somewhat better in that its time complexity is  for one iteration (see 

Chapter Six for details). However, its space complexity is determined by the number of form factors that 

must be stored in memory, which is approximately 

)( 2nO

22n . Ignoring the constant factor, this is a space 
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complexity of O . Clearly, the Gauss-Seidel method also does not scale well to problems involving 

complex environments with many thousands of patches. 

)( 2n

How bad is this? Given an environment with 100,000 patches, solving the corresponding radiosity 

equation using Gauss-Seidel iteration would require the solution of one billion floating point equations and 

four gigabytes of memory. At least one iteration is required before an initial approximation of the final 

exitance values becomes available. Without these, we cannot generate an image. 

The good news is that there are progressive refinement algorithms that solve the radiosity equation in 

reasonable time. Those we will examine in Chapter Six have time and space complexities of O . That is, 

they need memory to store at most n form factors at any one time, and they can generate an initial image in 

 time. Subsequent images become progressively more refined, quickly approaching the photorealistic 

quality of the final image. 

)(n

)(nO

While there are some disadvantages to these algorithms (see Chapter Six for details), they make 

radiosity a practical approach to photorealistic image generation. More importantly, they scale well as the 

environment becomes increasingly more complex. 

2.7 Radiosity History 

The radiosity approach to photorealistic image generation was independently introduced to the 

computer graphics community by Goral et al. [1984] and Nishita and Nakamae [1985], who based their 

work on radiative heat transfer theory and thermal engineering techniques (e.g., Siegel and Howell [1992]). 

At that time, various radiosity algorithms had been employed by the thermal engineering community for 

some thirty years (e.g., Hottel [1954]). Hottel referred to his algorithm as the “zone method” (Hottel and 

Sarofim [1967]), calling radiosity “an undesirable word”. However, Sparrow [1963] had earlier noted that 

the algorithms proposed by Hottel [1954], Eckbert and Drake [1959] and Gebhart [1961] were essentially 

equivalent, and had labeled them “radiosity methods”. By 1967, the term had become part of thermal 

engineering’s lexicon. 

This is not the beginning of the story, however. The fundamental equation of radiant flux transfer 

between ideal diffuse surfaces (Equation 2.22) was apparently first recognized by Yamauti [1926] and 

Buckley [1927]. It was Ziro Yamauti who first suggested solving this Fredholm integral of the second kind 
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(e.g., Heckbert [1991]) using finite difference equations. His suggestion was formalized as a lighting 

calculation technique in H.H. Higbie’s “Lighting Calculations” (Higbie [1934]). In the absence of 

computers however, it was not widely practiced by illumination engineers. 

One exception was the work done by Parry Moon and Domina Eberle Spencer in the 1940s. They used 

Yamauti’s technique (which they called the “interflection method”) to study lighting in empty rooms 

(Moon and Spencer [1946]). Credit for the first photorealistic images created using radiosity methods must 

go to Moon and Spencer–they exhibited synthetic photographs of empty rooms with luminous ceilings at 

the 1946 National Technical Conference of the Illuminating Engineering Society of North America 

(O’Brien and Howard [1959]). In the absence of computers, they calculated the luminance of each patch by 

hand, cut out paper squares from Munsell color charts and pasted them together to form their images, 

which were then photographed (Spencer [1993]). These photographs are reproduced in Moon and Spencer 

[1948]. 

The introduction of digital computers in the 1950’s saw an international resurgence of interest in 

Yamauti’s work. Numerous papers were presented to the illumination engineering community, including 

those by Caracciolo [1952] , Centeno and Zagustin [1953], Dourgnon [1955], O’Brien [1955], Phillips 

[1957] and O’Brien and Howard [1959]. Radiosity theory research has continued within this community to 

the present day (e.g., DiLaura and Franck [1993]). 

The illumination and thermal engineering communities have variously referred to radiosity theory and 

methods as “interflection”, “interreflection”, “lumped parameter”, “network”, “finite difference”, “lumped 

sum”, “zone”, “zonal cavity”, “zone analysis” and “radiative transfer”. Today, illumination engineers use 

the term “radiative transfer theory”, while thermal engineers and the computer graphics community use 

“radiosity theory”. Terminology aside, the two theories are equivalent. 

2.8 Conclusions 

In modeling an environment, the radiosity theory we have developed makes the following assumptions: 

1. All surfaces are Lambertian. 

2. Each patch has a uniform exitance distribution. 

3. Each patch has a uniform irradiance distribution. 
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4. The intervening medium is non-participating. 

While none of these assumptions represent fundamental constraints for radiosity theory, they make 

solving the radiosity equation a computationally tractable problem for personal desktop computers. 

There is of course much more that can be said about radiosity theory. For instance, reducing the patches 

from finite to differential areas leads to the Neumann series and a generalization of the Jacobi iteration 

method. It also leads to Fredholm integrals of the second kind, Galerkin and point collocation methods (an 

adaptation of finite element techniques) and other mathematical esoterica. There are also much more 

sophisticated methods for representing the radiosity equation. (See Chapter Eight for brief survey of the 

relevant literature.) 

Those readers interested in pursuing this topic further are strongly advised to read Cohen and Wallace 

[1993]. There is no better reference text to be found on the subject. Be forewarned, however, that portions 

of their text are aimed at graduate-level computer science students and researchers. You will need a strong 

background in integro-differential equations and other fields of higher mathematics to understand it 

completely. On the other hand, it includes a wealth of technical details that, while beyond the scope of this 

book, are easily understood. 

We have seen in this chapter that radiosity does in truth model light. We have also seen the elegant 

simplicity of the approach, both in its intuitive concepts and in its mathematical foundations. With this 

understanding, we can now develop the tools and techniques needed for a radiosity-based rendering 

program.  
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 P A R T 

II 
Tools of the Trade 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
But what Trade art thou? Answer me directly ... 

Julius Caesar 
Wm. Shakespeare, 1601 

The tools of the trade are one: a graphics package to manage and display three-dimensional polygons. 

Chapter Three examines polygon representations and view transformations. Chapter Four reviews viewing 

systems, polygon clipping, hidden surface elimination, scan conversion and incremental shading 

algorithms. 

These tools are not part of the radiosity approach per se, and may be available as callable library 

functions in certain environments. Even so, it's always a good idea to know your tools before embarking on 

a major project. 



Chapter 3 
Building An Environment 

3.0 Introduction 

Having laid the theoretical foundations of radiosity, we can now begin writing a radiosity-based 

rendering program. From Chapter Two, we see that our program will have to perform the following tasks: 

1.  Build the environment

2.  Determine the form factors

3.  Solve the radiosity equation

4.  Render the environment
 

Figure 3.1 - Radiosity-based rendering program outline 

In this and the following chapter we consider the tasks of building and rendering environments. These 

are not part of the radiosity approach per se. However, our photic fields are due to and defined by their 

environments. To model a field of light then, we first need to model its environment. For most radiosity 

methods, this means representing objects as collections of three-dimensional polygons. 

Our tools for doing so–that is, algorithms and data structures–include vector mathematics, view 

transformations, polygon clipping, hidden surface elimination and polygon scan conversion. These are 

familiar tools of the trade for 3-D computer graphics programming of any sort. Indeed, many high-end 

graphics programming environments include them as callable library functions, while some desktop 

workstations and advanced video display subsystems offer them as built-in hardware or firmware features. 

In general however, we must assume that they are not available. We shall build–and in doing so better 

understand–our own set of tools. 
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The goal of this particular chapter is to develop a 3-D graphics toolkit for building environments. The 

coverage given the underlying algorithms and data structures will be neither rigorous nor comprehensive; 

to do so would fill the remainder of this book and more. Instead, the emphasis will be on developing a set 

of C++ classes sufficient to model collections of 3-D polygons. Those readers interested in a more 

definitive approach to 3-D computer graphics are encouraged to consult one of the many excellent 

reference texts, including Foley et al. [1990], Hill [1990], Watt [1989] and Rogers and Adams [1976]. 

We must also take a minimalist approach to user interface design. In particular, we will develop a 

simple parsing program that reads an ASCII text file and translates it into a representation of an 

environment in memory. The complexity of our environments will therefore be limited to those we can 

generate by hand using a text editor. 

Of course, we will ultimately want to create complex and visually interesting environments consisting 

of thousands to hundreds of thousands of polygons. In practical terms, this is a task best performed with a 

commercial computer-aided drafting (CAD) program such as AutoCAD. Fortunately, we do not need most 

of the features of this expensive product; there are more reasonably priced CAD programs that offer all of 

the functionality we need. Specifically, we require three features: 1) the ability to draw in three 

dimensions; 2) a command that renders curved surfaces as polygon meshes; and 3) the ability to generate 

AutoCAD-compatible DXF files. 

The DXF graphics file format is a de facto standard in the CAD industry. While it has several 

deficiencies that limit its usefulness for radiosity rendering applications, these can be overcome with some 

discipline on the part of the draftsperson. We can create complex environments using a commercial CAD 

program, generate a DXF file, and use it as a basis for generating input files for our radiosity renderer. 

We will develop a data file format later in this chapter that is optimized for radiosity applications. A 

program (including an explanatory text file and full C++ source code) that partially converts DXF files into 

this format is included with the diskette accompanying this book. That, however, is later; right now we 

need to design and code our graphics toolkit. 
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3.1 Global Definitions 

We begin with an include file that defines a few global typedefs and constants. Yes, it’s trivial and 

boring, but we have to start somewhere. 

// GENERAL.H - General Definitions 
 
#ifndef _GENERAL_H 
#define _GENERAL_H 
 
#ifndef _NOT_WIN_APP 
#define STRICT          // Win32 API compatibility 
#include <windows.h>    // MS-Windows application 
#endif 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
#ifdef _NOT_WIN_APP 
#define FALSE   0 
#define TRUE    1 
 
typedef int BOOL;               // Boolean flag 
typedef unsigned char BYTE; 
typedef unsigned short WORD; 
typedef unsigned long DWORD; 
#endif 
 
#ifndef max 
#define max(a,b)  (((a) > (b)) ? (a) : (b)) 
#endif 
 
#ifndef min 
#define min(a,b)  (((a) < (b)) ? (a) : (b)) 
#endif 
 
#define PI              3.141592654 
#define MIN_VALUE       1.0e-10         // Minimum value 
#define MAX_VALUE       1.0e10          // Maximum value 
 
inline double RadToDeg( double r ) 
{ return r * 180.0 / PI; } 
 
inline double DegToRad( double d ) 
{ return d * PI / 180.0; } 
 
inline double GetNormRand() 
{ return (double) rand() / (double) RAND_MAX; } 
 
#endif 

Listing 3.1 - GENERAL.H 
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GENERAL.H assumes MS-Windows 3.1 or Windows NT to be its target environment. If you have 

another environment in mind, be sure to define _NOT_WINAPP somewhere for your compiler. (Most C++ 

compilers allow you to specify global definitions from the command line or workplace shell.) 

3.2 Vector Mathematics 

Next, we need two C++ classes to define and manipulate 3-D points and vectors. Many C programmers 

create a Point structure and then typedef a Vector structure as follows: 

typedef struct Point 
{ float x, y, z; } 
Point; 
 
typedef Point Vector; 

While this works, it obscures the mathematical definition of a vector. In particular, a point defines a 

position in space; a vector defines a direction. This has important consequences for properly defined point 

and vector classes. There are mathematical operations we can perform on points that have no meaning for 

vectors, and vice versa. For instance, we can determine the distance between two points, but not vectors. 

Thus, a vector class cannot–or at least should not–be derived from a point class, despite their similarities. 

On the other hand, we can and should define an abstract base class for points and vectors that 

encapsulates their similarities. Thus:  

// VECTOR3.H - 3-D Vector and Point Classes 
 
#ifndef _VECTOR3_H 
#define _VECTOR3_H 
 
#include <math.h> 
#include "general.h" 
 
class Vector3;  // Forward reference 
 
class Space3    // 3-D co-ordinates 
{ 
  protected: 
    float x;    // X-axis co-ordinate 
    float y;    // Y-axis co-ordinate 
    float z;    // Z-axis co-ordinate 
 
  public: 
    Space3() { }; 
    Space3( double xval, double yval, double zval ) 
    { 
      x = (float) xval; 
      y = (float) yval; 
      z = (float) zval; 
    } 
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    double GetX() { return x; } 
    double GetY() { return y; } 
    double GetZ() { return z; } 
 
    void SetX( double xval ) { x = (float) xval; } 
    void SetY( double yval ) { y = (float) yval; } 
    void SetZ( double zval ) { z = (float) zval; } 
}; 
 
class Point3 : public Space3    // 3-D point 
{ 
  public: 
    Point3() : Space3() { }; 
 
    Point3( double xval, double yval, double zval ) : 
        Space3 ( xval, yval, zval ) 
    { }; 
 
    // Add vector v to point p 
    friend Point3 operator+( Point3 p, Vector3 v ); 
 
    // Add point p to vector v 
    friend Point3 operator+( Vector3 v, Point3 p ); 
 
    friend class Vector3; 
}; 
 
class Vector3 : public Space3   // 3D vector 
{ 
  public: 
    Vector3() : Space3() { }; 
 
    Vector3( double xval, double yval, double zval ) : 
        Space3 ( xval, yval, zval ) 
    { }; 
 
    Vector3( Point3 &p ) : Space3() 
    { x = p.x; y = p.y; z = p.z; } 
 
    Vector3( Point3 &start, Point3 &end ) : Space3() 
    { 
      x = end.x - start.x; 
      y = end.y - start.y; 
      z = end.z - start.z; 
    } 
 
    // Return vector length 
    double Length() 
    { return sqrt(x * x + y * y + z * z); } 
 
    // Assign scalar 
    Vector3 &operator=( double s ) 
    { 
      x = (float) s; 
      y = (float) s; 
      z = (float) s; 
       
      return *this; 
    } 
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    // Add/assign vector v 
    Vector3 &operator+=( Vector3 &v ) 
    { x += v.x; y += v.y; z += v.z; return *this; } 
 
    // Subtract/assign vector v 
    Vector3 &operator-=( Vector3 &v ) 
    { x -= v.x; y -= v.y; z -= v.z; return *this; } 
 
    // Multiply/assign by scalar s 
    Vector3 &operator*=( double s ) 
    { 
      x *= (float) s; 
      y *= (float) s; 
      z *= (float) s; 
       
      return *this; 
    } 
 
    // Divide/assign by scalar s 
    Vector3 &operator/=( double s ) 
    { 
      x /= (float) s; 
      y /= (float) s; 
      z /= (float) s; 
       
      return *this; 
    } 
 
    // Negation 
    Vector3 operator-() 
    { 
      Vector3 temp;     // Temporary 3-D vector 
 
      temp.x = -x; 
      temp.y = -y; 
      temp.z = -z; 
 
      return temp; 
    } 
 
    // Add vector v2 to vector v1 
    friend Vector3 operator+( Vector3 v1, Vector3 v2 ) 
    { 
      Vector3 temp;     // Temporary 3-D vector 
 
      temp.x = v1.x + v2.x; 
      temp.y = v1.y + v2.y; 
      temp.z = v1.z + v2.z; 
 
      return temp; 
    } 
 
    // Subtract vector v2 from vector v1 
    friend Vector3 operator-( Vector3 v1, Vector3 v2 ) 
    { 
      Vector3 temp;     // Temporary 3-D vector 
 
      temp.x = v1.x - v2.x; 
      temp.y = v1.y - v2.y; 
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      temp.z = v1.z - v2.z; 
 
      return temp; 
    } 
 
    // Multiply vector v by scalar s 
    friend Vector3 operator*( Vector3 v, double s ) 
    { 
      Vector3 temp;     // Temporary 3-D vector 
 
      temp.x = v.x * (float) s; 
      temp.y = v.y * (float) s; 
      temp.z = v.z * (float) s; 
 
      return temp; 
    } 
 
    // Multiply scalar s by vector v 
    friend Vector3 operator*( double s, Vector3 v ) 
    { return v * s; } 
 
    // Divide vector v by scalar s 
    friend Vector3 operator/( Vector3 v, double s ) 
    { 
      Vector3 temp;     // Temporary 3-D vector 
 
      temp.x = v.x / (float) s; 
      temp.y = v.y / (float) s; 
      temp.z = v.z / (float) s; 
 
      return temp; 
    } 
 
    // Divide scalar s by vector v 
    friend Vector3 operator/( double s, Vector3 v ) 
    { return v / s; } 
 
    // Normalize 
    Vector3 &Norm() 
    { 
      double len = Length(); 
 
      if (len < MIN_VALUE) 
        len = 1.0; 
         
      x /= (float) len; 
      y /= (float) len; 
      z /= (float) len; 
 
      return *this; 
    } 
 
    // Return dot product of vectors v1 and v2 
    friend double Dot( Vector3 &v1, Vector3 &v2 ) 
    { return (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z); } 
 
    // Return cross product of vectors v1 and v2 
    friend Vector3 Cross( Vector3 &v1, Vector3 &v2 ) 
    { 
      Vector3 temp;     // Temporary 3-D vector 
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      temp.x = v1.y * v2.z - v1.z * v2.y; 
      temp.y = v1.z * v2.x - v1.x * v2.z; 
      temp.z = v1.x * v2.y - v1.y * v2.x; 
 
      return temp; 
    } 
}; 
 
#endif 

Listing 3.2 - VECTOR3.H 

and: 

// VECTOR3.CPP - 3-D Point and Vector Classes 
 
#include "vector3.h" 
 
// Add vector v to point p 
Point3 operator+( Point3 p, Vector3 v ) 
{ 
  Point3 temp;  // Temporary 3-D point 
 
  temp.x = p.x + (float) v.GetX(); 
  temp.y = p.y + (float) v.GetY(); 
  temp.z = p.z + (float) v.GetZ(); 
 
  return temp; 
} 
 
// Add point p to vector v 
Point3 operator+( Vector3 v, Point3 p ) 
{ return p + v; } 

Listing 3.3 - VECTOR3.CPP 

The above Vector3 class includes two friend functions–Dot and Cross–that may not be familiar to you. 

They aren’t difficult to understand, and they are incredibly useful in computer graphics. Remembering that 

vectors represent directions, the dot product of two vectors v1 and v2 is related to the cosine of the angle θ 

between them (Fig. 3.2a). Mathematically, it is defined as: 

v v v v1 2 1 2⋅ = cosθ 

where v1  and v2  indicate the lengths of vectors v1 and v2 respectively. If both vectors are normalized 

(i.e., have unit lengths), then their dot product is equal to the cosine of the angle θ between them. A dot 

product of two vectors is a scalar (a single number). 

The dot product of two vectors is easily calculated as the sum of the products of their component co-

ordinates, or: 
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v v1 2⋅ = ∗ + ∗ + ∗v v v v v vy1x 2x 1y 2 1z 2z  

The cross product of two vectors v1 and v2 is a third vector vC in a direction perpendicular to the plane 

of v1 and v2 and with a length vC  equal to the area of the parallelogram described by them (Fig. 3.2b). 

Mathematically, it is defined as: 

v v v1 2 C× =  

where the length is: 

v v vC 1 2= sinθ  

and its three component co-ordinates are given by: 

2y1z2z1y vvvv ∗−∗=Cxv  

vCy = ∗ − ∗v v v v1z 2x 1x 2z  
vCz = ∗ − ∗v v v v1x 2y 1y 2x  

The direction of the cross product vector can be quickly determined without mathematics using the 

right-hand rule mnemonic. Looking at Figure 3.2b, imagine grasping vC in your right hand such that your 

thumb points in its direction. Your fingers will then always curl around vC from v1 to v2. (This assumes a 

right-handed co-ordinate system; a left-handed co-ordinate system would have vC pointing in the opposite 

direction.) 

Finally, the class constructors Vector3( Point3 & ) and Vector3( Point3 &, Point3 & ) define bound 

vectors, which have both a direction and a starting position. There is no need to create a separate data type 

for bound vectors, since we can model them using our Vector3 class. Their starting positions will be 

implied by their context. 
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Figure 3.2a - Dot Product Figure 3.2b - Cross Product 

3.3 Rectangular and Spherical Co-ordinates 

While our Vector3 class is based on the commonly used rectangular co-ordinate system, it is sometimes 

more convenient and even necessary to specify 3-D vectors in spherical co-ordinates. For example, we will 

need in Chapter Four to specify a direction of view from a point in the environment. Spherical co-ordinates 

allow a more intuitive user interface for this task, particularly if the direction must be specified from the 

keyboard. 

We could store both rectangular and spherical co-ordinates in the Vector3 class. However, this 

redundant information would consume inordinate amounts of memory if applied to every Vector3 object. 

Since we shall rarely need both co-ordinate types for the same object, we shall instead define a separate 

C++ class for spherical co-ordinate vectors and convert between co-ordinate systems as necessary. 

Converting from spherical to rectangular co-ordinates is the easier of the two tasks. Given the length 

r , the horizontal angle (or colatitude) θ, and the vertical angle (or azimuth) φ of a vector r (Fig. 3.3), its 

equivalent rectangular co-ordinates { }zyx rrr ,,  can be determined from: 

r
r
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Determining the spherical co-ordinates of a vector r from its rectangular representation requires a bit 

more care. The requisite formulae are: 
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Figure 3.3 - Rectangular and spherical co-ordinates 

where r  is the vector length and the function arctan(y,x) is the two-argument form of the arctangent 

function. It returns: 

arctan(y/x) if x > 0 
arctan(y/x) + π if x < 0 
π 2 if x = 0 and y > 0 
−π 2  if x = 0 and y < 0 

This function is available in most C++ implementations as the standard library function atan(y, x). 

Encapsulating these formulae in a class gives us: 

// SPHERIC3.H - 3-D Spherical Co-ordinate System Class 
 
#ifndef _SPHERIC3_H 
#define _SPHERIC3_H 
 
#include "vector3.h" 
 
class Spheric3      // 3-D spherical co-ordinate system 
{ 
  private: 
    double length;      // Vector length 
    double horz;        // Horizontal angle (in radians) 
    double vert;        // Vertical angle (in radians) 
 
  public: 
    Spheric3( double len = 1.0, double h = 0.0, double v = 
        0.0 ) 
    { length = len; horz = h; vert = v; } 
 
    double GetHorz() { return horz; } 
    double GetLength() { return length; } 
    double GetVert() { return vert; } 
    void SetHorz( double h ) { horz = h; } 
    void SetLength( double len ) { length = len; } 
    void SetVert( double v ) { vert = v; } 
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    // Convert spherical to rectangular co-ordinates 
    void SpherToRect( Vector3 *pv ) 
    { 
      pv->SetX(length * sin(vert) * cos(horz)); 
      pv->SetY(length * sin(vert) * sin(horz)); 
      pv->SetZ(length * cos(vert)); 
    } 
 
    // Convert rectangular to spherical co-ordinates 
    void RectToSpher( Vector3 &v ) 
    { 
      length = v.Length(); 
      vert = acos(v.GetZ() / length); 
      horz = atan2(v.GetY(), v.GetX()); 
    } 
}; 
 
#endif 

Listing 3.4 - SPHERIC3.H 

3.4 Polygons 

We saw in the previous chapter that the radiosity approach subdivides each surface of an environment 

into a mesh of elements called “patches”, where each patch is a three-dimensional polygon. A polygon 

mesh is the simplest mathematical representation of a surface (Fig. 3.4). 

Most 3-D CAD programs model curved surfaces as polygon meshes. Unfortunately, many of them do 

not allow the user to specify which side of the surface is exterior to an object. Clearly only one side of the 

surface is visible. Nevertheless, programs such as AutoCAD can only distinguish sides (and their 

subsequent visibility) by inference from the surface’s placement in an environment. This is a nuisance, to 

say the least. For our purposes, we will consider each surface and its constituent polygons to have two 

sides, only one of which is exterior to an object. 

Polygons can be flat (i.e., planar), convex or concave (i.e., nonplanar). Unfortunately, nonplanarity 

introduces a number of unwelcome complexities. For instance, the direction of the normal vector varies 

across the polygon surface, and the curve of the surface must be represented somehow. Since most 

radiosity methods assume flat patches, we will ignore these complexities and consider only planar 

polygons. 
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Figure 3.4 - Polygon mesh representation of a surface 

A planar polygon can be uniquely represented by an ordered list of vertices (Fig. 3.5), where by 

definition the vertices all lie on the same two-dimensional plane. Looking at the visible side of the polygon, 

the vertices are ordered such that they follow a counterclockwise path around the polygon edges. This is 

essential! We can then use the vertices to define the polygon normal n. If we define vectors  and  as 

 and  respectively, then n is given by the cross product of the two vectors: 

1v 2v

01 pp − 03 pp −

n v v1 2= ×  (3.3) 

or, to use an example of our Point3 and Vector3 class notation: 

Point3 p0(0.0, 0.0, 0.0); 
Point3 p1(1.0, 0.0, 0.0); 
Point3 p2(1.0, 1.0, 0.0); 
Point3 p3(0.0, 1.0, 0.0); 
 
Vector3 v1(p0, p1); 
Vector3 v2(p0, p3); 
 
Vector3 n = Cross(v1, v2)); 
n.Norm();   // Normalize vector 

While a polygon can have any number of vertices, it becomes awkward to manage the data structures 

needed to represent them. For our purposes, we need consider only two polygon primitives: triangles and 

quadrilaterals. All of our polygons will have four vertices–triangles will be represented as having equal 

third and fourth vertices. We will also assume that our polygons are simple (i.e., none of their edges cross 

one another, thereby forming two triangular polygons from a quadrilateral polygon) and that they are not 

degenerate (i.e., they must have finite areas). 
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Figure 3.5 - Ordered list representation of planar polygon 

A polygon can also be convex or concave in another sense, as shown in Figure 3.6. A convex planar 

polygon is one in which you can stretch an imaginary rubber band around it and not have any gaps between 

it and the polygon edges. 

Concave planar polygons are somewhat more difficult to deal with in computer graphics. Rather than 

address these difficulties in this book, we shall simply issue a fiat to ourselves: all quadrilateral polygons 

must be convex. 

 

Figure 3.6a - Convex planar polygon Figure 3.6b - Concave planar polygon 

3.4.1 Polygon Visibility 

Since a polygon only has one visible side (its face), we can ask whether we can see it from a given 

point in space. A visibility test called “backface elimination” or “culling” allows us to quickly identify 

which polygons face away from our viewing position (Fig. 3.7). 
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Figure 3.7 - Polygon visibility test 

The test is very simple: the polygon face is only visible if the angle θ between the polygon normal n 

and the line of sight vector s is less than ±90 degrees. Recalling the formula for the dot product of two 

vectors  and  (and noting that s is pointing in the opposite direction from n), it’s evident that the 

angle θ between n and s will be less than ±90 degrees only if the their dot product is less than zero. Thus: 

1v 2v

IF  0=⋅ sn
  Polygon is visible 
ELSE 
  Polygon is not visible 
ENDIF 

In terms of our Vector3 class notation, this becomes: 

Vector3 normal, sight; 
 
if (Dot(normal, sight) < (float) 0.0) 
  return TRUE; 
else 
  return FALSE; 

Our dot product function Vector3::Dot requires only three multiply and two addition operations, 

making polygon visibility determination very fast. This is an important consideration, since we will be 

viewing many thousands of polygons in a complex 3-D environment. Backface culling allows us to quickly 

eliminate roughly half the polygons from further consideration before performing the computationally 

expensive operations of view transformation, clipping, hidden surface elimination and scan conversion (to 

be discussed in the next chapter). 

We can now see why we must define the vertices of a polygon in counterclockwise order–doing so 

ensures that the polygon normal points away from the visible face. Without this ordering, our simple 

backface culling algorithm wouldn’t work. 
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3.4.2 Polygon Areas 

We shall later need to know the area of a polygon. If we limit our attention to planar triangles (Fig. 

3.8), there is a very elegant answer given by the cross product: 

A = ×v v1 2 2 (3.4) 

where A is the area and v1 and v2 are vectors defined by the polygon vertices. (Any convex planar 

quadrilateral can of course be decomposed into two triangles.) 

Why this works becomes clear when we consider the physical interpretation of the cross product 

operation. Remember that the magnitude of the cross product of two vectors is equal to the area of the 

parallelogram described by them (Fig 3.2b). Our triangle is exactly one half of the parallelogram, 

regardless of which vertices we use to define the vectors. 

An example using our Point3 and Vector3 classes is: 

Point3 p0(0.0, 0.0, 0.0); 
Point3 p1(1.0, 0.0, 0.0); 
Point3 p2(0.0, 1.0, 0.0); 
 
Vector3 v1(p0, p1); 
Vector3 v2(p0, p3); 
 
Vector3 temp = Cross(v1, v2); 
area = temp.Length() / (float) 2.0; 

v1

v2

v

p0

p1

p2c

 

Figure 3.8 - Area of a triangular polygon 

3.4.3 Polygon Centers 

We shall also later need to know the center of a polygon. More specifically, we will need to know its 

center of gravity, or centroid. Imagine a physical polygon cut from a piece of stiff, flat cardboard. It will 

balance on the tip of a needle only if supported at its centroid. 
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Given a polygon with m vertices, its centroid C is defined as: 

∑
=

=
m

i
i m

1
rC  (3.5) 

where ri is a bound vector from the origin to vertex pi (Fig 3.9). 
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Figure 3.9 - Determining the center (centroid) of a polygon 

The centroid C is a 3-D point located on the surface of the polygon. However, we can only add vectors, 

so Equation 3.5 considers C to be a bound vector from the origin to the centroid. Its x-y-z co-ordinates are 

the same as the centroid’s position in 3-D space, and so we can simply copy them to a Point3 object after 

we calculate them as a Vector3 object. 

3.4.4 Vertex Normals 

While we can model a curved surface as an array of planar polygons, we have to pay careful attention 

to the surface normal. The direction of the true surface normal varies continuously as we move across a 

curved surface. Each polygon normal, on the other hand, has a constant direction. Moving across the 

polygonal approximation of the surface results in discontinuous changes in the direction of the surface 

normal. 

These discontinuities are of particular concern in ray tracing applications, where the ray tracer needs to 

know the true normal of a specular surface (or a close approximation) in order to determine the direction of 

a reflected ray. In contrast, most radiosity applications are concerned with diffuse surfaces. As such, they 

only need to know about the individual polygon normals. 
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There are radiosity applications, however, where it is necessary to know the surface normal at the 

polygon vertices (see Chapter Five). Looking at Figure 3.10, we can approximate the true normal at the 

vertex as the average of the normals for the polygons sharing it. In other words, we have: 

∑
=

=
m

i
iv m

1
nn  (3.6) 

where n  is the vertex normal and n  is the normal of the ith of m polygons. v i

nv

n1

n2
n3

n4

 

Figure 3.10 - Determining the vertex normal from adjacent polygon normals 

3.5 Reflectance and Color 

We have so far represented polygons as 3-D geometrical objects with no intrinsic physical properties. 

To be useful for anything other than wireframe models, we need to add surface reflectances to our model. 

As was noted in Chapter One, the physical reflectance properties of a surface usually depend on 

wavelength. However, they can be approximated by specifying the average spectral reflectance within 

three or more color bands. Subtle color aliasing effects can occur in photorealistic renderings when only 

three bands are used (Hall [1989]). However, these are usually apparent only when compared to the 

physical objects they are modeling. For most purposes, a choice of red, green and blue bands is sufficient. 

Together, the three reflectance values define the intrinsic color of the polygon surface. 

How many bits for each value? Under optimal viewing conditions, we can distinguish at most several 

hundred thousand colors. This implies that the 16.7 million colors offered by a 24-bit representation (using 

one byte for each primary color) are quite adequate for display purposes. 

Spectral radiant exitance, on the other hand, requires much greater precision. Our radiosity methods 

require us to repeatedly update a polygon’s exitance, possibly as many as several hundred times in the 
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course of solving the radiosity equation. Each update requires that we multiply the flux received by the 

polygon by its average spectral reflectance for each color band. A single byte per spectral band is clearly 

inadequate here; we have to use a floating point representation. 

We may also want to create and display grayscale images. Since our eyes are more sensitive to green 

light than they are to red or blue (Fig. 1.7), we will need to take a weighted average of the three color band 

values. A set of weights suitable for most display devices is: 

BGRvalue 0721.07154.02125.0 ++=  (3.7) 

where value is the grayscale value and R, G and B are the red, green and blue color band values 

respectively. Assigning this value to each color band produces a monochromatic shade of gray. 

We may also want to display pseudocolor images, where each color represents a given range of surface 

exitance values. We have an almost infinite variety of choices when it comes assigning colors. One simple 

but useful approach is offered by the color scheme shown in Figure 3.11, where the colors range from blue 

through green to red in order of increasing exitance. This allows us to perform color mapping on the fly 

without having to store a potentially large color lookup table. 
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Figure 3.11 - A simple pseudocolor encoding scheme 

The following ColorRGB and Spectra classes incorporates these ideas in a simple but effective 

representation: 

// COLOR.H - Color Model Classes 
 
#ifndef _COLOR_H 
#define _COLOR_H 
 
#include <limits.h> 
#include "general.h" 
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// Grayscale color band weights 
#define C_RedWeight     (float) 0.2125 
#define C_GreenWeight   (float) 0.7154 
#define C_BlueWeight    (float) 0.0721 
 
class Spectra   // Average spectral radiant exitance 
{ 
  private: 
    float red_band; 
    float green_band; 
    float blue_band; 
 
  public: 
    float GetBlueBand() { return blue_band; } 
    float GetGreenBand() { return green_band; } 
    float GetRedBand() { return red_band; } 
    void Reset() 
    { red_band = green_band = blue_band = 0.0; } 
    void SetBlueBand( float b ) { blue_band = b; } 
    void SetGreenBand( float g ) { green_band = g; } 
    void SetRedBand( float r ) { red_band = r; } 
 
    Spectra &Add( Spectra &a )  // Add color 
    { 
      red_band += a.red_band; 
      green_band += a.green_band; 
      blue_band += a.blue_band; 
 
      return *this; 
    } 
 
    Spectra &Subtract( Spectra &a )     // Subtract color 
    { 
      red_band -= a.red_band; 
      green_band -= a.green_band; 
      blue_band -= a.blue_band; 
 
      return *this; 
    } 
 
    // Blend colors 
    friend Spectra Blend( Spectra &s1, Spectra &s2, double 
         alpha ) 
    { 
      Spectra temp;     // Temporary spectrum 
 
      // Linear interpolation 
      temp.red_band = s1.red_band + (s2.red_band - 
          s1.red_band) * (float) alpha; 
      temp.green_band = s1.green_band + (s2.green_band - 
          s1.green_band) * (float) alpha; 
      temp.blue_band = s1.blue_band + (s2.blue_band - 
          s1.blue_band) * (float) alpha; 
 
      return temp; 
    } 
 
    double GetMaxColor()        // Get maximum color 
    { 
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      float maximum = 0.0; 
 
      maximum = max(maximum, red_band); 
      maximum = max(maximum, green_band); 
      maximum = max(maximum, blue_band); 
 
      return (double) maximum; 
    } 
 
    void Scale( double value )  // Scale color 
    { 
      red_band *= (float) value; 
      green_band *= (float) value; 
      blue_band *= (float) value; 
    } 
}; 
 
class ColorRGB  // 24-bit RGB color model 
{ 
  private: 
    BYTE red; 
    BYTE green; 
    BYTE blue; 
 
  public: 
    BYTE GetBlue() { return blue; } 
    BYTE GetGreen() { return green; } 
    BYTE GetRed() { return red; } 
    void SetBlue( BYTE b ) { blue = b; } 
    void SetGreen( BYTE g ) { green = g; } 
    void SetRed( BYTE r ) { red = r; } 
 
    // Set 24-bit RGB color 
    void SetColor( Spectra &c ) 
    { 
      red = (BYTE) (c.GetRedBand() * (float) UCHAR_MAX); 
      green = (BYTE) (c.GetGreenBand() * (float) UCHAR_MAX); 
      blue = (BYTE) (c.GetBlueBand() * (float) UCHAR_MAX); 
    } 
 
    // Set 24-bit grayscale 
    void SetMono( Spectra &c ) 
    { 
      red = green = blue =  (BYTE) ((c.GetRedBand() * 
          C_RedWeight + c.GetGreenBand() * C_GreenWeight + 
          c.GetBlueBand() * C_BlueWeight) * (float) 
          UCHAR_MAX); 
    } 
 
    // Set 24-bit pseudocolor 
    void SetPseudo( Spectra &c ) 
    { 
      double gsv;       // Grayscale value 
 
      // Convert color to grayscale 
      gsv = (double) (c.GetRedBand() * C_RedWeight + 
          c.GetGreenBand() * C_GreenWeight + c.GetBlueBand() 
          * C_BlueWeight); 
 
      // Convert grayscale to pseudocolor 
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      if (gsv < 0.5) 
      { 
        red = (BYTE) 0; 
        green = (BYTE) (2.0 * gsv * (double) UCHAR_MAX); 
        blue = (BYTE) ((1.0 - 2.0 * gsv) * (double) 
            UCHAR_MAX); 
      } 
      else 
      { 
        red = (BYTE) ((2.0 * gsv - 1.0) * (double) 
            UCHAR_MAX); 
        green = (BYTE) ((2.0 - 2.0 * gsv) * (double) 
            UCHAR_MAX); 
        blue = (BYTE) 0; 
      } 
    } 
}; 
 
#endif 

Listing 3.5 - COLOR.H 

Spectra is used for two purposes: to represent surface reflectances and average spectral radiant 

exitances. When used for surface reflectance, the three color band values red_band, green_band and 

blue_band must range from 0.0 to 1.0 inclusive. For average spectral radiant exitance, however, they can 

assume any non-negative number. This allows us to add bright light source patches to an environment 

without adjusting the exitances of existing light source patches. However, ColorRGB implicitly assumes 

that red_band, green_band and blue_band range from 0.0 to 1.0. This means that we need to appropriately 

scale all Spectra objects before calling ColorRGB::SetColor to convert them to a 24-bit RGB 

representation. (The same applies for ColorRGB::SetMono and ColorRGB::SetPseudo.) To do this, each 

Spectra object is examined to determine the maximum color band value for the set of objects (by calling 

Spectra::GetMaxColor). The inverse of this value becomes the parameter to be passed to Spectra::Scale. 

(More sophisticated conversion algorithms can also be used–see for example Hall [1989]). 

3.5.1 Gamma Correction 

Specifying a color as a 24-bit ColorRGB object is not enough for photorealistic display purposes. Most 

video monitors (monochrome and color) , photographic films, four-color printing processes and other 

display media have nonlinear responses that we must compensate for. 

Consider, for example, a typical color video monitor. The video display adapter in our computer 

converts each color value into a discrete voltage for the three electron guns inside the cathode ray tubes. 
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The resultant beams of electrons are directed to a pixel on the screen, where rare earth phosphors convert 

their energy into the visible (i.e., red, green and blue) light that we see. 

The problem is that there is a nonlinear relation between electron gun voltage and light output. This 

relation can be expressed as: 

γkvL =  (3.8) 

where L is the phosphor spectral radiance, k is a constant, v is the input voltage to the electron gun, and the 

exponent γ (pronounced “gamma”) determines the degree of nonlinearity. The value of this exponent varies 

between monitors, but generally ranges from 2.2 to 2.5 (Foley et al. [1990]). In visual terms, a displayed 

image displayed “as is” will appear to have too much contrast. 

We can compensate for this nonlinear behavior through gamma correction. Given an input value  

(such as one of the members of a ColorRGB object), the linearized output value  is given by: 
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In critical color rendition applications, it may be necessary to experimentally determine a value of γ for 

each primary color. In most instances, however, the same gamma correction can be applied equally to all 

three members of a ColorRGB object. 

Since each ColorRGB member has a limited range of discrete values it can assume, it will be 

convenient to precompute the equivalent output values and store them in a lookup table. This gives us: 

// GAMMA.H - Gamma Correction Class 
 
#ifndef _GAMMA_H 
#define _GAMMA_H 
 
#include "color.h" 
 
static const int G_Domain = 256;        // Input domain 
static const int G_Range = 256;         // Output range 
 
class Gamma     // Gamma correction 
{ 
  private: 
    // Gamma correction lookup table 
    static BYTE GammaTable[256]; 
 
    double g_value;     // Gamma value 
 
    void InitTable() 
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    { 
      int i;    // Loop index 
 
      // Calculate gamma correction lookup table entries 
      for (i = 0; i < G_Domain; i++) 
        GammaTable[i] = (BYTE) ((double) G_Range * 
            pow((double) i / (double) G_Domain, 1.0 / 
            g_value)); 
    } 
 
  public: 
    Gamma( double g = 2.2 ) 
    { 
      g_value = g; 
      InitTable(); 
    } 
 
    double GetGamma() { return g_value; } 
 
    void Correct( ColorRGB &c ) 
    { 
      c.SetRed(GammaTable[c.GetRed()]); 
      c.SetGreen(GammaTable[c.GetGreen()]); 
      c.SetBlue(GammaTable[c.GetBlue()]); 
    } 
 
    void SetGamma( double g ) 
    { 
      g_value = g; 
      InitTable(); 
    } 
}; 
 
#endif 

Listing 3.6 - GAMMA.H 

and: 

// GAMMA.CPP - Gamma Correction Class 
 
#include "gamma.h" 
 
// Gamma correction lookup table 
BYTE Gamma::GammaTable[G_Domain]; 

Listing 3.7 - GAMMA.CPP 

Actually, this class can provide more than gamma correction. The defined constants G_Domain and 

G_Range specifies the range of the input and output values respectively. For ColorRGB, these are both 

assumed to be 8-bit BYTE data types. However, some video display adapters (the IBM-PC’s VGA and 256-

color SuperVGA adapters, for example) only support six bits per primary color. Gamma can support these 

devices if G_Range is redefined to be 64. The gamma correction lookup table values will then be 

calculated such that the output values are with the range 0 to 63. 
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The g_value member specifies the gamma correction to be applied, and defaults to 2.2. Other values 

can be used for specific video monitors or other display media. It can be updated at any time by calling 

SetGamma with any positive gamma value. 

Gamma is something of an oddball class. It belongs with ColorRGB, but it has nothing to do with 

building an environment. It’s one of the joys of trying to shoehorn the real world into a hierarchy of neatly 

defined classes: sometimes you have bits and pieces left over. Gamma is one of those pieces. Having 

developed it, we can put it aside until the next chapter. 

3.5.2 Color Reduction Techniques 

While 24-bit color display adapters with their 16.7 million colors are becoming increasingly common, 

there are still many personal desktop computers without such capabilities. Since our radiosity renderer will 

inherently generate 24-bit color images, we need to consider color reduction techniques that match our 

images to the display capabilities of these computers. 

Many of the more recent personal computers support a maximum of 32,768 or 65,536 colors. This 

includes those with display adapters that offer 24-bit support for their lower resolution modes only. 

Displaying 24-bit color images is possible if the software reduces the gamut of image colors to those that 

can be displayed. In most cases, this is done by simply dividing the 16.7 million possible colors into 32,768 

or 65,536 equally-spaced regions. Unfortunately, this usually results in annoying color bands appearing on 

what should be smoothly shaded surfaces. 

One solution is to employ one of several dithering techniques (e.g., Foley et al. [1990]). While often 

effective, a discussion of color dithering algorithms is beyond the scope of this book (see Thomas and 

Bogart [1991] for two examples, including C source code). Fortunately, we can use a simpler approach that 

produces nearly equal results: color jittering. 

The basic principle is that the human eye is fairly insensitive to random pixel-by-pixel variations in 

color or shading–we tend to see the average color instead. This is useful: we can introduce a small amount 

of random “noise” to an image without noticeably degrading its appearance. At worst, the image appears to 

have a somewhat “grainy” appearance, much like a photograph taken with a high-speed color film. 
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By itself, adding noise does nothing to improve the appearance a displayed 24-bit color image. 

However, the noise very effectively masks the color bands we would otherwise see. Given a choice, 

observers invariably choose images with random noise over those with visible color banding. 

Bragg [1992] presented a simple color reduction “filter” that capitalizes on this effect by jittering each 

color component of an RGB pixel by a small random amount. This random noise is weighted such that the 

average RGB color of any small group of pixels closely approximates the average color of their original 

24-bit colors. Each RGB component is then masked to produce a 5-bit value, resulting in a total of 32,768 

(i.e., ) possible colors. 323232 ××

In detail, Bragg’s algorithm begins by dividing each 8-bit RGB color component value into 32 equally-

spaced regions and saving the remainder. Each region represents one of 32 output values. This value is 

divided by 8; its remainder is in the range of 0 to 7. A random number in the range of 0 to 8 is then chosen. 

If the second remainder is less than or equal to this number, the original 8-bit RGB component value is 

incremented by 8. The effect of this procedure is to produce a randomized component value that is 

weighted toward the nearest 5-bit output value. 

The component value is further randomized by adding another small random value. The range of this 

noise is user-defined by a “noise level” parameter that can range from 0 (no noise) to 8. A value of 1 or 2 is 

sufficient to mask any color banding in most images; 8 produces very grainy images. Finally, a 5-bit output 

value is produced by masking off the three least significant bits. 

We can implement this algorithm with the following C++ class: 

// C_JITTER.H - Color Reduction Filter Class 
 
#ifndef _C_JITTER_H 
#define _C_JITTER_H 
 
// Adapted from: Bragg, D. [1992]. "A Simple Color Reduction  
//               Filter", in Graphics Gems III (D. Kirk,  
//               Ed.), Academic Press, San Diego, CA, 20 -  
//               22, 429 - 431 
 
#include <stdlib.h> 
#include "color.h" 
 
static const int C_LargeNum = 1024; 
static const int C_TableSize = 1024; 
static const int C_Mask = C_TableSize - 1; 
 
class ColorJitter       // Color reduction filter 
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{ 
  private: 
    double *pxrand;     // Jitter lookup table pointer 
    double *pyrand;     // Jitter lookup table pointer 
    int noise;          // Noise level ( 0 - 8 ) 
    int *pirand;        // Jitter lookup table pointer 
    BOOL status;        // Object status 
 
    double JitterX( int x, int y, int band ) 
    { 
      return pxrand[((x + (y << 2)) + pirand[(x + band) & 
          C_Mask]) & C_Mask]; 
    } 
 
    double JitterY( int x, int y, int band ) 
    { 
      return pyrand[((y + (x << 2)) + pirand[(y + band) & 
          C_Mask]) & C_Mask]; 
    } 
 
  public: 
    ColorJitter(); 
 
    ~ColorJitter(); 
 
    BOOL GetStatus() { return status; } 
    int GetNoiseLevel() { return noise; } 
    void SetNoiseLevel( int n ) { noise = n % 9; } 
    void Reduce( ColorRGB *, int, int ); 
}; 
 
#endif 

Listing 3.8 - C_JITTER.H 

and:  

// C_JITTER.CPP - Color Reduction Filter Class 
 
// Adapted from: Bragg, D. [1992]. "A Simple Color Reduction  
//               Filter", in Graphics Gems III (D. Kirk,  
//               Ed.), Academic Press, San Diego, CA, 20 -  
//               22, 429 - 431 
 
#include "c_jitter.h" 
 
ColorJitter::ColorJitter()      // Class constructor 
{ 
  int i;    // Loop index 
 
  status = TRUE; 
 
  // Initialize jitter lookup table pointers 
  pirand = NULL; 
  pxrand = NULL; 
  pyrand = NULL; 
   
  noise = 1;    // Set default noise level 
 
  // Allocate jitter lookup tables 
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  if ((pirand = new int[C_TableSize]) == NULL) 
  { 
    status = FALSE; 
    return; 
  } 
 
  if ((pxrand = new double[C_TableSize]) == NULL) 
  { 
    status = FALSE; 
    return; 
  } 
 
  if ((pyrand = new double[C_TableSize]) == NULL) 
  { 
    status = FALSE; 
    return; 
  } 
 
  // Initialize jitter lookup tables 
  for (i = 0; i < C_TableSize; i++) 
  { 
    pirand[i] = (int) ((double) C_TableSize * ((double) 
        (rand() % C_LargeNum) / (double) C_LargeNum)); 
    pxrand[i] = (double) (rand() % C_LargeNum) / (double) 
        C_LargeNum; 
    pyrand[i] = (double) (rand() % C_LargeNum) / (double) 
        C_LargeNum; 
  } 
} 
 
ColorJitter::~ColorJitter()     // Class destructor 
{ 
  // Release jitter lookup tables 
  if (pirand != NULL) 
    delete [] pirand; 
 
  if (pxrand != NULL) 
    delete [] pxrand; 
 
  if (pyrand != NULL) 
    delete [] pyrand; 
} 
 
// Perform color reduction by jittering color values 
void ColorJitter::Reduce( ColorRGB *pc, int x, int y ) 
{ 
  int i;            // Loop index 
  int p, q;         // Temporary variables 
  BYTE color[3];    // Color band values 
 
  // Get color band values 
  color[0] = pc->GetRed(); 
  color[1] = pc->GetGreen(); 
  color[2] = pc->GetBlue(); 
 
  for (i = 0; i < 3; i++) 
  { 
    if (color[i] < 248) 
    { 
      // Map color band value to one of 32 possible output 
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      // values and determine remainder 
      p = (int) (color[i] % 8); 
 
      // Look up random jitter value based on color band 
      // index and pixel x-y co-ordinates 
      q = (int) (JitterX(x, y, i) * 9.0); 
 
      // Jitter color band value 
      if (p >= q) 
        color[i] += 8; 
 
      // Calculate second jitter value and add to color 
      // band value 
      q = 8 * ((int) ((JitterY(x, y, i) * (double) (2 * 
          noise)) + 0.5) - noise) + (int) color[i]; 
 
      // Ensure jittered color band value is within 
      // allowable range 
      if (q >= 0 && q <= 255) 
        color[i] = q; 
    } 
 
    // Mask off lowest three bits to create 5-bit value 
    color[i] &= 0xf8; 
  } 
 
  // Set jittered color band values 
  pc->SetRed(color[0]); 
  pc->SetGreen(color[1]); 
  pc->SetBlue(color[2]); 
} 

Listing 3.9 - C_JITTER.CPP 

The ColorJitter class constructor precalculates and stores random jitter values in three lookup tables. 

The table lookup functions JitterX and JitterY are admittedly somewhat convoluted. However, they have 

the valuable property that the returned random number always has the same magnitude for any given pair 

of pixel co-ordinates (x and y). This is important if ColorJitter is to be used to color reduce a sequence of 

24-bit images for an animation. Using rand for each jitter value would result in the animated sequence 

displaying a highly objectionable amount of “snow”. A detailed explanation and analysis of the lookup 

tables and their access functions is given in Cychosz [1990]. 

What about older-model desktop computers that offer a maximum of 256 colors? Attempting to display 

24-bit color images with these systems usually produces unacceptably garish and posterized results. 

Nevertheless, it is evident that they are quite capable of displaying reasonable quality photorealistic 

images. 
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The saving grace of these computers is that their 256-color display adapters feature programmable 

palettes. At six bits per color channel, there are 262,144 ( 64 6464×× ) colors to choose from. Since most 

scenes are dominated by relatively few colors, it often takes less than 256 colors to provide a reasonable 

approximation of a 24-bit color image. All we have to do is to find those colors! 

Unfortunately, this is not a simple problem. Basically, we need to group common colors together and 

represent them with one averaged color for each group. There are several color quantization techniques 

that we can use, but a full discussion would take us too far afield. The diskette accompanying this book 

includes a text file that discusses the octree color quantization algorithm (Gervautz and Purgathofer [1990]) 

and presents full C++ source code for a standalone color quantization utility. Here, we simply note the 

problem and continue on with our primary interest: building an environment. 

3.6 Entities and Instances 

Many ray tracing and CAD programs model complex 3-D environments as a hierarchy of objects, 

volumes, surfaces and polygons. That is, an environment consists of a collection of objects, each of which 

is modeled as a set of volume primitives such as boxes, spheres, cylinders and tori. In the case of CAD 

programs, the merged surfaces of these volumes are then approximated with polygon meshes. 

This approach has numerous advantages. For example, we might be modeling an office that has several 

identical tables located about the room. A hierarchical representation allows us to model one table as an 

entity. Each table in the room then becomes an instance of this entity. We can scale, rotate and translate 

these instances as required (see Section 3.11) to individually position them in the room. 

The approach we must take is regrettably more common. Developing a 3-D CAD interface that would 

enable us to interactively model objects as volume primitives and polygon meshes is beyond the scope of 

this book. Instead, we will have to model entities as a hierarchy of surfaces and polygons by hand. (Again 

however, the accompanying diskette includes a data file translator for those readers with access to a 3-D 

CAD program that can generate AutoCAD-compatible DXF files. There is still a considerable amount of 

hand work that has to be done, but at least you are spared the necessity of having to manually enter 

innumerable vertex co-ordinates.) 
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3.7 Polygons and Radiosity 

Recalling Section 2.2, we realize that the solution of the radiosity equation is expressed in terms of 

patch (polygon) exitances. Now exitance–as was emphasized in Section 1.9–is not a property of a polygon 

surface per se. Nevertheless, it will be convenient to store this information as a Spectra data type in the 

polygon data structure. This will allow us to solve the radiosity equation independently for each of the 

three spectral color bands. 

We will also see in Chapter Five that the time needed to solve the radiosity algorithm can be reduced by 

modeling surfaces as a two-level hierarchy of polygons. A surface is first divided into a coarse grid of 

polygons called patches. Each patch is then divided into a smaller grid of polygons called elements (Fig. 

3.12). 

Patch

Element
 

Figure 3.12 - Subdividing a surface into a hierarchy of patches and elements 

Other radiosity methods go further, dividing the surfaces into a multi-level hierarchy of polygons; the 

reasons for this will be explained in Chapter Eight. For our purposes, a two-level hierarchy is sufficient. 

3.8 Modeling An Environment 

There are many possible ways to describe polygons in a complex 3-D environment. Cohen et al. [1986], 

for example, used a winged-edge data structure to provide access to polygon data in constant time. 

Winged-edge data structures (e.g., Baumgart [1975]) offer several computational advantages when 

manipulating polygons. They are also quite complex and difficult to implement properly (Glassner [1991]). 

We will therefore limit our attention to a simpler but still efficient and flexible linked list representation. 

It is very important to ensure that we can access the information we need in an environment with a 

minimum of effort. This leads to the linked list representation shown in Figure 3.13.  
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Instance Surface Patch Element Vertex ElemList Element

Instance Surface Patch Element Vertex ElemList Element

Vertex

 

Figure 3.13 - Modeling the environment as a linked list data structure 

An environment consists of a linked list of instances. The purpose of the links are as follows: 

Object Link Comments 

Instance Surface Each instance consists of one or more surfaces. 

 Vertex Provides immediate access to linked list of vertices. 

 Next Instance  

Surface Patch Each surface consists of one or patches. 

 Next Surface 

Patch Element Each patch consists of one or more elements. 

 Vertex[4] Each patch has three or four vertices. 

 Parent surface Each patch belongs to a parent surface 

 Next Patch 

Element Vertex[4] Each element has three or four vertices. 

 Parent patch Each element belongs to a parent patch 

 Next Element 

Vertex ElemList Each vertex is shared by one or more elements. 

 Next vertex 

ElemList Element Each ElemList member points to an element. 

 Next ElemList 

To expand on this explanation, all the vertices defining a surface are stored once in memory as a linked 

list. This list is owned by the instance, which provides it with access to the vertices without having to 

traverse the linked lists of surfaces, patches and elements. 
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The patches and elements each point to three or four of these vertices, depending on whether they 

represent triangles or quadrilaterals. Each vertex is shared by one or more elements and patches. 

We will later want to access the attributes of the elements sharing a given vertex as quickly as possible. 

Each vertex therefore points to a linked list of ElemList objects, each of which points to an element sharing 

the vertex. (The patches sharing a vertex are not important.) 

Finally, each element has a pointer to its parent patch, and each patch has a pointer to its parent surface. 

These will be used to access patch and surface attributes from an element without having to traverse the 

environment data structure. 

One disadvantage of linked lists is that they have a voracious appetite for memory, especially when 

relatively small objects must be allocated from C++’s free store (also referred to as global or heap 

memory). This concerns memory management, which is discussed at length in a text file on the diskette 

accompanying this book. For our current purposes, we can allocate and release memory as required using 

C++’s default new and delete operators. A production-quality program, however, should really provide its 

own class-specific memory management functions. 

 3.8.1 Modeling Polygons 

Beginning at the bottom of our hierarchy of entities, surfaces and polygons, we can represent patches 

and elements with the following C++ class: 

// PATCH3.H - 3-D Patch Classes 
 
#ifndef _PATCH3_H 
#define _PATCH3_H 
 
#include "vector3.h" 
#include "color.h" 
 
#define QUAD_FLAG   0x01    // Quadrilateral flag 
 
class Surface3;             // External reference 
 
class ElemList              // Element list 
{ 
  private: 
    class Element3 *pelem;  // Element pointer 
    ElemList *pnext;        // Next element list pointer 
 
  public: 
    ElemList( Element3 *pe, ElemList *pel ) 
    { pelem = pe; pnext = pel; } 
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    Element3 *GetElemPtr() { return pelem; } 
    ElemList *GetNext() { return pnext; } 
}; 
 
class PatchList             // Patch list 
{ 
  private: 
    class Patch3 *ppatch;   // Patch pointer 
    PatchList *pnext;       // Next patch list pointer 
 
  public: 
    PatchList( Patch3 *pp, PatchList *ppl ) 
    { ppatch = pp; pnext = ppl; } 
 
    Patch3 *GetPatchPtr() { return ppatch; } 
    PatchList *GetNext() { return pnext; } 
}; 
 
class Vertex3           // 3-D vertex 
{ 
  private: 
    Point3 posn;        // Vertex co-ordinates 
    Vector3 normal;     // Vertex normal 
    Spectra exitance;   // Vertex exitance 
    ElemList *pelhd;    // Element list head pointer 
    Vertex3 *pnext;     // Next vertex pointer 
 
  public: 
    Vertex3( Point3 &coord ) 
    { 
      posn = coord; 
      normal = 0.0; 
      pelhd = NULL; 
      pnext = NULL; 
      exitance.Reset(); 
    } 
 
    ~Vertex3() 
    { 
      ElemList *pel = pelhd; 
      ElemList *pelnext; 
 
      // Delete element list 
      while (pel != NULL) 
      { 
        pelnext = pel->GetNext(); 
        delete pel; 
        pel = pelnext; 
      } 
    } 
 
    ElemList *GetElemListPtr() { return pelhd; } 
    Point3 &GetPosn() { return posn; } 
    Point3 *GetPosnPtr() { return &posn; } 
    Spectra &GetExitance() { return exitance; } 
    Vector3 &GetNormal() { return normal; } 
    Vertex3 *GetNext() { return pnext; } 
    void CalcNormal(); 
    void SetExitance( Spectra &e ) { exitance = e; } 
    void SetElemListPtr( ElemList *ppl) { pelhd = ppl; } 
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    void SetNext( Vertex3 *pn ) { pnext = pn; } 
    void SetPosn( Point3 &p ) { posn = p; } 
}; 
 
class Element3                  // 3-D element 
{ 
  protected: 
    BYTE flags;                 // Flags bitmap 
    float area;                 // Element area 
    Patch3 *ppatch;             // Parent patch pointer 
    Spectra exitance;           // Spectral exitance 
    Vector3 normal;             // Normal vector 
    Vertex3 *pvertex[4];        // Vertex pointer array 
    Element3 *pnext;            // Next element pointer 
 
  public: 
    Element3( Vertex3 *pvtx[4], Patch3 *pp ) 
    { 
      int index;        // Array index 
 
      ppatch = pp; 
      area = 0.0; 
      flags = (BYTE) 0; 
      pnext = NULL; 
      exitance.Reset(); 
 
      for (index = 0; index < 4; index++) 
        pvertex[index] = pvtx[index]; 
    } 
 
    BOOL IsQuad() { return (flags & QUAD_FLAG); } 
    double GetArea() { return area; } 
    int GetNumVert() 
    { return (flags & QUAD_FLAG) ? 4 : 3; } 
    Element3 *GetNext() { return pnext; } 
    Patch3 *GetParentPtr() { return ppatch; } 
    Spectra &GetExitance() { return exitance; } 
    Vector3 &GetNormal() { return normal; } 
    Vertex3 *GetVertexPtr( int i ) { return pvertex[i]; } 
    void CalcArea(); 
    void CalcNormal(); 
    void SetExitance( Spectra &e ) { exitance = e; } 
    void SetNext( Element3 *pn ) { pnext = pn; } 
    void SetQuad() { flags |= QUAD_FLAG; } 
}; 
 
class Patch3 : public Element3  // 3-D patch 
{ 
  private: 
    Point3 center;      // Patch center 
    Element3 *pelhd;    // Element list head ptr 
    Surface3 *psurf;    // Parent surface pointer 
 
  public: 
    Patch3( Vertex3 *pvtx[4], Surface3 *ps ) : 
        Element3( pvtx, NULL ) 
    { 
      pelhd = NULL; 
      psurf = ps; 
    } 
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    ~Patch3() 
    { 
      Element3 *pe = pelhd; 
      Element3 *penext; 
 
      while (pe != NULL)        // Delete elements 
      { 
        penext = pe->GetNext(); 
        delete pe; 
        pe = penext; 
      } 
    } 
 
    double GetUnsentFlux() 
    { 
      return ((exitance.GetRedBand() + 
          exitance.GetGreenBand() + exitance.GetBlueBand()) 
          * (double) area); 
    } 
 
    Element3 *GetElementPtr() { return pelhd; } 
    Patch3 *GetNext() { return (Patch3 *) pnext; } 
    Point3 &GetCenter() { return center; } 
    Surface3 *GetParentPtr() { return psurf; } 
    void CalcCenter(); 
    void SetElementPtr( Element3 *pe ) { pelhd = pe; } 
}; 
 
#endif 

Listing 3.10 - PATCH3.H 

and: 

// PATCH3.CPP - 3-D Patch Classes 
 
#include "patch3.h" 
 
void Vertex3::CalcNormal()      // Calculate vertex normal 
{ 
  ElemList *pelist = pelhd;     // Element list pointer 
 
  // Sum element normals 
  while (pelist != NULL) 
  { 
    normal += pelist->GetElemPtr()->GetNormal(); 
    pelist = pelist->GetNext(); 
  } 
 
  normal.Norm();        // Normalize vector 
} 
  
void Element3::CalcArea()       // Calculate element area 
{ 
  Vector3 temp;     // Temporary 3-D vector 
 
  Vector3 va(pvertex[0]->GetPosn(), pvertex[1]->GetPosn()); 
  Vector3 vb(pvertex[0]->GetPosn(), pvertex[2]->GetPosn()); 
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  temp = Cross(va, vb); 
  area = (float) (temp.Length() / 2.0); 
 
  if (IsQuad() == TRUE) 
  { 
    Vector3 vc(pvertex[3]->GetPosn(), 
        pvertex[0]->GetPosn()); 
 
    temp = Cross(vb, vc); 
    area += (float) (temp.Length() / 2.0); 
  } 
} 
 
void Element3::CalcNormal()     // Calculate element normal 
{ 
  Vector3 va(pvertex[0]->GetPosn(), pvertex[1]->GetPosn()); 
  Vector3 vb(pvertex[0]->GetPosn(), pvertex[2]->GetPosn()); 
 
  normal = Cross(va, vb); 
  normal.Norm(); 
} 
 
void Patch3::CalcCenter()       // Calculate patch centroid 
{ 
  int i;            // Loop index 
  int num_vert;     // Number of vertices 
  Vector3 cv;       // Centroid vector 
 
  num_vert = GetNumVert(); 
 
  // Initialize centroid vector to origin 
  cv = Vector3(0.0, 0.0, 0.0); 
 
  // Determine patch centroid 
  for (i = 0; i < num_vert; i++) 
    cv += Vector3(pvertex[i]->GetPosn()); 
 
  cv /= (double) num_vert; 
 
  // Convert centroid vector to 3-D point 
  center.SetX(cv.GetX()); 
  center.SetY(cv.GetY()); 
  center.SetZ(cv.GetZ()); 
} 

Listing 3.11 - PATCH3.CPP 

ElemList is self-explanatory: each object of the class provides a singly linked list element that points to 

an Element3 object and the next ElemList element. ElemList::GetNext returns NULL for the last element of 

the list. PatchList provides the same services for Patch3 objects. We don’t use linked lists of patches in our 

environment data structure, but we will need them later on in this chapter when we build environments 

from data file descriptions. 
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The Vertex3 class is slightly more interesting. Its private data members include the vertex co-ordinates 

and normal, its color (to be used in the next chapter), a pointer to a linked list of elements that share the 

vertex and a pointer to the next Vertex3 list element. Again, Vertex3::GetNext returns NULL for the last 

element of the vertex list. 

Vertex3::CalcNormal calculates the vertex normal according to Equation 3.6; normalizing the sum of 

the polygon normals is equivalent to dividing by the number of polygons sharing the vertex. These normals 

are not available when the Vertex3 object is constructed, which is why CalcNormal is not part of the class 

constructor. 

The Element3 class can represent triangular and quadrilateral polygons. Each Element3 object is a 

singly linked list element whose private data members include the polygon area and normal, a quadrilateral 

flag, an array of four Vertex3 pointers, a pointer to its parent patch, and a pointer to the next Element3 list 

element. If the polygon is a triangle, the third and fourth Vertex3 pointers should be equal; otherwise 

Element3::SetQuad must be called to set the quadrilateral bit flag in flags. 

Element3::CalcArea and Element3::CalcNormal calculate the polygon area and normal. Note that these 

values are not calculated by the Element3 constructor; an object of this class initially belongs to an entity 

with default values for its dimensions, orientation and position in space. Only when we create an instance 

of this entity by scaling, rotation and translation (see Section 3.11) will we have the information necessary 

to calculate the polygon area and normal. 

Patch3 is derived from Element3, and so inherits its members and functions. To this it adds the patch 

center, a pointer to a linked list of elements, and a pointer to its parent surface. Like the CalcArea and 

CalcNormal functions, Patch3::CalcCenter should only be called after we’ve created an instance of the 

entity.  

Patch3 also provides Patch3::GetUnsentFlux to calculate the patch’s “unsent” flux. All this function 

does is sum the patch’s spectral radiant exitances and multiply the value by the patch area. The result–the 

amount of radiant flux leaving and/or reflected by the patch–will be used in Chapter Six when we solve the 

radiosity equation. 

You may question the complexity of these data structures, particularly the Element3 and Patch3 classes. 

Keep in mind, however, that we want our data structures to 1) conserve memory; 2) provide quick and easy 
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access to the polygon data members; and 3) allow for the dynamic addition, deletion and modification of 

polygons and their vertices. The current C++ class designs, while perhaps not perfect, substantially achieve 

these goals. 

3.8.2 Modeling Surfaces 

Moving up our hierarchy, we next consider the representation of surfaces. Their physical geometry is 

described by their patches and elements; all we need to add arereflectance and initial spectral radiant 

exitance. 

In theory, we should specify exitance values in units of watts per square meter for each color band. 

However, we are rarely interested in actual radiometric or photometric quantities when rendering radiosity 

images. It’s like a camera, where you adjust the exposure and/or lens aperture to properly expose the film. 

Our interest is in the relative distribution of spectral radiant exitance in the environment. Accordingly, we 

can choose any convenient floating point range–say 0.0 to 1.0–where the maximum value represents the 

maximum initial spectral radiant exitance in the environment. (Final calculated exitances may exceed this 

value if the light source also reflects light.) 

One other point about surfaces: they do not share vertices where they join other surfaces. This allows 

us to set vertex colors according to the color of their parent polygons and surfaces. 

Our Surface3 class is thus: 

// SURFACE3.H - 3-D Surface Class 
 
#ifndef _SURFACE3_H 
#define _SURFACE3_H 
 
#include "patch3.h" 
 
class Surface3  // 3-D surface 
{ 
  private: 
    Spectra reflectance;    // Spectral reflectance 
    Spectra emittance;      // Initial radiant exitance 
    Patch3 *pplhd;          // Patch list head pointer 
    Surface3 *pnext;        // Next surface pointer 
 
  public: 
    Surface3( Spectra reflect, Spectra emit ) 
    { 
      reflectance = reflect; 
      emittance = emit; 
 
      pplhd = NULL; 



Building An  Environment 105 
________________________________________________________________________ 

      pnext = NULL; 
    } 
 
    ~Surface3() 
    { 
      Patch3 *pp = pplhd; 
      Patch3 *ppnext; 
 
      while (pp != NULL)        // Delete patches 
      { 
        ppnext = pp->GetNext(); 
        delete pp; 
        pp = ppnext; 
      } 
    } 
 
    Spectra &GetReflectance() { return reflectance; } 
    Spectra &GetEmittance() { return emittance; } 
    Patch3 *GetPatchPtr() { return pplhd; } 
    Surface3 *GetNext() { return pnext; } 
    void SetNext( Surface3 *pn ) { pnext = pn; } 
    void SetPatchPtr( Patch3 *pp ) { pplhd = pp; } 
}; 
 
#endif 

Listing 3.12 - SURFACE3.H 

Each Surface3 object is a singly linked list element that points to a linked list of Patch3 objects and the 

next Surface3 element. As before, Surface3::GetNext returns NULL for the last element of the list. 

3.8.3 Modeling Entities and Instances 

Finally, we need a C++ class to represent entities, the top level of our hierarchy. We will later copy and 

transform each entity into instances for our environment. While the transformation process may modify the 

size, orientation and position of the entity in the environment, it does not result in any change to the 

underlying data structure. In other words, an entity is morphologically equivalent to an instance. We can 

therefore use the following Instance class to represent both entities and instances: 

// INSTANCE.H - Instance Class 
 
#ifndef _INSTANCE_H 
#define _INSTANCE_H 
 
#include "surface3.h" 
 
class Instance          // Instance (also entity) 
{ 
  private: 
    Surface3 *pshead;   // Surface list head pointer 
    Vertex3 *pvhead;    // Vertex list head pointer 
    Instance *pnext;    // Next instance pointer 
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  public: 
    Instance( Vertex3 *pv, Surface3 *ps ) 
    { 
      pvhead = pv; 
      pshead = ps; 
      pnext = NULL; 
    } 
 
    ~Instance() 
    { 
      Surface3 *psnext; 
      Surface3 *ps = pshead; 
      Vertex3 *pvnext; 
      Vertex3 *pv = pvhead; 
 
      // Delete surfaces 
      while (ps != NULL) 
      { 
        psnext = ps->GetNext(); 
        delete ps; 
        ps = psnext; 
      } 
 
      // Delete vertices 
      while (pv != NULL) 
      { 
        pvnext = pv->GetNext(); 
        delete pv; 
        pv = pvnext; 
      } 
    } 
 
    Instance *GetNext() { return pnext; } 
    Surface3 *GetSurfPtr() { return pshead; } 
    Vertex3 *GetVertPtr() { return pvhead; } 
    void SetNext( Instance *pn ) { pnext = pn; } 
    void SetSurfPtr( Surface3 *ps ) { pshead = ps; } 
    void SetVertPtr( Vertex3 *pv ) { pvhead = pv; } 
}; 
 
#endif 

Listing 3.13 - INSTANCE.H 

Each Instance object is a singly linked list element. Its private data members include a pointer to a 

linked list of Surface3 objects, a pointer to a linked list of Vertex3 elements and a pointer to the next 

Instance element. A linked list of Instance elements fully describes a complex 3-D environment. 

3.9 Modeling An Environment 

The last requirement for our environment is a class that can provide some statistics about it, such as the 

number of instances, surfaces and so forth. It should also provide a pointer to the first instance and delete 

the memory allocated to the environment when we are through with it. This becomes: 
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// ENVIRON.H - Environment Class 
 
#ifndef _ENVIRON_H 
#define _ENVIRON_H 
 
#include "instance.h" 
 
class Environ   // Environment 
{ 
  private: 
    Instance *pinsthd;  // Instance list pointer 
    WORD num_inst;      // Number of instances 
    WORD num_surf;      // Number of surfaces 
    WORD num_patch;     // Number of patches 
    WORD num_elem;      // Number of elements 
    WORD num_vert;      // Number of vertices 
 
    friend class Parse; 
 
  public: 
    Environ() { pinsthd = NULL; } 
 
    ~Environ() { DeleteEnv(); } 
 
    Instance *GetInstPtr() { return pinsthd; } 
    WORD GetNumInst() { return num_inst; } 
    WORD GetNumSurf() { return num_surf; } 
    WORD GetNumPatch() { return num_patch; } 
    WORD GetNumElem() { return num_elem; } 
    WORD GetNumVert() { return num_vert; } 
    void DeleteEnv() 
    { 
      Instance *pinst;  // Instance pointer 
      Instance *pnext;  // Next instance pointer 
   
      pinst = pinsthd; 
      while (pinst != NULL) 
      { 
        pnext = pinst->GetNext(); 
        delete pinst; 
        pinst= pnext; 
      } 
      pinsthd = NULL; 
    } 
}; 
 
#endif 

Listing 3.14 - ENVIRON.H 

3.10 A Rudimentary Data File Format 

Having designed a hierarchical data structure, we need a data file format that will allow us to store and 

retrieve our representations to and from disk, and possibly to transfer them across computer platforms. 

Our first thought should be to consider one of the device-independent graphics standards, such as 

IGES, GKS-3D or PHIGS. On the microcomputer front, there’s the popular AutoCAD DXF graphics file 
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format. However, these all have complex specifications that cover far more than what we need. All we 

want is a data file format that supports polygons, surfaces and entities. There’s little sense in choosing a 

graphics standard that includes scaleable text, multiple fonts, polylines, linetype patterns, bicubic and 

Bezier surfaces, constructive solid geometry and a host of other features that we’ll never use. Lacking any 

existing standards for radiosity rendering programs, we shall simply have to create our own. 

Actually, we shall require two data file formats: one to describe individual entities and another to 

describe the transformations necessary to create instances of them in an environment. The entity file format 

will be considered here; the environment file format will be addressed later. 

We begin by specifying our entity data file structure as: 

COMMENT Entity Data File 
ENTITY entity_name 
VERTEX 
< x1 y1 z1 > 
< x2 y2 z2 > 
··· 
< xm ym zm > 
END_VERT 
SURFACE 
[ rr1 rg1 rb1 ] [ er1 eg1 eb1 ] 
[ rr2 rg2 rb2 ] [ er2 eg2 eb2 ] 
··· 
[ rrn rgn rbn ] [ ern egn ebn ] 
END_SURF 
PATCH 
s1 { v10 v11 v12 v13 } 
s2 { v20 v21 v22 v23 } 
··· 
sp { vp0 v
END_PATCH 

p1 vp2 vp3 } 

ELEMENT 
p1 { v10 v11 v12 v13 } 
p2 { v20 v21 v22 v23 } 
··· 
pp { vp0 
END_ELEM 

vp1 vp2 vp3 } 

END_ENTITY 

Figure 3.14 - Entity data file structure 

The syntactic rules for our nameless file format specification are: 

1. The data file consists of ASCII characters. 

2. Each line must be terminated with an environment-specific “newline” character (typically <CR><LF> 

for MS-DOS and <CR> for UNIX systems). 

3. The maximum length of a line is 256 characters, including the newline character(s). 
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4. Multiple whitespace (ASCII space and horizontal tab) characters between data values and separators 

are ignored. 

5. Comment lines beginning with the keyword “COMMENT” are ignored. 

6. The data file consists of one ENTITY section. 
7. The ENTITY section header begins with the “ENTITY” keyword, followed on the same line by an 

optional entity_name character string that identifies the entity. Any printable ASCII character is 

permitted in the string. 

8. The ENTITY section header is followed by a VERTEX subsection. It begins with the “VERTEX” 

keyword, followed on subsequent lines by a list of four or more vertex vectors. A maximum of 65,536 

vertex vectors are allowed. Each vertex is implicitly assigned an index number according to its 

position in the list, beginning with zero. The “END_VERT” keyword terminates the subsection 

9. Each vertex vector consists of a ‘<‘ separator, followed by three floating point numbers representing 

the x, y and z values of the vertex co-ordinates respectively, followed by a ‘>‘ separator. 

10. The VERTEX subsection is followed by a SURFACE subsection. It begins with the “SURFACE” 

keyword, followed on subsequent lines by a list of one or more RGB color vector pairs. The first 

vector of each pair represents the surface reflectance for the entity; the second vector represents the 

surface’s initial surface spectral radiant exitance. A maximum of 65,536 surfaces are allowed. Each 

surface and its associated reflectance and initial exitance vectors are implicitly assigned an index 

number according to its position in the list, beginning with zero. The “END_SURF” keyword 

terminates the subsection. 

11. Each reflectance vector consists of a ‘[‘ separator, followed by three floating point numbers 

representing the red, green and blue primary color values respectively, followed by a ‘]’ separator. 

The color values must be in the range 0.0 to 1.0. 

12. Each initial exitance vector consists of a ‘[‘ separator, followed by three floating point numbers 

representing the red, green and blue primary color values respectively, followed by a ‘]’ separator. 

The color values must be equal to or greater than 0.0. 
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13. The SURFACE subsection is followed by a PATCH subsection. It begins with the keyword 

“PATCH”, followed on subsequent lines by one or more patch identifiers. A maximum of 65,536 

polygon identifiers are allowed. The “END_PATCH” keyword terminates the subsection. 

14. Each patch identifier consists of an integer number indicating the index number of the surface to 

which the patch belongs, followed by a ‘{‘ separator, followed by four integer numbers indicating the 

indices of the four patch vertices v0, v1, v2 and v3 respectively, followed by a ‘}’ separator. If the 

patch is a triangle, the third and fourth vertex indices must be identical. 

15. The PATCH subsection is followed by an ELEMENT subsection. It begins with the keyword 

“ELEMENT”, followed on subsequent lines by one or more element identifiers. A maximum of 

65,536 element identifiers are allowed. The “END_ELEM” keyword terminates the subsection. 

16. Each element identifier consists of an integer number indicating the index number of the patch to 

which the element belongs, followed by a ‘{‘ separator, followed by four integer numbers indicating 

the indices of the four element vertices v0, v1, v2 and v3 respectively, followed by a ‘}’ separator. If 

the element is a triangle, the third and fourth vertex indices must be identical. 

17. The ELEMENT subsection is followed by an “END_ENTITY” keyword, which terminates the file. 

To clarify the above, here’s an example of a small entity data file that describes a colored cube: 

ENTITY colored cube 
VERTEX 
< 0.0 0.0 0.0 > 
< 1.0 0.0 0.0 > 
< 1.0 0.0 1.0 > 
< 0.0 0.0 1.0 > 
< 1.0 0.0 0.0 > 
< 1.0 1.0 0.0 > 
< 1.0 1.0 1.0 > 
< 1.0 0.0 1.0 > 
< 1.0 1.0 0.0 > 
< 0.0 1.0 0.0 > 
< 0.0 1.0 1.0 > 
< 1.0 1.0 1.0 > 
< 0.0 1.0 0.0 > 
< 0.0 0.0 0.0 > 
< 0.0 0.0 1.0 > 
< 0.0 1.0 1.0 > 
< 0.0 0.0 0.0 > 
< 0.0 1.0 0.0 > 
< 1.0 1.0 0.0 > 
< 1.0 0.0 0.0 > 
< 0.0 0.0 1.0 > 
< 1.0 0.0 1.0 > 
< 1.0 1.0 1.0 > 
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< 0.0 1.0 1.0 > 
END_VERT 
SURFACE 
[ 0.0 0.0 1.0 ] [ 0.0 0.0 0.0 ] 
[ 1.0 1.0 0.0 ] [ 0.0 0.0 0.0 ] 
[ 1.0 1.0 1.0 ] [ 0.0 0.0 0.0 ] 
[ 0.0 1.0 1.0 ] [ 0.0 0.0 0.0 ] 
[ 1.0 0.0 0.0 ] [ 0.0 0.0 0.0 ] 
[ 0.0 1.0 0.0 ] [ 0.0 0.0 0.0 ] 
END_SURF 
PATCH 
0 {  0  1  2  3 } 
1 {  4  5  6  7 } 
2 {  8  9 10 11 } 
3 { 12 13 14 15 } 
4 { 16 17 18 19 } 
5 { 20 21 22 23 } 
END_PATCH 
ELEMENT 
0 {  0  1  2  3 } 
1 {  4  5  6  7 } 
2 {  8  9 10 11 } 
3 { 12 13 14 15 } 
4 { 16 17 18 19 } 
5 { 20 21 22 23 } 
END_ELEM 
END_ENTITY 

Listing 3.15 - COL_CUBE.ENT 

For the sake of simplicity, the surfaces described here consist of one patch each. Similarly, each patch 

consists only one element. Clearly though, any surface or patch can be subdivided into multiple patches 

and elements by defining additional vertices and patch or element identifiers. 

3.11 3-D Transformations 

We have so far defined an entity as an object floating in its own local co-ordinate space, independent 

of all other entities. Our colored cube, for example (Listing 3.15), is aligned with the co-ordinate axes and 

has one corner at the origin. Following the usual computer graphics conventions, it’s a right-handed co-

ordinate system, as shown in Figure 3.15. 

What we want, of course, is to place instances of our entities in the world co-ordinate space of our 3-D 

environment. In general, this requires that we 1) scale the entity dimensions to that required for the 

instance; 2) rotate the instance to properly align it with respect to the world co-ordinate axes; and 3) 

translate the instance to its proper position in the world space. Taken together, these operations are 

referred to as linear 3-D transformations. 
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The subject of 3-D transformations, linear and otherwise, deserves an entire book in its own right. 

Some of the more accessible texts include Watt [1990], Harrington [1987] and Foley et al. [1990]. 

Thorough coverage is provided by Hill [1990] and Rogers and Adams [1976]. The best we can afford here 

is to review the basics necessary for our 3-D graphics toolkit. 
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Figure 3.15 - Cube in a right-handed co-ordinate system 

3.11.1 Translation, Scaling and Rotation 

Imagine we have a vertex v1 in space whose co-ordinates are { }111 ,, zyx  and that we want to move 

(translate) it to another position v2 with co-ordinates { }222 ,, zyx . Expressing the vertex co-ordinates in 

matrix notation as , we can represent the translation as v v
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clearly apply the same translation to every vertex of an object to move it anywhere in space. 
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Now suppose we want to scale the same object, either enlarging or reducing it in size. Our colored cube 

has unit dimensions along each edge; we might want to change it into a rectangular box with say x = 2.0, y 

= 1.5, z = 3.0. For any vertex v1, we must multiply each of its co-ordinates by the appropriate scaling factor 

for that dimension. Again using matrix notation, we have v sv2 1= , where  is the scaling 

matrix. 
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We can express our vertex co-ordinates in four-dimensional homogeneous co-ordinates as the matrix 

, where w can be any value other than zero, and where: 
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In computer graphics, w is usually taken to be unity, so that the homogeneous co-ordinates of our 

vertex reduce to . 
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One of the advantages of homogeneous co-ordinates is that they allow us to unify the linear 

transformation operations. Whereas translation required matrix addition and scaling required matrix 

multiplication, the homogeneous co-ordinates representation allows us to do the following: 
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

















=





































=



















111000
100
010
001

1
1

1

1

1

1

1

2

2

2

z
y
x

z
y
x

t
t
t

z
y
x

z

y

x

T

Scaling:  (3.12) 
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Anyone who has taken a formal course in matrix theory knows it is not for the mathematically timid. 

Fortunately, matrix scaling, addition and multiplication are much easier to understand. 

A matrix is a rectangular array of elements. A matrix with m horizontal rows and n vertical columns is 

called an m×n matrix. A matrix with a single row or column of elements is called a row or column vector. 

Thus, our vertex expressed in homogeneous co-ordinates is a 14×  column vector. A square matrix has the 

same number of rows and columns (e.g., 44× ). 
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We can scale any matrix A by a number s by multiplying each element of A by s. For example, if A is a 

22×  matrix, then: 









=








=

1110

0100

1110

0100

sasa
sasa

aa
aa

ssA  

We can add two matrices A and B to produce a third matrix C only if they have the same number of 

rows and columns (i.e., they have the same shape). Each element of C is the sum of its corresponding 

elements in A and B. For example: 
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Two matrices A and B can be multiplied only if the number of columns of A equals the number of rows 

of B. For example, a 32×  matrix A can be multiplied by a 3 2×  matrix B to produce the  matrix 22×

ABC = . 

Given , the ijth element of C (that is, the element from the ith row and jth column) is the dot ABC =

product (Section 3.2) of the ith row of A with the jth column of B. For example: 
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Stated more succinctly, matrix multiplication ABC =  is defined as: 

c aik ijb
k

k j

jk=
=

<

∑
0

 

for each element c  of C. ij

Note, however, B cannot be multiplied by A. That is, C BA=  is undefined for this example. Since, in 

general, the order of A and B cannot be reversed in multiplication (square matrices being the exception), 

we say that for , B postmultiplies A or A premultiplies B. ABC =

We define the identity matrix I as a square matrix whose elements are all zero except for those along 

the main diagonal, which are one. For example, the 3×3 identity matrix is: 
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The identity matrix has the property that AIA = . That is, multiplying a matrix by an identity matrix 

does not change the original matrix. 

From this, we can define the inverse of a matrix M as M-1, where: 

IMMMM == −− 11  

Some matrices (called singular matrices) do not have definable inverses. Those of interest to us, 

however, are nonsingular matrices with easily determined inverses. 

Finally, we can interchange the rows and columns of a matrix A. This gives us the transpose of A, 

denoted as , where . This also means that we can represent 3-D and 4-D homogeneous co-TA jiij aa =T

ordinates as 1  and 1  row vectors. In fact, some computer graphics textbooks (e.g., Hill [1990]) use 3× 4×

this notational style. It’s a matter of personal preference, since the following two representations produce 

equivalent results: 
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and: 
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There is a vast body of literature available on matrix mathematics. Of this, the material in this text box 

is all we need in order to understand the radiosity approach. 

Translation and scaling are now in identical form, being a single matrix multiplication. While 

multiplication is more time consuming than addition, there is another advantage to homogeneous co-
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ordinates which more than compensates. We will address this shortly; in the meantime, the three examples 

shown in Figure 3.16 should clarify how these transformations work. 
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Figure 3.16a - Identity Figure 3.16b - Scaling (x and y axes) 
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Figure 3.16c - Translation 

The same mathematical form applies to rotation about one of the co-ordinate axes: 

x-axis:  (3.13) 
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y-axis:  (3.14) 
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z-axis:  (3.15) 
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where θ is the angle of rotation measured counterclockwise about the axis when looking towards the 

origin. Two examples are shown in Figure 3.17. 
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Figure 3.17a - 30° rotation about z-axis Figure 3.17b - Rotation and translation 

The advantage of having one common mathematical form for translation, scaling and rotation is that 

any sequence of these transformations can be concatenated (i.e., premultiplied) to yield a single net 

transformation matrix. Matrix multiplication is associative, so we can group matrix multiplications as we 

please. That is, rather than separately translating, scaling and rotating each vertex, we can successively 

premultiply the transformation matrices together, as in: 

( )( ) 112 MvvSTRv ==  (3.16) 

where the net transformation matrix M has the general form: 
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M  (3.17) 

Note that the 3 × 3 upper left submatrix A determines the net rotation and scaling, while the three elements 

, t  and  determine the net translation. xt y zt
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Any number of translation, scaling and rotation matrices can be concatenated in any order. However, 

the results depend on the order of concatenation. Rotations, for example, are not commutative. Given any 

two rotation matrices R1 and R2, R1R2 ≠ R2R1. (Try rotating an object 90 degrees vertically, then 90 

degrees horizontally. Note its orientation, return it to its original orientation, then rotate it 90 degrees in the 

same horizontal direction before rotating it 90 degrees vertically.) Similarly, scaling and then translating a 

vertex’s co-ordinates is not the same as translating them before scaling. 

Any transformation can be reversed by multiplying the transformation M matrix by its inverse M-1. T-1 

is obtained by negating ,  and t , S-1 replaces ,  and  by their inverses, and R-1 negates the 

rotation angle θ. 

xt yt z xs ys zs

It should also be remembered that rotation is defined with respect to the co-ordinate system origin. 

Therefore, in creating an instance of an entity for an environment, we typically want to compute a 

transformation matrix that will do the following: 

1. Scale the entity vertices; 

2. Rotate the vertices counterclockwise about the x, y and z axes; and 

3. Translate the vertices. 

In practice, this requires a single net transformation matrix M that is applied to all the vertices 

belonging to the entity. 

The following Transform3 class implements the tools we need: 

// TRANSFM3.H - 3-D Linear Transformation Class 
 
#ifndef _3D_TRANS_H 
#define _3D_TRANS_H 
 
#include "vector3.h" 
 
class Transform3        // 3-D linear transformation 
{ 
  private: 
    double scale_x;     // x-axis scaling factor 
    double scale_y;     // y-axis scaling factor 
    double scale_z;     // z-axis scaling factor 
    double trans_x;     // x-axis translation distance 
    double trans_y;     // y-axis translation distance 
    double trans_z;     // z-axis translation distance 
    double rot_x;       // x-axis rotation (in radians) 
    double rot_y;       // y-axis rotation (in radians) 
    double rot_z;       // z-axis rotation (in radians) 
    double m[3][4];     // Transformation matrix 
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    void Identity()     // Initialize identity matrix 
    { 
      int i, j;         // Loop indices 
 
      for (i = 0; i < 3; i++) 
        for (j = 0; j < 4; j++) 
        { 
          if (i == j) 
            m[i][j] = 1.0; 
          else 
            m[i][j] = 0.0; 
        } 
    } 
 
    // Note: s_val is sine of rotation angle 
    //       c_val is cosine of rotation angle 
 
    // Rotate counterclockwise about x-axis 
    void RotateX( double s_val, double c_val ) 
    { 
      int i;        // Loop index 
      double temp;  // Temporary variable 
 
      for (i = 0; i < 4; i++) 
      { 
        temp = m[1][i] * c_val - m[2][i] * s_val; 
        m[2][i] = m[1][i] * s_val + m[2][i] * c_val; 
        m[1][i] = temp; 
      } 
    } 
 
    // Rotate counterclockwise about y-axis 
    void RotateY( double s_val, double c_val ) 
    { 
      int i;        // Loop index 
      double temp;  // Temporary variable 
 
      for (i = 0; i < 4; i++) 
      { 
        temp = m[0][i] * c_val + m[2][i] * s_val; 
        m[2][i] = -m[0][i] * s_val + m[2][i] * c_val; 
        m[0][i] = temp; 
      } 
    } 
 
    // Rotate counterclockwise about z-axis 
    void RotateZ( double s_val, double c_val ) 
    { 
      int i;        // Loop index 
      double temp;  // Temporary variable 
 
      for (i = 0; i < 4; i++) 
      { 
        temp = m[0][i] * c_val - m[1][i] * s_val; 
        m[1][i] = m[0][i] * s_val + m[1][i] * c_val; 
        m[0][i] = temp; 
      } 
    } 
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    void Scale() 
    { 
      m[0][0] *= scale_x; 
      m[1][1] *= scale_y; 
      m[2][2] *= scale_z; 
    } 
 
    void Translate() 
    { 
      m[0][3] += trans_x; 
      m[1][3] += trans_y; 
      m[2][3] += trans_z; 
    } 
 
   public: 
    Transform3() 
    { 
      scale_x = scale_y = scale_z = 1.0; 
      trans_x = trans_y = trans_z = 0.0; 
      rot_x = rot_y = rot_z = 0.0; 
 
      Identity(); 
    } 
 
    // Set scaling factors 
    void SetScale( double sx, double sy, double sz ) 
    { scale_x = sx; scale_y = sy; scale_z = sz; } 
 
    // Set translation distances 
    void SetTranslation( double tx, double ty, double tz ) 
    { trans_x = tx; trans_y = ty; trans_z = tz; } 
 
    // Set rotation angles 
    void SetRotation( double rx, double ry, double rz ) 
    { rot_x = rx; rot_y = ry; rot_z = rz; } 
 
    void BuildTransform() 
    { 
      Identity();       // Initialize identity matrix 
 
      Scale();          // Concatenate scale matrix 
 
      // Concatenate rotation matrices 
      RotateX(sin(rot_x), cos(rot_x)); 
      RotateY(sin(rot_y), cos(rot_y)); 
      RotateZ(sin(rot_z), cos(rot_z)); 
 
      Translate();      // Concatenate translation matrix 
    } 
 
    // Premultiply point by 3-D transformation matrix 
    void Transform( Point3 *pp ) 
    { 
      Point3 temp;      // Temporary 3-D point 
 
      temp.SetX(m[0][0] * pp->GetX() + m[0][1] * pp->GetY() 
          + m[0][2] * pp->GetZ() + m[0][3]); 
      temp.SetY(m[1][0] * pp->GetX() + m[1][1] * pp->GetY() 
          + m[1][2] * pp->GetZ() + m[1][3]); 
      temp.SetZ(m[2][0] * pp->GetX() + m[2][1] * pp->GetY() 
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          + m[2][2] * pp->GetZ() + m[2][3]); 
 
      pp->SetX(temp.GetX()); 
      pp->SetY(temp.GetY()); 
      pp->SetZ(temp.GetZ()); 
    } 
}; 
 
#endif 

Listing 3.16 - TRANSFM3.H 

There are two items of interest here. First, the transformation matrix m is stored as a 3  rather than a 

 matrix. As Equation 3.17 indicates, the fourth row of the transformation matrix is always the same 

for scaling, translation and rotation. We can therefore ignore it in our calculations. 

4×

44×

Second, the user is only allowed to specify the net transformation matrix in terms of scaling factors, 

translation distances and rotation angles. Calling BuildTransform results in the transformation matrix being 

recalculated based on the current set of parameters. Note that the private member functions responsible for 

scaling, translation and rotation are designed for this specific use. That is, they modify the identity matrix 

in a given order to produce the net transformation matrix. Equivalent public functions to perform scaling, 

translation and rotation by premultiplying an arbitrary 3-D transformation matrix would each have to 

perform a full matrix multiply. 

3.12 Building An Environment 

Building an environment consists of copying and transforming entities into instances. For this, we need 

an environment data file format to describe which entities are to be copied and what 3-D linear 

transformations are to be applied to them. 

Here’s the general outline of the data file format: 

WORLD world_name 
COMMENT Environment Data File 
entity_file_name 
< sx sy sz > 
< rx ry rz > 
< tx ty tz > 
entity_file_name 
··· 
END_FILE 

Figure 3.18 - Environment data file format 

Similar to our entity data file format, the following syntax rules apply:  

1. The data file consists of ASCII characters. 
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2. Each line must be terminated with an environment-specific “newline” character (typically <CR><LF> 

for MS-DOS and <CR> for UNIX systems). 

3. The maximum length of a line is 256 characters, including the newline character(s). 

4. Multiple whitespace (ASCII space and horizontal tab) characters between data values and separators 

are ignored. 

5. Comment lines beginning with the keyword “COMMENT” are ignored. 

6. The data file begins with the keyword “WORLD”, followed on the same line by an optional 

world_name character string that identifies the environment. Any printable ASCII character is 

permitted in the string. 

7. The remainder of the data file consists of one or more entity sections, followed by the “END_FILE” 

keyword. Any lines after this keyword are ignored. 

8. An entity section consists of an entity_file_name character string, followed in sequence by a scaling 

vector, a rotation vector and a translation vector. 

9. The entity_file_name is an environment-specific file name that uniquely identifies the entity data file. 

10. A scaling vector consists of a ‘<‘ separator, followed by three floating point numbers representing the 

x-axis, y-axis and z-axis scaling factors respectively, followed by a ‘>‘ separator. 

11. A rotation vector consists of a ‘<‘ separator, followed by three floating point numbers representing the 

x-axis, y-axis and z-axis rotation angles (in degrees) respectively, followed by a ‘>‘ separator. 

12. A translation vector consists of a ‘<‘ separator, followed by three floating point numbers representing 

the x-axis, y-axis and z-axis translation values respectively, followed by a ‘>‘ separator. 

Here’s an example of a data file that places two instances of our previously defined colored cube entity 

in a world environment: 

WORLD colored cube 
COMMENT first instance 
col_cube.ent 
< 2.0 3.0 1.0 > 
< 30.0 45.0 0.0 > 
< 2.0 0.0 0.0 > 
COMMENT second instance 
col_cube.ent 
< 1.5 1.0 0.5 > 
< 30.0 45.0 30.0 > 
< 0.0 0.0 1.0 > 
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END_FILE 

Listing 3.17 - COL_CUBE.WLD 

3.13 An Environment Data File Parser 

Our final requirement is for a C++ class that can read an environment data file and build an equivalent 

data structure in memory. In terms of programming languages and compiler theory, we want to parse the 

data file. Unlike even the smallest programming language, however, parsing our data file formats will be a 

trivial exercise. At the highest level, we want to do something like this: 

Open environment file 
WHILE more entity sections 
  Read entity file 
  Create entity 
  Read transformation matrix 
  Transform entity to instance 
  Add instance to linked list 
ENDWHILE 
Close environment file 

Figure 3.19 - Environment file parser program pseudocode 

where most of the work will be handled by our previously defined classes. 

So why is the following Parse class so lengthy? Most of its code is devoted to manipulating linked lists 

and converting ASCII character strings into meaningful data primitives such as int and float. If you ignore 

the bookkeeping, PARSE.CPP is fairly straightforward. Keeping this in mind, here’s the header file: 

// PARSE.H - Environment Data File Parser Class 
 
#ifndef _PARSE_H 
#define _PARSE_H 
 
#include "environ.h" 
#include "transfm3.h" 
#include "win_text.h" 
 
#define MaxLine 256     // Maximum line length 
 
typedef Patch3 *PatchPtr;       // Patch pointer data type 
typedef Surface3 *SurfacePtr;   // Surface pointer data type 
typedef Vertex3 *VertexPtr;     // Vertex pointer data type 
 
class Parse     // Environment data file parser 
{ 
  private: 
    WORD elem_cnt;              // Instance element count 
    WORD patch_cnt;             // Instance patch count 
    WORD surf_cnt;              // Instance surface count 
    WORD vert_cnt;              // Instance vertex count 
    char ent_buff[MaxLine];     // Entity file name buffer 
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    char line_buff[MaxLine];    // Line buffer 
    char msg_buff[MaxLine];     // Message buffer 
    Environ *penv;              // Environment pointer 
    PatchPtr *pp_array;         // Patch pointer array ptr 
    SurfacePtr *ps_array;       // Surface pointer array ptr 
    Transform3 tm;              // 3-D transformation matrix 
    VertexPtr *pv_array;        // Vertex pointer array ptr 
    WinText efile;              // Entity file 
    WinText ifile;              // Instance file 
 
    BOOL ParseElements(); 
    BOOL ParsePatches(); 
    BOOL ReadVector( WinText &, double *, double *, 
       double * ); 
    Instance *ParseEntityFile(); 
    Surface3 *ParseSurfaces(); 
    Surface3 *ReadSurface(); 
    Vertex3 *ParseVertices(); 
    Vertex3 *ReadVertex(); 
    void ReadLine( WinText & ); 
    void ReadTransform(); 
    void TransformInstance( Instance * ); 
 
  public: 
    BOOL ParseFile( char *, char *, Environ * ); 
}; 
 
#endif 

Listing 3.18 - PARSE.H 

If your target environment is not MS-Windows, you should note the MS-DOS specific file path 

separator “\”. A UNIX-based implementation, for example, would require this to be “/”. 

Another platform-dependent issue to watch out for is text file handling, which is handled in PARSE.H 

by an MS-Windows specific class called WinText (described below). MS-Windows uses a 256-character 

extended ASCII character set. It also provides no built-in functions for reading text files. You can use the 

C++ iostream or stdio.h file functions, but you have to be careful about casting character strings and FILE 

pointers if you’re using them in conjunction with MS-Windows functions (which typically expect _far 

pointers). 

We can sidestep these issues by using the large memory model when compiling our MS-Windows 

application program and encapsulating the file handling functions in a separate class. While the following 

WinText class is nominally specific to MS-Windows, it can applied without change to most other 

environments. 

// WIN_TEXT.H - MS-Windows Text File Class 
 
#ifndef _WIN_TEXT_H 
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#define _WIN_TEXT_H 
 
#include <string.h> 
#include "general.h" 
 
// NOTE: Requires LARGE memory model for Win16 
 
class WinText   // MS-Windows text file 
{ 
  private: 
    FILE *pfile;        // File pointer 
 
  public: 
 
    // Close file 
    void Close() { (void) fclose(pfile); } 
 
    // Read next line from file 
    void GetLine( char *pline, int max ) 
    { 
      char *pstr;       // String pointer 
 
      if ((pstr = fgets(pline, max, pfile)) != NULL) 
        pstr = strchr(pline, '\n'); 
 
      if (pstr == NULL) 
        pstr = pline; 
 
      *pstr = '\0';     // Strip off newline 
    } 
 
    BOOL Open( char *fname )    // Open text file 
    { 
      if ((pfile = fopen(fname, "r")) != NULL) 
        return TRUE; 
      else 
        return FALSE; 
    } 
}; 
 
#endif 

Listing 3.19 - WIN_TEXT.H 

The remainder of our Parse class consists of: 

// PARSE.CPP - Environment Data File Parser Class 
 
#include <string.h> 
#include "error.h" 
#include "parse.h" 
 
// File path separator (MS-DOS specific) 
static const char PathSeparator[] = "\\"; 
 
// Data file keywords 
static const char EndFileStr[] = "END_FILE"; 
static const char CommentStr[] = "COMMENT"; 
 
// Parse world file 



126 Building An Environment 
________________________________________________________________________ 

BOOL Parse::ParseFile( char *fname, char *fpath, Environ 
    *pe ) 
{ 
  char *pefp;           // Entity file path pointer 
  Instance *pinst;      // Instance pointer 
  Instance *pinsthd;    // Instance list head pointer 
 
  penv = pe;    // Save environment pointer 
 
  // Delete previous environment (if any) 
  penv->DeleteEnv(); 
 
  pinst = pinsthd = NULL; 
 
  // Initialize environment statistics 
  penv->num_inst = (WORD) 0; 
  penv->num_surf = (WORD) 0; 
  penv->num_patch = (WORD) 0; 
  penv->num_elem = (WORD) 0; 
  penv->num_vert = (WORD) 0; 
 
  // Build file path string 
  pefp = ent_buff; 
  if (*fpath != '\0') 
  { 
    strcpy(ent_buff, fpath); 
    if (fpath[strlen(ent_buff) - 1] != *PathSeparator) 
      strcat(ent_buff, PathSeparator); 
    pefp += strlen(ent_buff); 
  } 
 
  if (ifile.Open(fname) != TRUE)    // Open instance file 
  { 
    sprintf(msg_buff, "Could not open world file %s", 
        fname); 
    ReportError(msg_buff); 
    return FALSE; 
  } 
 
  ReadLine(ifile);      // Read world name 
 
  for ( ; ; ) 
  { 
    ReadLine(ifile);    // Read entity file name 
 
    // Check for end of file 
    if (strcmp(line_buff, EndFileStr) == 0) 
      break; 
 
    // Build full entity file name 
    strcpy(pefp, line_buff); 
 
    // Read entity file 
    if ((pinst = ParseEntityFile()) == NULL) 
    { 
      ifile.Close(); 
      return FALSE; 
    } 
 
    // Read 3-D transformation matrix 
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    ReadTransform(); 
 
    // Transform entity into instance 
    TransformInstance(pinst); 
 
    // Link instance to instance list 
    pinst->SetNext(pinsthd); 
    pinsthd = pinst; 
    penv->num_inst++; 
  } 
  ifile.Close(); 
  penv->pinsthd = pinsthd; 
  return TRUE; 
} 
 
// Parse entity data file 
Instance *Parse::ParseEntityFile() 
{ 
  BOOL status;              // Return status 
  Instance *pinst;          // Instance pointer 
  Surface3 *ps;             // Surface pointer 
  Vertex3 *pv;              // Vertex pointer 
 
  pinst = NULL; 
  ps = NULL; 
  pv = NULL; 
 
  surf_cnt = patch_cnt = elem_cnt = vert_cnt = (WORD) 0; 
 
  // Open entity file 
  if (efile.Open(ent_buff) != TRUE) 
  { 
    sprintf(msg_buff, "Could not open entity file %s", 
        ent_buff); 
    ReportError(msg_buff); 
    return NULL; 
  } 
 
  ReadLine(efile);      // Read file description 
 
  pv = ParseVertices(); 
  ps = ParseSurfaces(); 
  status = ParsePatches(); 
 
  if (status == TRUE) 
    status = ParseElements(); 
 
  // Delete temporary pointer arrays 
  delete [] pv_array; 
  delete [] ps_array; 
  delete [] pp_array; 
 
  // Create new entity 
  if (status == TRUE) 
    pinst = new Instance(pv, ps); 
 
  efile.Close(); 
  return pinst; 
} 
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// Parse vertices 
Vertex3 *Parse::ParseVertices() 
{ 
  WORD v_index;             // Vertex pointer array index 
  Vertex3 *pv;              // Vertex pointer 
  Vertex3 *pvhd;            // Vertex list head ptr 
 
  pv = pvhd = NULL; 
 
  ReadLine(efile);      // Read vertex section header 
 
  // Build vertex linked list 
  for ( ; ; ) 
  { 
    // Read vertex vector 
    if ((pv = ReadVertex()) == NULL) 
      break; 
 
    // Link vertex to vertex list 
    pv->SetNext(pvhd); 
    pvhd = pv; 
    penv->num_vert++; 
    vert_cnt++; 
  } 
 
  // Build vertex pointer array 
  pv = pvhd; 
  pv_array = new VertexPtr[vert_cnt]; 
  v_index = vert_cnt - (WORD) 1; 
  while (pv != NULL) 
  { 
    pv_array[v_index--] = pv; 
    pv = pv->GetNext(); 
  } 
  return pvhd; 
} 
 
// Parse surfaces 
Surface3 *Parse::ParseSurfaces() 
{ 
  WORD s_index;             // Surface pointer array index 
  Surface3 *ps;             // Surface pointer 
  Surface3 *pshd;           // Surface list head ptr 
 
  ps = pshd = NULL; 
 
  ReadLine(efile);      // Read surface section header 
 
  // Build surface linked list 
  for ( ; ; ) 
  { 
    // Read surface identifier 
    if ((ps = ReadSurface()) == NULL) 
      break; 
 
    // Link surface to surface list 
    ps->SetNext(pshd); 
    pshd = ps; 
    penv->num_surf++; 
    surf_cnt++; 
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  } 
 
  // Build surface pointer array 
  ps = pshd; 
  ps_array = new SurfacePtr[surf_cnt]; 
  s_index = surf_cnt - (WORD) 1; 
  while (ps != NULL) 
  { 
    ps_array[s_index--] = ps; 
    ps = ps->GetNext(); 
  } 
  return pshd; 
} 
 
// Read surface identifier 
Surface3 *Parse::ReadSurface() 
{ 
  char start[2], end[2];        // Vector separators 
  float ered, egreen, eblue;    // Exitance components 
  float rred, rgreen, rblue;    // Reflectance components 
  Spectra reflect;              // Spectral reflectance 
  Spectra emit;                 // Spectral radiant exitance 
 
  ReadLine(efile);      // Read color vector 
 
  if (sscanf(line_buff, "%1s %f %f %f %1s %1s %f %f %f %1s", 
      start, &rred, &rgreen, &rblue, end, start, &ered, 
      &egreen, &eblue, end) == 10) 
  { 
    // Set reflectance 
    reflect.SetRedBand(rred); 
    reflect.SetGreenBand(rgreen); 
    reflect.SetBlueBand(rblue); 
 
    // Set initial spectral radiant exitance 
    emit.SetRedBand(ered); 
    emit.SetGreenBand(egreen); 
    emit.SetBlueBand(eblue); 
 
    return new Surface3(reflect, emit); 
  } 
  else 
    return NULL;        // Must be terminator 
} 
 
// Parse patch identifiers 
BOOL Parse::ParsePatches() 
{ 
  char start[2], end[2];    // List separators 
  int v_index;              // Vertex pointer array index 
  BOOL status = TRUE;       // Status flag 
  WORD p_index;             // Patch pointer array index 
  WORD s_index;             // Surface index 
  WORD ivtx[4];             // Vertex indices 
  Patch3 *pp;               // Patch pointer 
  Patch3 *pphd;             // Patch head pointer 
  PatchList *ppl = NULL;    // Patch list pointer 
  PatchList *pplnext;       // Next patch list pointer 
  Vertex3 *pv[4];           // Vertex pointers array 
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  ReadLine(efile);      // Read patch section header 
 
  for ( ; ; ) 
  { 
    ReadLine(efile);    // Read patch identifier 
 
    if (sscanf(line_buff, "%d %1s %d %d %d %d %1s", 
        &s_index, start, &ivtx[0], &ivtx[1], &ivtx[2], 
        &ivtx[3], end) == 7) 
    { 
      // Validate surface index 
      if (s_index >= surf_cnt) 
      { 
        sprintf(msg_buff, 
            "Entity file: %s\nPatch # %u\nSurface index " 
            "error: %s", ent_buff, patch_cnt + 1, 
            line_buff); 
        ReportError(msg_buff); 
        status = FALSE; 
        break; 
      } 
 
      // Validate vertex array indices 
      for (v_index = 0; v_index < 4; v_index++) 
      { 
        if (ivtx[v_index] >= vert_cnt) 
        { 
          sprintf(msg_buff, 
              "Entity file: %s\nPatch # %u\nVertex index " 
              "error: %s", ent_buff, patch_cnt + 1, 
              line_buff); 
          ReportError(msg_buff); 
          status = FALSE; 
          break; 
        } 
      } 
 
      if (status == FALSE) 
        break; 
 
      // Get vertex pointers 
      for (v_index = 0; v_index < 4; v_index++) 
        pv[v_index] = pv_array[ivtx[v_index]]; 
 
      // Update surface patch linked list 
      pp = new Patch3(pv, ps_array[s_index]); 
      pphd = ps_array[s_index]->GetPatchPtr(); 
      pp->SetNext(pphd); 
      ps_array[s_index]->SetPatchPtr(pp); 
 
      // Determine whether triangle or quadrilateral 
      if (ivtx[2] != ivtx[3]) 
        pp->SetQuad(); 
    } 
    else 
      break; 
 
    // Link patch to temporary patch list 
    ppl = new PatchList(pp, ppl); 
    penv->num_patch++; 
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    patch_cnt++; 
  } 
 
  // Build patch pointer array and delete patch list 
  pp_array = new PatchPtr[patch_cnt]; 
  p_index = patch_cnt - (WORD) 1; 
  while (ppl != NULL) 
  { 
    pp_array[p_index--] = ppl->GetPatchPtr(); 
    pplnext = ppl->GetNext(); 
    delete ppl; 
    ppl = pplnext; 
  } 
 
  return status; 
} 
 
// Parse element identifiers 
BOOL Parse::ParseElements() 
{ 
  char start[2], end[2];    // List separators 
  int nvert;                // Number of vertices 
  int v_index;              // Vertex pointer array index 
  BOOL status = TRUE;       // Status flag 
  WORD p_index;             // Patch array index 
  WORD ivtx[4];             // Vertex indices 
  Element3 *pe;             // Element pointer 
  Element3 *pehd;           // Element head pointer 
  ElemList *pel;            // Element list pointer 
  ElemList *pelhd;          // Element list head pointer 
  Vertex3 *pv[4];           // Vertex pointers array 
 
  ReadLine(efile);      // Read element section header 
 
  for ( ; ; ) 
  { 
    ReadLine(efile);    // Read element identifier 
 
    if (sscanf(line_buff, "%d %1s %d %d %d %d %1s", 
        &p_index, start, &ivtx[0], &ivtx[1], &ivtx[2], 
        &ivtx[3], end) == 7) 
    { 
      // Validate patch index 
      if (p_index >= patch_cnt) 
      { 
        sprintf(msg_buff, 
            "Entity file: %s\nElement # %u\nPatch index " 
            "error: %s", ent_buff, elem_cnt + 1, 
            line_buff); 
        ReportError(msg_buff); 
        status = FALSE; 
        break; 
      } 
 
      // Validate vertex array indices 
      for (v_index = 0; v_index < 4; v_index++) 
      { 
        if (ivtx[v_index] >= vert_cnt) 
        { 
          sprintf(msg_buff, 
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              "Entity file: %s\nElement # %u\nVertex index " 
              "error: %s", ent_buff, elem_cnt + 1, 
              line_buff); 
          ReportError(msg_buff); 
          status = FALSE; 
          break; 
        } 
      } 
 
      if (status == FALSE) 
        break; 
 
      // Get vertex pointers 
      for (v_index = 0; v_index < 4; v_index++) 
        pv[v_index] = pv_array[ivtx[v_index]]; 
 
      // Update patch element linked list 
      pe = new Element3(pv, pp_array[p_index]); 
      pehd = pp_array[p_index]->GetElementPtr(); 
      pe->SetNext(pehd); 
      pp_array[p_index]->SetElementPtr(pe); 
      penv->num_elem++; 
      elem_cnt++; 
 
      // Determine whether triangle or quadrilateral 
      if (ivtx[2] != ivtx[3]) 
      { 
        nvert = 4; 
        pe->SetQuad(); 
      } 
      else 
        nvert = 3; 
 
      for (v_index = 0; v_index < nvert; v_index++) 
      { 
        // Update vertex element linked list 
        pelhd = pv[v_index]->GetElemListPtr(); 
        pel = new ElemList(pe, pelhd); 
        pv[v_index]->SetElemListPtr(pel); 
      } 
    } 
    else 
      break; 
  } 
 
  return status; 
} 
 
void Parse::ReadTransform() 
{ 
  double sx, sy, sz;    // Scaling parameters 
  double rx, ry, rz;    // Rotation parameters 
  double tx, ty, tz;    // Translation parameters 
 
  // Read transformation vectors 
  ReadVector(ifile, &sx, &sy, &sz); 
  ReadVector(ifile, &rx, &ry, &rz); 
  ReadVector(ifile, &tx, &ty, &tz); 
   
  // Convert rotation angles to radians 
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  rx = DegToRad(rx); 
  ry = DegToRad(ry); 
  rz = DegToRad(rz); 
 
  // Calculate vertex transformation matrix 
  tm.SetScale(sx, sy, sz); 
  tm.SetRotation(rx, ry, rz); 
  tm.SetTranslation(tx, ty, tz); 
  tm.BuildTransform(); 
} 
 
// Read vertex identifier 
Vertex3 *Parse::ReadVertex() 
{ 
  double xval, yval, zval;      // Vertex coordinates 
 
  if ((ReadVector( efile, &xval, &yval, &zval)) == TRUE) 
    return new Vertex3(Point3(xval, yval, zval)); 
  else 
    return NULL; 
} 
 
// Read vector 
BOOL Parse::ReadVector( WinText &file, double *px, double 
    *py, double *pz ) 
{ 
  float x, y, z;                // Temporary variables 
  char start[2], end[2];        // Data separators 
 
  ReadLine(file);       // Read vector 
 
  if (sscanf(line_buff, "%1s %f %f %f %1s", start, &x, &y, 
      &z, end) == 5) 
  { 
    *px = x; 
    *py = y; 
    *pz = z; 
 
    return TRUE; 
  } 
  else 
    return FALSE; 
} 
 
// Transform entity into instance 
void Parse::TransformInstance( Instance *pinst ) 
{ 
  Element3 *pe;         // Element pointer 
  Patch3 *pp;           // Patch pointer 
  Surface3 *ps;         // Surface pointer 
  Vertex3 *pv;          // Vertex pointer 
 
  // Transform vertex co-ordinates 
  pv = pinst->GetVertPtr(); 
  while (pv != NULL) 
  { 
    tm.Transform(pv->GetPosnPtr()); 
    pv = pv->GetNext(); 
  } 
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  // Calculate patch attributes 
  ps = pinst->GetSurfPtr(); 
  while (ps != NULL) 
  { 
    pp = ps->GetPatchPtr(); 
    while (pp != NULL) 
    { 
      // Calculate element attributes 
      pe = pp->GetElementPtr(); 
      while (pe != NULL) 
      { 
        pe->CalcArea(); 
        pe->CalcNormal(); 
        pe = pe->GetNext(); 
      } 
 
      pp->CalcArea(); 
      pp->CalcCenter(); 
      pp->CalcNormal(); 
      pp = pp->GetNext(); 
    } 
    ps = ps->GetNext(); 
  } 
 
  // Calculate vertex normals 
  pv = pinst->GetVertPtr(); 
  while (pv != NULL) 
  { 
    pv->CalcNormal(); 
    pv = pv->GetNext(); 
  } 
} 
 
// Read next line from file 
void Parse::ReadLine( WinText &file ) 
{ 
  for ( ; ; ) 
  { 
    file.GetLine(line_buff, MaxLine); 
 
    // Skip comment lines 
    if (strncmp(line_buff, CommentStr, strlen(CommentStr)) 
        != 0) 
      break; 
  } 
} 

Listing 3.20 - PARSE.CPP 

Our program outline (Fig. 3.19) is handled by ParseFile, which accepts as its parameters an 

environment data file name and an optional file path name to where the entity files are stored. 

ParseFile extracts each entity file name from the environment data file and appends it to the entity file 

path name (if one was specified). Using this fully expanded file name, it calls ParseEntityFile to read each 
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entity file, after which it calls ReadTransform to read the associated transformation matrix. Each entity 

returned by ParseEntityFile is transformed into an instance by TransformInstance. 

If ParseFile is successful, a pointer to the environment can be obtained by calling GetEnv. The memory 

allocated to this data structure can be released at any time by calling DeleteEnv. This memory is also 

released if ParseFile is called again; each Parse object can only point to a single environment. 

Finally, ParseFile calls ReportError if it can’t open an environment or entity file. This global function 

is defined by: 

// ERROR.H- Error Reporting Functions 
 
#ifndef _ERROR_H 
#define _ERROR_H 
 
#ifndef _NOT_WIN_APP 
#include <windows.h> 
#else 
#include <iostream.h> 
#endif 
 
extern void OutOfMemory(); 
extern void ReportError( char * ); 
 
#endif 

Listing 3.21 - ERROR.H 

and: 

// ERROR.CPP - Error Reporting Functions 
 
#include "error.h" 
 
void OutOfMemory()      // Report out of memory error 
{ 
#ifndef _NOT_WIN_APP 
  MessageBox(GetFocus(), "Out of memory", NULL, MB_OK | 
      MB_ICONEXCLAMATION); 
#else 
  cerr << "ERROR: out of memory" << endl; 
#endif 
} 
 
// Report error message 
void ReportError( char *msg ) 
{ 
#ifndef _NOT_WIN_APP 
  MessageBox(GetFocus(), msg, NULL, MB_OK | 
      MB_ICONEXCLAMATION); 
#else 
  cerr << "ERROR: " << msg << endl; 
#endif 
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} 

Listing 3.22 - ERROR.CPP 

Note the use of the externally defined _NOT_WIN_APP to choose between a character-mode and an 

MS-Windows application. MessageBox is an MS-Windows function that displays the error message in a 

popup window. 

PARSE.CPP and ERROR.CPP are not exactly laudable examples of robust user interface code. Unlike 

the previous classes, Parse has to accept input from the outside world. Done properly, it should 

exhaustively validate this data, provide meaningful error messages and exit gracefully. As a rule of thumb, 

the error checking code should double the size of PARSE.CPP. 

3.14 A Character-Mode Test Program 

Using the example data files COL_CUBE.ENT and COL_CUBE.WLD (Listings 3.15 and 3.17), we 

can exercise the code we’ve developed to date with: 

// TEST_1.CPP - Environment Data File Parser Test Program 
 
// NOTE: _NOT_WIN_APP must be globally defined for this 
//       program to be successfully compiled 
 
#include <stdio.h> 
#include <iostream.h> 
#include "parse.h" 
 
// Default entity directory path 
static char NoEntityDir[] = ""; 
 
static Parse Parser;            // World file parser 
static Environ Environment;     // Environment 
 
int main( int argc, char **argv ) 
{ 
  int inst_num;         // Instance number 
  WORD surf_num;        // Surface number 
  WORD patch_num;       // Patch number 
  WORD elem_num;        // Element number 
  WORD vert_num;        // Vertex number 
  WORD list_num;        // Polylist number 
  char *pentdir;        // Entity directory path 
  Instance *pinst;      // Instance pointer 
  Surface3 *psurf;      // Surface pointer 
  ElemList *pelist;     // Element list pointer 
  Patch3 *ppatch;       // Polygon pointer 
  Element3 *pelem;      // Element pointer 
  Vertex3 *pvert;       // Vertex pointer 
  Spectra color;        // Temporary color 
  Point3 posn;          // Point co-ordinates 
  Vector3 normal;       // Normal vector 
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  // Get entity directory path (if any) 
  if (argc > 2) 
    pentdir = argv[2]; 
  else 
    pentdir = NoEntityDir; 
 
  // Parse the environment file 
  if (Parser.ParseFile(argv[1], pentdir, &Environment) == 
      FALSE) 
    return 1; 
 
  // Get environment pointer 
  pinst = Environment.GetInstPtr(); 
 
  // Walk the instance list 
  inst_num = 1; 
  while (pinst != NULL) 
  { 
    cout << "Instance #" << inst_num++ << endl; 
 
    // Walk the surface list 
    surf_num = 1; 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      cout << "  Surface #" << surf_num++ << endl; 
      color = psurf->GetReflectance(); 
      cout << "    reflectance = [ " << color.GetRedBand() 
          << " " << color.GetGreenBand() << " " <<  
          color.GetBlueBand() << " ]" << endl; 
      color = psurf->GetEmittance(); 
      cout << "    emittance = [ " << color.GetRedBand() << 
          " " << color.GetGreenBand() << " " <<  
          color.GetBlueBand() << " ]" << endl; 
 
      // Walk the patch list 
      patch_num = 1; 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        cout << "    Patch #" << patch_num++ << endl; 
        cout << "      area = " << ppatch->GetArea() << 
            endl; 
        posn = ppatch->GetCenter(); 
        cout << "      center = < " << posn.GetX() << " " 
            << posn.GetY() << " " << posn.GetZ() << " >" << 
            endl; 
        normal = ppatch->GetNormal(); 
        cout << "      normal = < " << normal.GetX() << " " 
            << normal.GetY() << " " << normal.GetZ() << 
            " >" << endl; 
        color = ppatch->GetExitance(); 
        cout << "      exitance = [ " << color.GetRedBand() 
            << " " << color.GetGreenBand() << " " <<  
            color.GetBlueBand() << " ]" << endl; 
 
        // Walk the patch element list 
        elem_num = 1; 
        pelem = ppatch->GetElementPtr(); 
        while (pelem != NULL) 
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        { 
          cout << "      Element #" << elem_num++ << endl; 
          cout << "        area = " << pelem->GetArea() << 
              endl; 
          normal = pelem->GetNormal(); 
          cout << "        normal = < " << normal.GetX() << 
              " " << normal.GetY() << " " << normal.GetZ() 
              << " >" << endl; 
          color = pelem->GetExitance(); 
          cout << "        exitance = [ " << 
              color.GetRedBand() << " " << 
              color.GetGreenBand() << " " <<  
              color.GetBlueBand() << " ]" << endl; 
 
          pelem = pelem->GetNext(); 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
 
    // Walk the vertex list 
    vert_num = 1; 
    pvert = pinst->GetVertPtr(); 
    while (pvert != NULL) 
    { 
      cout << "  Vertex #" << vert_num++ << endl; 
      posn = pvert->GetPosn(); 
      cout << "    position = < " << posn.GetX() << " " << 
          posn.GetY() << " " << posn.GetZ() << " >" << endl; 
      normal = pvert->GetNormal(); 
      cout << "    normal = < " << normal.GetX() << " " << 
          normal.GetY() << " " << normal.GetZ() << " >" << 
          endl; 
      color = pvert->GetExitance(); 
      cout << "    color = [ " <<  color.GetRedBand() << " " 
          << color.GetGreenBand() << " " << 
          color.GetBlueBand() << " ]" << endl; 
 
      // Walk the vertex element list 
      list_num = 0; 
      pelist = pvert->GetElemListPtr(); 
      while (pelist != NULL) 
      { 
        list_num++; 
        pelist = pelist->GetNext(); 
      } 
      cout << "    vertex shared by " << list_num << 
          " elements" << endl; 
      pvert = pvert->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  return 0; 
} 

Listing 3.23 - TEST_1.CPP 



Building An  Environment 139 
________________________________________________________________________ 

TEST_1 is a character-mode application that sends its output to the user console. As such, 

_NOT_WIN_APP must be globally defined in order to correctly compile ERROR.CPP. 

To run TEST_1, make sure that both data files are in the current directory, then enter the following 

command: 

TEST_1 COL_CUBE.WLD 

Alternatively, you can have COL_CUBE.ENT in a separate directory, say “C:\RADIANT\ENTITIES”, and 

enter: 

TEST_1 COL_CUBE.WLD C:\RADIANT\ENTITIES 

The output in either case will be a detailed listing of the surfaces, polygons and vertices belonging to 

the two instances in the environment, along with their properties (surface colors, polygon normals, vertex 

co-ordinates and so on). 

3.14 Conclusions 

With Parse and its associated classes, we have the 3-D graphics toolkit necessary to build an 

environment. There are of course opportunities for improvement. The RGB model used in the ColorRGB 

class, for example, could be augmented with a more sophisticated representation such as the HSV (hue-

saturation-value) or HLS (hue-lightness-saturation) models (e.g., Foley et al. [1990], Hill [1990], Watt 

[1990] and Hall [1989]). These models are particularly useful for interactive control of surface colors, 

where equal changes in the color space parameters produce approximately equal changes in the perceived 

color. Foley et al. [1990] and Watt [1990] both offer Pascal code for converting between HLS and HSV 

color models and the RGB color model. 

A second approach is to use four or more color bands (Hall [1989]) for more accurate color rendition. 

Chen [1991] offers C source code for mapping between such models and the simpler RGB color model. 

The only problem is that there is very little information available on the spectral reflectance distribution of 

most materials. Architectural finishes in particular are most often characterized using the subjective 

Munsell color specification system (e.g., Munsell [1946], Judd and Wyszecki [1975] and Burnham et al. 

[1963]) with its hue, value and chroma parameters. A Munsell color can only be mapped to the three color 

bands of the RGB and similar color models. 
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The Element3, Patch3 and Surface3 classes are candidates for improvement. The winged-edge data 

structure (Baumgart [1974], Baumgart [1975] and Glassner [1991]) for polygon representation is one 

possibility, although developing a robust winged-edge class in C++ is not for the timid. Another possibility 

is to replace the polygon-based representation of surfaces with the edge-based representation described in 

Mitchell [1990] (see also Watt and Watt [1992]). This approach results in a data structure that is simpler 

than Element3 and which consumes less memory. Unfortunately, it requires different rendering techniques 

than are presented in the next chapter. 

Finally, the Parse class could be made more robust for use in a stand-alone application. Given the 

widespread availability of reasonably priced 3-D CAD packages however, it is probably more reasonable 

to develop an AutoCAD DXF file translator (see the accompanying diskette for a simple example) to 

generate complex environment descriptions. For our purposes, Parse and its associated classes are more 

than adequate. 
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Chapter 4 
A Viewing System 

4.0 Introduction 

Our environment consists of a complicated arrangement of data structures and pointers residing 

somewhere in memory. Examining its contents is not easy; even a pair of colored cubes floating in space 

presents us with an overwhelming stream of instance, surface, polygon and vertex values. Before doing 

anything else, we need to develop a viewing system to display 3-D environments on our two-dimensional 

computer screens. 

What is a viewing system? Think of a computer screen as being a glass window looking into the 

environment (Fig. 4.1). Examining the image on the screen from a fixed position with one eye closed, we 

cannot say (with a bit of poetic license) whether we are viewing a 3-D environment or a 2-D representation 

of it. 

Window  

Figure 4.1 - Projecting a 3-D object onto a 2-D window 

That’s all there is to it! By tracing rays from a 3-D object to our eye position, we can “project” the 

object onto the 2-D window. The ray luminances determines the luminances of the window at the points of 

intersection. Looking at this window, we see a two-dimensional perspective projection of the 3-D 

environment. 
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Do not be misled by some of the more complex discussions of viewing systems in the computer 

graphics literature. A viewing system–any viewing system– consists of one eye and a window. The 

viewing system we will develop in this chapter is a slightly simplified version of the GKS-3D (ISO [1988]) 

and PHIGS (ANSI [1988]) systems. The principles of these industry standards are described at length in 

Singleton [1987], with more generalized descriptions available in Foley et al. [1990] and Hill [1990]. 

The differences between our viewing system and GKS-3D or PHIGS are minimal and relatively 

unimportant. It can show us everything we could see and photograph with a 35mm camera in real life. In 

fact, the only advantage GKS-3D and PHIGS offer is their ability to model a professional photographer’s 

view camera with its tilting lens holder. This is useful only if you want to correct for perspective distortion 

(such as a tall building photographed from street level with a wide angle lens). Few of us own one of these 

cameras, so why bother implementing its equivalent in software? 

The advantage of our viewing system is that it is conceptually simple. Don’t let the mathematics 

intimidate you. Look at the illustrations first and remind yourself that the equations are nothing more than a 

formalized description of what you see. Taken one step at a time, they are actually quite easy to follow and 

understand. 

4.1 A Minimal Viewing System 

Imagine our window as being part of an infinite view plane that is some distance (called the view 

distance) in front of our eye and perpendicular to our line of sight (Fig. 4.2). We can position this view 

plane window anywhere in an environment and orient it such that we can look in any direction. 

To simplify our understanding of what we see, we can define a left-handed view plane co-ordinate 

system (or “view space”) whose origin lies at the center of our window. In accordance with computer 

graphics convention, we label its axes u, v and n. The n-axis indicates the direction in which we are 

looking, while the v-axis establishes our local “up” direction. Expressing the view space origin in world 

co-ordinates (i.e., { }zyx ooo ,, ) establishes our position, while expressing the n-axis and v-axis as vectors in 

world co-ordinates uniquely orients our view space with respect to the environment. The n-axis unit vector 

n is called the view direction vector, while the v-axis unit vector v is referred to as the view-up vector. 



A Viewing System 145 
________________________________________________________________________ 
  

n

y

z

x

Eye position

v

u

View plane window

View distance

 

Figure 4.2 - View plane co-ordinate system 

Our view plane window is a square with dimensions two units wide by two units high. What the units 

actually represent–inches, feet or meters–is not important. Looking through the window, we can see that 

the set of rays traced from its four corners to the eye position define an imaginary pyramidal cone (the view 

pyramid) that delimits our angular field of view (Fig. 4.3). We can change this field of view by varying the 

view distance. The effect is the same as that of changing the focal length setting of a zoom lens on a 

camera–objects appear larger through the view plane window as the view distance is increased. 

View distance = 4View distance = 2

View pyramid

 

Figure 4.3 - Changing the field of view by varying the view distance 

Actually, the “window” analogy is somewhat misleading. Unlike a physical window, we will not see an 

object that is in front of the window (i.e., between the view plane and our eye position) but outside the 

view pyramid. Conversely, any object contained within the view pyramid will be visible, regardless of 

whether it is behind or in front of the window. A more accurate description of the view plane window is 

that of an imaginary square, defined on the equally imaginary view plane, that determines the shape of the 

view pyramid. 
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4.1.1 The View Volume 

We need two more components to make our minimal viewing system a useful tool. Suppose we want to 

look at the interior of a room somewhere inside a large building. If the eye position we need to obtain the 

proper perspective is located outside the room, we must somehow remove the intervening walls and 

objects. Even if our eye position is within the room, we will still want to ignore anything that lies beyond 

the far walls. 

A simple but effective solution is to define two additional planes (called clipping planes) that are 

perpendicular to the view direction vector (Fig. 4.4). Together with the view pyramid, these planes delimit 

a view volume (also known as a view frustum). Only objects that are contained within this volume are 

visible through the view plane window; those that lie partially or wholly outside the volume are clipped 

from our field of view. In our example, we would likely set the front clipping plane to be just inside the 

room and the back clipping plane to lie just beyond the far room walls. 

View plane window

Front clipping plane

Back clipping plane
View volume

Front plane distance

Back plane distance

v

u

n

View distance  

Figure 4.4 - Defining the view volume 

Given a viewing system position and orientation within an environment, we may find that the nearest 

objects of interest are between the eye position and the view plane window. This is not a problem! The 

front clipping plane can be placed as close to the eye position as necessary, including in front of the view 

plane window. We can always trace rays backwards from the eye position through the objects to the view 

plane. 
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4.1.2 Specifying the View-Up Vector 

In later developing a user interface for our viewing system, we will need to specify its position and 

orientation in world co-ordinates. While specifying the position is trivial, orienting the viewing system 

presents a minor problem. Designing an intuitive interface suggests that the view direction vector n and 

view-up vector v should be specified using spherical co-ordinates. However, v must be exactly 

perpendicular to n. Once we specify n, how can we accurately specify v? 

One reasonable approach is to indicate an approximate view-up vector . The true view-up vector v 

can then be determined by projecting  onto the view plane (Fig. 4.5) and normalizing the resultant 

vector. This can be done by calculating: 

'v

'v

( )( nnvvv ⋅−= ''norm  (4.1) 

where the only restriction is that  cannot point in the same or opposite direction as n. In other words,  

cannot be collinear with n. 

'v 'v

n

v
v' u

 

Figure 4.5 - Determining the view-up vector v from an approximate vector  'v

Knowing v and n, the world co-ordinates of the unit vector u can be determined from: 

u n v= ×  (4.2) 

where n comes before v in the cross product only because u, v and n comprise a left-handed co-ordinate 

system. 

4.2 From World to View Co-ordinates 

The objects in our environment are defined in terms of 3-D polygons with world co-ordinates. To 

project them onto the view plane window, we first need to transform their co-ordinates into those of our 

view space. This problem is similar to that of transforming an entity into an instance (Section 3.9), except 
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that no scaling is required. We are also dealing with an environment (a “world space”) rather than a single 

entity. Nevertheless, the same principles apply. 

Imagine that we have an environment consisting of a cube and a viewing system as shown in Figure 

4.6a. We need a linear 3-D transformation that will perform two operations. First, it should translate the 

world space such that its origin coincides with our view space origin (Fig 4.6b). In other words, the world 

co-ordinates of every object in the environment are shifted a distance equal to that between the two origins. 

Second, the transformation should rotate the world space such that its axes are aligned with those of our 

view space (Fig. 4.6c). Remember however that the world space has a right-handed co-ordinate system, 

while our view space is left-handed. This means that when the x-axis unit vector is aligned with the u-axis 

unit vector and the y-axis and v-axis unit vectors are similarly aligned, the z-axis unit vector will point in 

the opposite direction to that of its n-axis counterpart. 

In terms of homogeneous co-ordinates, this transformation can be expressed as: 
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where T is the translation matrix, R is the rotation matrix, and M is the net view space transformation 

matrix. 

The translation component is quite simple, being: 



















−
−
−

=

1000
100
010
001

z

y

x

o
o
o

T  (4.4) 

where o , o  and o  are the world co-ordinates of the view space origin. The rotation component is 

somewhat more complicated. We have the view space axes as unit vectors u, v and n expressed in world 

space co-ordinates (e.g., 

x y z

{ }zyx uuuu ,=  for the u-axis vector). We want a 3-D transformation matrix R that 

will rotate them into the following view space co-ordinates: 

{ }
{
{ }1,0,0

0,1,0
0,0,1

=
=
=

n
v
u

}  (4.5) 
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Expressed in homogeneous co-ordinates, these become: 
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Figure 4.6a - Viewing system in world space 
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Figure 4.6b - Translate world co-ordinates to view space origin 
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Figure 4.6c - Rotate world co-ordinates into view space 

It can be shown (e.g., Hill [1990]) that the matrix R must have the form:  
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where u , u  and  are the world co-ordinates of the u-axis unit vector, and similarly for the v-axis and 

n-axis unit vectors. For our purposes, it is sufficient to confirm that R satisfies Equation 4.6 (since 

 for u, and similarly for v and n). 

x
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Concatenating these two matrices gives us the view space transformation matrix: 
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where: 
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∗−∗−∗−=

 (4.9) 

from the definition of matrix multiplication. Put more succinctly, each of the components of the submatrix 

t is the dot product of the view space origin o (expressed as a vector in world space co-ordinates) and one 

of the vectors u, v or n. In other words: 
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Referring to Figure 4.6 as an example, suppose we have chosen an view space whose position and 

orientation in world co-ordinates are: { }0,2,2=o , { }1,0,0 −=u , { }0,21,21−=v , and 

{ }0,21,21 −−=n . This gives us the following view space transformation matrix: 
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If we then have (for example) a point in our environment with world co-ordinates { } , 

premultiplying its homogeneous co-ordinates representation  by M gives its view space co-ordinates of 

0,1,0
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In summary, we can position and orient our viewing system anywhere in an environment. Having done 

so, Equations 4.8 and 4.9 show us how to compute its transformation matrix. Applying this matrix to the 

world co-ordinates of any point in the environment gives us its equivalent view space co-ordinates. 

4.3 Perspective Projection 

The objects in our environment consist of collections of 3-D polygons. Having transformed the world 

co-ordinates of their vertices into view space co-ordinates, it remains to project these vertices onto the view 

plane. At first glance, this appears to be a problem involving elementary geometry. 

From Figure 4.7, it is evident that the co-ordinates of the projected point  can be determined from 

the co-ordinates of p according to the equations: 

'p
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vv

uu

=
=

'
'

 (4.12) 

where ( dpw n−=1 ) , with d being the view distance (and where 0<d ). 

 



152 A Viewing System 
________________________________________________________________________ 

This is reminiscent of our definition of homogeneous co-ordinates (Eqn. 3.10). Suppose we expand 

Equation 4.12 to include the n-axis co-ordinate: 
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 (4.13) 

where again ( dpw n−=1 ) . Expressed in terms of homogeneous co-ordinates, this becomes: 

Perspective: 
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Figure 4.7 - Perspective projection 

where the projected co-ordinates are given by: 
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 (4.15) 

(The division of the first three homogeneous co-ordinates by the fourth co-ordinate is called the 

perspective divide operation.) 

This approach offers several advantages. First, it allows us to perform perspective projection as a 3-D 

transformation using homogeneous co-ordinates. Recalling Section 3.11, we can concatenate the 
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perspective transformation matrix P with our view space transformation matrix M (Eqn. 4.8), thereby 

performing two transformations with one matrix multiplication. 

Second, the projected n-axis co-ordinate  has a physical meaning. It represents the perspective 

depth (or pseudodepth) of the vertex. Given two vertices  and  where , the projected n-

axis co-ordinates are such that . In other words, the perspective transformation preserves the 

depth ordering of the vertices relative to the view plane. (It does not preserve the true n-axis depth, 

however. Plotting  versus  will show that the n-axis scale is stretched as it approaches the back 

clipping plane.) We will need this information later on to determine whether an object is hidden by any 

other objects in front of it. 

np'

1p 2p nn pp 21 >

nn pp 21 '' >

npnp'

Third and most importantly, the perspective transformation preserves straight lines and planes. That is, 

a straight line between two vertices in our view space is projected onto the view plane as a straight line 

while retaining the proper depth ordering of each point along the line. The same applies to points on a 

plane. This is essential if we are to interpolate edges and planar polygon surfaces between vertices after a 

perspective transformation of their co-ordinates. 

The four homogeneous co-ordinates represent four dimensions. Unfortunately, the words “four 

dimensions” bring to mind thoughts of general relativity and curved space-time, following which most of 

us respond to social conditioning and switch our minds into neutral. To avoid this syndrome, we should 

consider the simpler case of three dimensions. 

The diagram shown in Figure 4.8 illustrates two points (  and  ) on a 3-D line being projected onto 0p 1p

the u-v plane. The projected points are  and  respectively. Notice that the two horizontal axes are '0p '1p

labeled u and v, while the vertical axis is labeled w. Notice also that wp '' 1p0 = . This applies for any 

point along the line. 

There are two crucial concepts here: first, the w-axis plots our fourth co-ordinate, and therefore 

represents the fourth dimension. It clearly shows that the co-ordinate w is nothing more than a scaling 

factor that converts the u-v co-ordinates of a point to their projected co-ordinates on the view plane. This 

same scaling factor converts the n-axis co-ordinate to its perspective depth. 
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Second, the fourth homogeneous dimension is no different from the other three dimensions. We can 

plot points, lines and planes in four dimensions as easily as we can in two or three. Moreover, the usual 

rules of geometry and trigonometry apply. For example, the length of a 4-D vector is given by 

2222 wnvu +++ . 

There is one point to remember, however. Since w represents a scaling factor (as shown by Equation 

4.13), any line or plane plotted along the w-axis must intersect the origin. There are exceptions to this rule 

in computer graphics, but they do not occur in any area of concern to us. 

w

u

v

0

p0

p1

p1'

p0'
1

2

 

Figure 4.8 - Avoiding the “general relativity” syndrome 

What happens if a point p is behind our eye position? Even though  has a negative value, Equations 

4.14 and 4.15 yield valid results. They can be interpreted by tracing a ray from the point through the eye 

position to the view plane (Fig. 4.9). This emphasizes the need for our view volume. Without it, objects 

behind the eye position are projected onto the view plane. Another reason is that any attempt to project a 

point on the plane parallel to the view plane and intersecting the eye position (i.e., ) will result in a 

division-by-zero error. 

np

dpn =
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View plane Front clipping plane

 
Figure 4.9 - Projecting points from behind the eye position 

The perspective division distorts the truncated pyramid of our perspective view volume (Fig. 4.10a) 

into the parallel view volume shown in Figure 4.10b. 
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Figure 4.10a - Perspective view volume (before perspective divide) 
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Figure 4.10b - Parallel view volume (after perspective divide) 

The view volume is now a rectangular box with parallel sides, with our eye position removed to minus 

infinity along the n-axis. Of course, all the points in the view space have been similarly distorted–we have 

transformed our perspective projection of the world space into an equivalent parallel projection (Fig. 4.11). 
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The projection of any point onto the view plane can now be performed by tracing a ray parallel to the n-

axis from the point to the view plane. The spatial distortions we have introduced with the perspective 

transformation make this projection of the environment onto the view plane window look like our original 

perspective projection. 

 

Figure 4.11a - Before perspective division Figure 4.11b - After perspective division 

4.4 Screen Space Co-ordinates 

Our view plane window is a square. Recalling the beginning of this chapter, our goal is to display 2-D 

projected images of a 3-D environment. These images will typically be rectangular. We can think of them 

having a left-handed screen space co-ordinate system (Fig. 4.12), with the x-axis and y-axis representing 

the image width and height, and the z-axis representing the depth “behind” the screen. The question is, 

once we project a point onto the square view plane window, how can we scale its u-v view space co-

ordinates to the x-y-z screen space co-ordinates of a rectangular image? 

Screen

y

z

x

width

height aspect ratio = width / height

 

Figure 4.12 - Screen space co-ordinates 
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We could of course simply crop the projected image before scaling. However, this entails an 

unnecessary amount of work. We still have to clip, shade and perform hidden surface elimination 

calculations for each polygon (discussed in the following sections) before we can scale them. 

The aspect ratio of an image is defined as the ratio of its width to its height. What if we redefined our 

view plane window as a rectangle with the same aspect ratio as the image we want to display? 

Unfortunately, this complicates both our definition of a view volume and the following algorithms for 

clipping, shading and hidden surface elimination. In particular, the algorithms must be made aware of the 

relative dimensions of the image. 

The preferred solution is to scale our entire view space. Suppose we want to display a rectangular 

image that measures 320 pixels horizontally and 240 pixels vertically on a computer screen with square 

pixels. The aspect ratio of this image is approximately 1.33. By multiplying (i.e., scaling) the view space 

v-axis co-ordinates by this ratio, we can stretch our view space vertically such that the rectangular image 

becomes a square. This allows us to continue to use our square view plane window. (If the aspect ratio 

were less than one–that is, if we want a vertically-oriented image–we would have to scale the u-axis co-

ordinates instead.) 

We can now perform our clipping, shading and hidden surface elimination calculations for each 

polygon in this distorted view space. More importantly, the algorithms do not need to know about the 

aspect ratio. We only need to divide the distorted v-axis or u-axis co-ordinates by this ratio when we are 

ready to scale to screen space co-ordinates. 

What about the front and back clipping plane distances? As a result of perspective division, the front 

plane is now located at ( )dFF −1

0<

 units along the n-axis, where F is the front plane distance and d is the 

view distance (with d ). Similarly, the back plane is located at ( )dBB −1  units, where B is the back 

plane distance. By translating and then scaling our view volume in the n-axis direction prior to perspective 

division, we can change these distances to 0 and +1 units respectively. By appropriately translating and 

scaling in the u-axis and v-axis directions as well, we can create the canonical parallel view volume shown 

in Figure 4.13, where  and 1≤0 ≤ u 10 ≤≤ v . These are normalized view space co-ordinates. 
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The required translation and scaling can be performed with one normalization transformation, 

expressed in homogeneous co-ordinates as: 

Normalization: 
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Figure 4.13 - Canonical parallel view volume 
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)

with aspect being the image aspect ratio. 

We will later need the pseudodepth  of our normalized view space co-ordinates to determine the 

relative depth of object in the view volume. Meanwhile, we can scale  and v  to our screen space co-

ordinates using: 

'n

'u '

( )( )( )
( )( )( 1,'intmin

1,'intmin
−∗=

−∗=
heightheightvy

widthwidthux
 (4.18) 

where x is the horizontal position in pixels from the left edge of the screen and y is the vertical position in 

scan lines from the bottom. Similarly, the screen width is measured in pixels and its height is measured in 

scan lines. Since u  and  can range from 0.0 to 1.0 inclusive, the min function needed to ensure that the 

screen space co-ordinates stay within their upper bounds. 

' 'v

There are some differences of opinion in the computer graphics community regarding the co-ordinates 

of a pixel. Our normalized view space co-ordinates are floating point values, implying a continuous image. 

Our screen, on the other hand, is an array of pixels, which implies a discrete image. The question is, are 

these pixels centered on integer co-ordinates or halfway between? Given a floating point value of 3.75, do 

we round it to the nearest integer value of 4.0 or truncate it to 3.0? 

Heckbert [1990a] argues for the latter, stating that “the pixel with discrete co-ordinates (x, y) has its 

center at continuous coordinates (x + 1/2, y + 1/2).” That is, we should truncate using the C++ math library 

floor function. This is done implicitly when the compiler converts a floating point value to its integer 

representation (Plauger and Brodie [1989]) through the cast to int in Equation 4.18. 

4.5 3-D Projective Transformations 

Summarizing our viewing system transformations then, we have: 
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where { }zyx ppp ,,  are the world co-ordinates of a point p, M is the view space transformation matrix 

(Eqn. 4.8), P represents the perspective transformation (Eqn. 4.14) and N performs the normalization 

transformation (Eqn. 4.16). The perspective division (Eqn. 4.15) then recovers the 3-D projected co-
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ordinates { . The net transformation matrix NPM is called the 3-D projective transformation 

matrix. 
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The beauty of homogeneous co-ordinates is that for any given set of viewing system parameters, these 

three matrices can be concatenated to form a single 4×4 transformation matrix. This allows us to 

accomplish our view space, normalization and perspective transformations with a single matrix multiply 

operation, and to apply the identical operation to each point in the environment. 

To illustrate Equation 4.19 assume we have a viewing system with view distance , front plane 

distance  and back plane distance 

0.4−=d

0.10=B . Our image has an aspect ratio . If we 

orient this system such that its origin is located at the world co-ordinate space origin, its view direction 

vector is  and its view-up vector is 

33.1=aspect

{ }0,1,0=v , then its u-axis co-ordinates will be 

. This gives us the view space transformation matrix: ,1−=u

}

=M  (4.20 

which in this case only does nothing more than convert right-handed world space co-ordinates into those of 

the left-handed view space co-ordinate system. 

Premultiplying by the perspective transformation matrix P, we have: 
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From Equation 4.17, we have 21=us , 32=vs , 3221=ns  and 87−=nr . Premultiplying by the 

normalization matrix N, we get: 
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Applying this transformation matrix to a point with world space co-ordinates { }7,3,4 , we obtain its 

equivalent view space co-ordinates: 
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Substituting the front and back clipping plane values of 2 and 10 for the point’s z-axis co-ordinate will 

demonstrate that its perspective depth n becomes 0 and 1 respectively. Similar substitutions can be used to 

confirm the normalized u-axis and v-axis limits. 

4.6 Backface Culling 

We saw in the previous chapter (Section 3.4.1) that a polygon is only visible if the angle between its 

normal and our line of sight vector is less than ±90 degrees, or equivalently if their dot product is less than 

zero. Backface culling employs this concept to eliminate those polygons we cannot see before we perform 

our projective transformations. 

We already have the polygon normal in world co-ordinates. What we need is the view vector from our 

eye position to any point on the polygon (Fig. 4.14). The polygon’s first vertex makes as good a choice as 

any. The view vector is then defined as the vector from our eye position to this vertex. (Note that this 

vector is not our view direction vector. The polygon may not even be in our field of view.) 

View vector

v0

θ

NEye position

View direction vector

 
Figure 4.14 - Backface culling in world space 

We do not have the eye position in world co-ordinates. However, we do have the view system origin o 

and view direction vector n. Given the view distance d, the eye position co-ordinates are given by: 
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or in vector notation, . (Note that this only applies when the eye position is on the n-axis. 

While this is always true for our viewing system, it may not be true for a more generalized viewing system 

such as GKS-3D or PHIGS.) 

noe ∗+= d

The view vector has to be calculated for each polygon, which may seem like a fair amount of work. 

Could we not perform backface culling after the projective transformations have been applied? The eye 

position will have been removed to minus infinity, and so every view vector will parallel to the view 

direction vector. A polygon will be visible only if its normal in view space points towards the eye position. 

Unfortunately, the amount of work involved in the projective transformation of a polygon is greater than 

that of backface culling the polygon in world space. 

4.7 A Viewing System Class 

We can neatly encapsulate the preceding equations and parameters of our minimal viewing system in 

the following class: 

// VIEW_SYS.H - Viewing System Class 
 
#ifndef _VIEW_SYS_H 
#define _VIEW_SYS_H 
 
#include "patch3.h" 
 
class ViewSys           // Viewing system 
{ 
  private: 
    double bpd;         // Back plane distance 
    double eye;         // View distance 
    double fpd;         // Front plane distance 
    Point3 origin;      // View space origin 
    Point3 eye_posn;    // Eye position 
    Vector3 vdv;        // View direction vector 
    Vector3 vuv;        // View-up vector 
    double ptm[4][4];   // Projective transformation matrix 
 
  protected: 
    double aspect;      // Aspect ratio 
 
    BOOL BackFaceCull( Patch3 *); 
    double (*GetProjMatrix())[4]; 
    void BuildTransform(); 
 
  public: 
    ViewSys() 
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    { 
      aspect = 1.0; 
      fpd = -0.99; 
      bpd = 10000.0; 
      eye = -1.0; 
      eye_posn = Point3(-1.0, 0.0, 0.0); 
      origin = Point3(0.0, 0.0, 0.0); 
      vdv = Vector3(-1.0, 0.0, 0.0); 
      vuv = Vector3(0.0, 0.0, 1.0); 
 
      BuildTransform();         // Initialize matrix 
    } 
 
    double GetBackDist() { return bpd; } 
    double GetFrontDist() { return fpd; } 
    double GetViewDist() { return -eye; } 
    Point3 &GetOrigin() { return origin; } 
    Point3 &GetEyePosn() { return eye_posn; } 
    Vector3 &GetViewDir() { return vdv; } 
    Vector3 &GetViewUp() { return vuv; } 
    void SetBackDist( double b ) { bpd = b; } 
    void SetEyePosn( Point3 &e ) { eye_posn = e; } 
    void SetFrontDist( double f ) { fpd = f; } 
    void SetOrigin( Point3 &o ) { origin = o; } 
    void SetViewDir( Vector3 &v ) { vdv = v; } 
    void SetViewDist( double e ) { eye = -e; } 
    void SetViewUp( Vector3 & ); 
}; 
 
// Return projective transformation matrix pointer 
inline double (*ViewSys::GetProjMatrix())[4] 
{ return ptm; } 
 
#endif 

Listing 4.1 - VIEW_SYS.H 

and: 

// VIEW_SYS.CPP - Viewing System Class 
 
#include "view_sys.h" 
 
// Build projective transformation matrix and eye position 
void ViewSys::BuildTransform() 
{ 
  double rn;            // Translation factor 
  double su, sv, sn;    // Scaling factors 
  Vector3 o;            // Origin vector 
  Vector3 u;            // u-axis vector 
 
  // Set view space origin 
  origin.SetX(eye_posn.GetX() - eye * vdv.GetX());  
  origin.SetY(eye_posn.GetY() - eye * vdv.GetY());  
  origin.SetZ(eye_posn.GetZ() - eye * vdv.GetZ());  
 
  o = Vector3(origin);  // Initialize origin vector 
  u = Cross(vdv, vuv);  // Calculate u-axis vector 
 

 



164 A Viewing System 
________________________________________________________________________ 

  // Initialize view transformation matrix 
  ptm[0][0] = u.GetX(); 
  ptm[0][1] = u.GetY(); 
  ptm[0][2] = u.GetZ(); 
  ptm[0][3] = -(Dot(o, u)); 
 
  ptm[1][0] = vuv.GetX(); 
  ptm[1][1] = vuv.GetY(); 
  ptm[1][2] = vuv.GetZ(); 
  ptm[1][3] = -(Dot(o, vuv)); 
 
  ptm[2][0] = vdv.GetX(); 
  ptm[2][1] = vdv.GetY(); 
  ptm[2][2] = vdv.GetZ(); 
  ptm[2][3] = -(Dot(o, vdv)); 
 
  ptm[3][0] = 0.0; 
  ptm[3][1] = 0.0; 
  ptm[3][2] = 0.0; 
  ptm[3][3] = 1.0; 
 
  // Premultiply by perspective transformation matrix 
  ptm[3][0] -= ptm[2][0] / eye; 
  ptm[3][1] -= ptm[2][1] / eye; 
  ptm[3][2] -= ptm[2][2] / eye; 
  ptm[3][3] -= ptm[2][3] / eye; 
 
  // Premultiply by normalization matrix 
 
  if (aspect >= 1.0) 
  { 
    su = 0.5; 
    sv = 0.5 * aspect; 
  } 
  else 
  { 
    su = 0.5 / aspect; 
    sv = 0.5; 
  } 
 
  sn = (eye - bpd) * (eye - fpd) / (eye * eye * (bpd - 
      fpd)); 
  rn = fpd * (eye - bpd) / (eye * (fpd - bpd)); 
 
  ptm[0][0] = su * ptm[0][0] + 0.5 * ptm[3][0]; 
  ptm[0][1] = su * ptm[0][1] + 0.5 * ptm[3][1]; 
  ptm[0][2] = su * ptm[0][2] + 0.5 * ptm[3][2]; 
  ptm[0][3] = su * ptm[0][3] + 0.5 * ptm[3][3]; 
 
  ptm[1][0] = sv * ptm[1][0] + 0.5 * ptm[3][0]; 
  ptm[1][1] = sv * ptm[1][1] + 0.5 * ptm[3][1]; 
  ptm[1][2] = sv * ptm[1][2] + 0.5 * ptm[3][2]; 
  ptm[1][3] = sv * ptm[1][3] + 0.5 * ptm[3][3]; 
 
  ptm[2][0] = sn * ptm[2][0] + rn * ptm[3][0]; 
  ptm[2][1] = sn * ptm[2][1] + rn * ptm[3][1]; 
  ptm[2][2] = sn * ptm[2][2] + rn * ptm[3][2]; 
  ptm[2][3] = sn * ptm[2][3] + rn * ptm[3][3]; 
} 
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// Set view-up vector 
void ViewSys::SetViewUp( Vector3 &approx ) 
{ 
  Vector3 temp = vdv;   // Temporary vector 
 
  // Project approximate view-up vector onto view plane 
  temp *= Dot(approx, vdv); 
  vuv = approx - temp; 
 
  vuv.Norm();   // Normalize view-up vector 
} 
 
// Perform backface culling 
BOOL ViewSys::BackFaceCull( Patch3 *ppatch ) 
{ 
  Vector3 view;         // View vector 
 
  // Calculate view vector (first vertex to eye position) 
  view = Vector3(ppatch->GetVertexPtr(0)->GetPosn(), 
      eye_posn); 
   
  // Indicate whether patch is backface 
  return (Dot(ppatch->GetNormal(), view) < MIN_VALUE) ? 
      TRUE : FALSE; 
} 

Listing 4.2 - VIEW_SYS.CPP 

Only one instance of ViewSys is required for our radiosity renderer. Its constructor positions the 

viewing system at the world space origin with its view direction vector aligned with the x-axis in the 

negative direction and its view-up vector aligned with the z-axis. The eye position is set at -1.0 and the 

front and back plane distances are set to very small and large values respectively. The constructor then 

calls BuildTransform to initialize the 3-D projective transformation matrix and determine the eye position. 

ViewSys also presents the view distance to the user as a positive number through the functions 

GetViewDist and SetViewDist. This is more for the user’s convenience than anything else; its internal 

representation and mathematics remain unchanged. 

The viewing system parameters can be changed at any time by calling the appropriate class member 

functions. However, any change to SetViewDir must be followed with a call to SetViewUp. This call is not 

included in SetViewDir, since the user must specify an approximate view-up vector that is not collinear 

with the new view direction vector. Once the parameters have been updated, BuildTransform must be 

called to calculate the new transformation matrix elements and update the eye position. 
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One final comment: the function GetProjMatrix represents one of the least elegant aspects of C++. All 

it does is return a pointer to the projective transformation matrix ptm. Unfortunately, C++ function 

declarations involving pointers to multidimensional arrays are something only a compiler writer can love. 

4.8 Polygon Clipping 

Again, the objects in our environment consist of collections of 3-D polygons. While we want to project 

these polygons onto the view plane, we must consider that a polygon may not be wholly within the view 

volume. If it is completely outside, we can simply ignore it. However, it may be only partly within the 

volume (e.g., Fig. 4.15). In this case we must somehow clip the portion that is outside the view volume 

before projecting its remainder onto the view plane window. 

 

Figure 4.15 - Clipping a polygon to the canonical view volume 

4.8.1 The Sutherland-Hodgman Algorithm 

There are many different polygon clipping algorithms described in the literature, including Liang and 

Barsky [1983], Weiler and Atherton [1980], Burkett and Noll [1988] and Vatt [ 1992]. For our purposes 

however, we need look no further than the classic Sutherland-Hodgman algorithm (Sutherland and 

Hodgman [1974]). 

Looking at our view volume, we can imagine it as being the intersection of six clipping planes (Section 

4.1.1). The Sutherland-Hodgman algorithm accepts as its input an n-sided polygon modeled as an ordered 

list of vertices  and clips it against each of these planes in sequence. Vertices within the view 10 ,, −npp K
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volume are retained, and new vertices are created wherever a polygon edge intersects one of the clipping 

planes. The algorithm’s output is a new set of vertices  that represents the clipped polygon. 10 ,, −mqq K

S

We can best see how the algorithm works by first examining how it clips a polygon against a single 

plane. It considers the vertices  one vertex at a time, beginning with . Each vertex  is 

considered to be the end vertex E of an edge of the polygon; the start vertex S is the preceding vertex . 

The algorithm may generate zero, one or two output vertices of the clipped polygon for each input vertex, 

depending on the relation of the edge to the clipping plane. 

10 ,, −npp K 0p ip

1−ip

The plane divides the view plane space into two regions: a “visible” region that contains the view 

volume and an “invisible” region. This leads to the four possibilities shown in Figure 4.16. First, the edge 

may have both vertices in the visible region (Fig 4.16a), in which case the end vertex E is output (the start 

vertex will have been previously output). (A vertex actually on the plane is assumed to be in the visible 

region.) Second, the edge may have both vertices in the invisible region (Fig. 4.16b), in which case no 

vertex is output. Third, the edge may leave the visible region (Fig. 4.16c), with only the start vertex in the 

visible region. In this case, the intersection I between the edge and the plane is determined and output as a 

vertex. Fourth, the edge may enter the visible region (Fig. 4.16d), with only the end vertex in the visible 

region. Here two vertices are output: the intersection I between the edge and the plane, followed by the end 

vertex E. 

S

E

E

 
Invisible region

Visible region

Figure 4.16a - Edge in visible region Figure 4.16b - Edge in invisible region 

S SEE
I I

 

Figure 4.16c - Edge leaving visible region Figure 4.16d - Edge entering visible region 
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Looking at Figure 4.17, we can follow the vertices of an arbitrary polygon intersected by a plane to see 

that this algorithm works with one exception: the edge from  to  is not considered. If it crosses the 

plane, we miss the final intersection vertex . 

4p 0p

3I

The solution is to save the first vertex  and “close” the polygon by examining the edge from  to 

 after all the input vertices have been considered. A final output vertex is generated only if the edge 

crosses the plane. (We could instead simply access  directly if the vertices are stored in an array. 

However, one of the primary advantages of the Sutherland-Hodgman algorithm is that it does not need 

intermediate storage for an indeterminate number of input or output vertices. All it needs to store for 

clipping against a plane is the first and previous vertices  and .) 

0p 1−np

0p

0p

0p 1−ip

p0

p4

p3

p2

p1

I0 I1
I2I3 Visible

Invisible

 
Figure 4.17 - Clipping a polygon against a single plane 

Expressed in pseudocode, the above becomes: 

static F   // First vertex 
static S   // Start vertex 
BOOL fflag   // First vertex seen flag 

PolyClip(polygon, plane) // Clip entire polygon 
fflag = FALSE 
FOR each vertex  ip
  Clip( , plane) ip
ENDFOR 
Close(plane)   // Close polygon 

Clip(E, plane)  // Clip polygon edge 
IF (fflag == FALSE) 
  F =  E 
  fflag = TRUE 
ELSE IF (edge SE intersects plane) 
  I = Intersect(S, E, plane) 
  Output(I) 
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ENDIF 
IF (E in visible region) 
  Output(E) 
ENDIF 
S = E 

Close(plane)   // Close polygon 
IF (fflag == TRUE) 
  IF (edge SF intersects plane) 
    I = Intersect(S, F, plane) 
    Output(I) 
  ENDIF 
ENDIF 

Figure 4.18 - Sutherland-Hodgman algorithm (single plane) 

where polygon is an ordered list of vertices , plane describes the clipping plane, Intersect 

computes the intersection of the polygon edge and the plane, and Output generates an output vertex that is 

placed in an output vertex array. 

10 ,, −npp K

4.8.2 Clipping Plane Intersections 

To determine the intersection of a polygon edge and an arbitrary plane, we first need to describe both 

objects mathematically. Given an edge with start vertex S and end vertex E, we can define the vector 

. The parametric equation of the polygon edge is then: SE −=r

( ) r∗+= tStp  (4.25) 

where 0  is the parameter that describes the set of points 1≤≤ t ( )tp  between S and E. For example, if 

,  and { }0,2,1=S { }1,3,2−=E 7.0=t , then the point ( )7.0p  has the co-ordinates 

. { }7.,1.1− 0,7.2

We can similarly define an arbitrary plane (shown in cross-section in Figure 4.19) using the equation: 

dznynxn zyx =++  (4.26) 

where the coefficients n ,  and  are the co-ordinates of the plane normal n and d is the distance from 

the origin to the nearest point on the plane. Expressed in vector notation, this gives us the point normal 

equation of a plane: 

x yn zn

d=⋅pn  (4.27) 

where p is the bound vector from the origin to any point p on the plane. 
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We adopt the convention that the visible region of the plane contains the plane normal n. An arbitrary 

vertex p represented by the bound vector p from the origin to the vertex is then: 

1. in the visible region if n . d>⋅p

2. on the plane (and in the visible region) if d=⋅pn . 

3. in the invisible region if . d<⋅pn

For example, given a plane with normal { }3,1,2 −=n  and distance 3=d , its point normal equation 

is { } . The vertex { 3,,3,1,2 =⋅− zyx } { }1,5,2 −=p  is in the invisible region, since 4−=⋅pn .  

n

d

x

y

p

Plane

 
Figure 4.19 - Determining the equation of a plane 

A polygon edge intersects a plane only if its start and end vertices S and E are on opposite sides. If we 

substitute Equation 4.25 into Equation 4.26, we get: 

( ) ( ) ( ) dtrSntrSntrSn zzzyyyxxx =∗+∗+∗+∗+∗+∗  (4.28) 

Rearranging terms to solve for t gives us: 

( )
zzyyxx

zzyyxx

rnrnrn
SnSnSnd

t
∗+∗+∗

∗+∗+∗−
=  (4.29) 

Expressed in vector notation, this becomes: 

rn
Sn

⋅
⋅−

=
dt  (4.30) 

where S is the vector from the origin to vertex S and SE −=r . Substituting t into Equation 4.25 gives us 

the co-ordinates of the intersection point. For example, suppose we have a plane with normal 

 and distance . The polygon edge described by the vertices S  and 

 intersects the plane at the point 

{ 3,1,2 −=n

{ 3,7,4=E

}

}

3=d { }1,5,2 −=

{ }1,6,3=I . 
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4.8.3 Clipping Against Multiple Planes 

Another advantage of the Sutherland-Hodgman algorithm is the ease with which it can be extended to 

clip against multiple planes. We could of course clip against each of our six view volume clipping planes 

in sequence, saving the intermediate polygon as an ordered list of vertices  at each stage. 

However, the Sutherland-Hodgman algorithm allows a more elegant approach. Apart from the Intersect 

function, the code is identical for each plane. We can make the Clip function reentrant by defining separate 

static F and S vertices for each plane. More importantly, we can modify Output such that it recursively 

calls Clip for the current vertex and the next plane. In other words, the next clipping stage can begin as 

soon as the current stage finds an acceptable vertex. This approach is often used to advantage in hardware 

graphics accelerators, where the vertices can be processed in a “pipeline” without the need for intermediate 

storage of the output vertices. 

10 ,, −mqq K

The revised algorithm for clipping against m multiple planes becomes: 

static F[m]   // First vertices array 
static S[m]   // Start vertices array 
static fflag[m]  // First vertex seen flags array 

PolyClip(polygon)  // Clip polygon 
FOR each plane 
  fflag[plane] = FALSE 
ENDFOR 
FOR each vertex  ip
  Clip( , first_plane) ip
ENDFOR 
Close(first_plane) 

Clip(E, plane)  // Clip polygon against plane 
IF (fflag[plane] == FALSE) 
  F[plane] =  E 
  fflag[plane] = TRUE 
ELSE 
  S = S[plane] 
  IF (edge SE intersects plane) 
    I = Intersect(S, E, plane) 
    Output(I, plane) 
  ENDIF 
ENDIF 
IF (E in visible region) 
  Output(E, plane) 
ENDIF 
S[plane] = E 

Output(vertex, plane)  // Output vertex 
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IF (no more planes) 
  Put(vertex) 
ELSE 
  Clip(vertex, next_plane) 
ENDIF 

Close(plane)   // Close polygon 
IF (fflag[plane] == TRUE) 
  S = S[plane] 
  F = F[plane] 
  IF (edge SF intersects plane) 
    I = Intersect(S, F, plane) 
    Output(I, plane) 
  ENDIF 
  IF (more planes) 
    Close(next_plane) 
  ENDIF 
ENDIF 

Figure 4.20 - Recursive Sutherland-Hodgman algorithm (multiple planes) 

where the function Put generates the output vertex. The additional logic in Close is needed to ensure that 

the first vertex for the current plane is valid. 

4.8.4 Clipping a Polygon - An Example 

The behavior of the Sutherland-Hodgman algorithm is quite subtle. Even the authors (Sutherland and 

Hodgman [1974]) admitted that “We are somewhat chagrined that the obvious extension of work on line 

clipping with which we have been involved kept us so long from seeing the simplicity of the present 

approach.” With this in mind, it may help to see the algorithm in action where a polygon is being clipped 

against a rectangle in two dimensions (Fig. 4.21). 
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Figure 4.21 - Clipping a polygon against a rectangle 
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Ordering the four clipping planes as Left, Right, Top and Bottom, the algorithm proceeds as follows: 

Clip(P0, Left)   // Clip P0 
  first[Left] = P0 
  Clip(P0, Right) 
    first[Right] = P0 
    Clip(P0, Top) 
      first[Top] = P0 
      Clip(P0, Bottom) 
        first[Bottom] = P0 
        Output(P0)  // Output P0 
        S[Bottom] = P0 
      S[Top] = P0 
    S[Right] = P0 
  S[Left] = P0 
Clip(P1, Left)   // Clip P1 
  Clip(P1, Right) 
    Clip(I0, Top) 
      Clip(I0, Bottom) 
        Output(I0)  // Output I0 
        S[Bottom] = I0 
      S[Top] = I0 
    S[Right] = P1 
  S[Left] = P1 
Clip(P2, Left)   // Clip P2 
  Clip(P2, Right) 
    S[Right] = P2 
  S[Left] = P2 
Clip(P3, Left)   // Clip P3 
  Clip(P3, Right) 
    Clip(I1, Top) 
      Clip(I2, Bottom) 
        Output(I2)  // Output I2 
        S[Bottom] = I2 
      S[Top] = I1 
    Clip(P3, Top) 
      S[Top] = P3 
    S[Right] = P3 
  S[Left] = P3 
Close(Left)   // Close left plane 
  Close(Right)   // Close left plane 
    Close(Top)   // Close top plane 
      Clip(I3, Bottom) 
      Output(I3)  // Output I3 
      S[Bottom] = I3 
    Close(Bottom)  // Close bottom plane 

Figure 4.22 - Sutherland-Hodgman algorithm execution example 

4.8.5 Clipping in Homogeneous Co-ordinate Space 

We have to be careful when applying the Sutherland-Hodgman polygon clipper to our view volume. 

Suppose we have a viewing system with view distance 3−=d  and a polygon vertex p with view space co-

ordinates {  before perspective transformation. From Equation 4.13, its fourth homogeneous }4,0,0 −
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co-ordinate is 31−=w

nzn wz ++

, and so  after perspective division. This implies that the vertex is behind 

the view plane, which is clearly wrong. The vertex is behind our eye position! 

12=np

zn n

xn yn

The problem is that perspective division eliminates the sign of the vertex’s n-axis co-ordinate. The only 

solution is to perform our polygon clipping before perspective division. In other words, we need to clip in 

four (homogeneous) dimensions. 

Clipping in four homogeneous dimensions is not as difficult as you might think. To begin with, 

remember that we divide the first three homogeneous co-ordinates x, y and z by the fourth co-ordinate w to 

obtain the transformed view space co-ordinates. Thus, our clipping plane limits in homogeneous co-

ordinate space are: 

wz
wy
wx

≤≤
≤≤
≤≤

0
0
0

 (4.31) 

The fourth homogeneous dimension w is no different from the first three dimensions. Similarly, aside 

from the additional co-ordinate, there is no difference between a 3-D and a 4-D vector. Allowing for the 

additional co-ordinate, we can perform the same vector operations, including determining length, 

normalization and multiplication by a scalar value. We can also add or subtract two 4-D vectors and 

determine their dot product. 

Following Equation 4.26, the point normal equation of a 4-D plane is: 

dwynxn yx =+  (4.32) 

where the coefficients n , ,  and  are the coefficients of the plane normal n and d is the distance 

from the origin to the nearest point on the plane. The clipping plane intersection calculations are identical 

to those presented in Equations 4.27 and 4.30. 

x yn w

The plane normal coefficients can be determined from the 4-D clipping plane limits of Equation 4.31. 

Consider the back clipping plane. Its 3-D point normal equation is 1=z , which makes it parallel to the x-y 

plane. Thus,  and  must both be zero, and so the plane normal must lie in the z-w plane (Fig. 4.23). 
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Figure 4.23 - Back clipping plane in homogeneous co-ordinates 

From Equation 4.13, we know that any clipping plane in 4-D homogeneous co-ordinates must intersect 

the w-axis. Thus, the back plane intercepts the origin in the z-w plane. Similarly, the 4-D plane must 

intersect its equivalent 3-D clipping plane for 1=w . Thus the line must intersect the point  in the z-

w plane, giving it a slope of +1. The clipping limits for the z-axis show that the plane normal in the z-w 

plane must point towards the w-axis for . Finally, the 4-D length of the vector must equal one. 

Therefore, the back plane normal must have homogeneous co-ordinates 

{ 1,1 }

0>w

{ }21,21,0,0 − . 

By applying similar arguments to the other five clipping planes, we can see that their 4-D homogeneous 

normals are: 

Front:  { }0,1,0,0

Back: { }21,21,0,0 −  
Left:  { }0,0,0,1

Right: { }21,0,0,21−  

Top: { }21,0,21,0 −  
Bottom:  { }0,0,1,0

While it may be difficult to imagine a clipping plane in four dimensions, polygon clipping in 4-D is not a 

problem. 

4.8.6 A 4-D Polygon Clipper Class 

We can implement the Sutherland-Hodgman algorithm within the framework of our viewing system 

using four new classes. First, we need a class to handle four dimensional homogeneous vectors: 
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// VECTOR4.H - 4-D Homogeneous Co-ordinates Vector Class 
 
#ifndef _VECTOR4_H 
#define _VECTOR4_H 
 
#include <math.h> 
#include "vector3.h" 
 
class ViewSys;  // Forward reference 
 
class Vector4 : public Space3   // 4-D vector 
{ 
  private: 
    float w;    // W-axis co-ordinate 
 
  public: 
    Vector4() : Space3() { }; 
 
    Vector4( double xval, double yval, double zval, double 
        wval ) : Space3( xval, yval, zval ) 
    { w = (float) wval; } 
 
    double GetW() { return w; } 
    void SetW( double wval ) { w = (float) wval; } 
 
    // Return vector length 
    double Length() 
    { return sqrt(x * x + y * y + z * z + w * w); } 
 
    // Normalize vector 
    Vector4 &Norm() 
    { 
      double len = Length(); 
 
      if (len < MIN_VALUE) 
        len = 1.0; 
 
      x /= (float) len; 
      y /= (float) len; 
      z /= (float) len; 
      w /= (float) len; 
 
      return *this; 
    } 
 
    // Multiply by scalar s 
    Vector4 &operator*=( double s ) 
    { 
      x *= (float) s; 
      y *= (float) s; 
      z *= (float) s; 
      w *= (float) s; 
       
      return *this; 
    } 
 
    // Add vector v2 to vector v1 
    friend Vector4 operator+( Vector4 &v1, Vector4 &v2 ) 
    { 
      Vector4 temp;     // Temporary 4-D vector 
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      temp.x = v1.x + v2.x; 
      temp.y = v1.y + v2.y; 
      temp.z = v1.z + v2.z; 
      temp.w = v1.w + v2.w; 
 
      return temp; 
    } 
 
    // Subtract vector v2 from vector v1 
    friend Vector4 operator-( Vector4 &v1, Vector4 &v2 ) 
    { 
      Vector4 temp;     // Temporary 4-D vector 
 
      temp.x = v1.x - v2.x; 
      temp.y = v1.y - v2.y; 
      temp.z = v1.z - v2.z; 
      temp.w = v1.w - v2.w; 
 
      return temp; 
    } 
 
    // Return dot product of vectors v1 and v2 
    friend double Dot( Vector4 &v1, Vector4 &v2 ) 
    { return (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + 
        v1.w * v2.w); } 
 
    // Premultiply point by projective matrix 
    void ProjTransform( Point3 &p, double (*ptm)[4] ) 
    { 
      x = (float) (ptm[0][0] * p.GetX() + ptm[0][1] * 
          p.GetY() + ptm[0][2] * p.GetZ() + ptm[0][3]); 
      y = (float) (ptm[1][0] * p.GetX() + ptm[1][1] * 
          p.GetY() + ptm[1][2] * p.GetZ() + ptm[1][3]); 
      z = (float) (ptm[2][0] * p.GetX() + ptm[2][1] * 
          p.GetY() + ptm[2][2] * p.GetZ() + ptm[2][3]); 
      w = (float) (ptm[3][0] * p.GetX() + ptm[3][1] * 
          p.GetY() + ptm[3][2] * p.GetZ() + ptm[3][3]); 
    } 
 
    // Premultiply vector by projective matrix 
    void ProjTransform( Vector3 &p, double (*ptm)[4] ) 
    { 
      x = (float) (ptm[0][0] * p.GetX() + ptm[0][1] * 
          p.GetY() + ptm[0][2] * p.GetZ() + ptm[0][3]); 
      y = (float) (ptm[1][0] * p.GetX() + ptm[1][1] * 
          p.GetY() + ptm[1][2] * p.GetZ() + ptm[1][3]); 
      z = (float) (ptm[2][0] * p.GetX() + ptm[2][1] * 
          p.GetY() + ptm[2][2] * p.GetZ() + ptm[2][3]); 
      w = (float) (ptm[3][0] * p.GetX() + ptm[3][1] * 
          p.GetY() + ptm[3][2] * p.GetZ() + ptm[3][3]); 
    } 
 
    // Perform perspective division on point 
    void Perspective( Point3 *pp ) 
    { 
      pp->SetX(x / w); 
      pp->SetY(y / w); 
      pp->SetZ(z / w); 
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    } 
 
    // Perform perspective division on vector 
    void Perspective( Vector3 *pp ) 
    { 
      pp->SetX(x / w); 
      pp->SetY(y / w); 
      pp->SetZ(z / w); 
    } 
}; 
 
#endif 

Listing 4.3 - VECTOR4.H 

Vector4 is essentially identical in form to Vector3. Not included in Vector3 are ProjTransform and 

Perspective. There are two versions of each function, one for 3-D points and the other for 3-D vectors. 

Ideally, these functions should be written using C++ templates. In practice, several major compiler vendors 

have yet to implement templates, and so they remain as written. 

Next, we need to represent polygon vertices in 4-D homogeneous co-ordinates. The following Vertex4 

class is not derived from Vertex3, since we no longer have a need to link polygons together into surfaces 

and instances. All we need are the vertex color and its homogeneous co-ordinates. Thus: 

// VERTEX4.H - 4-D Vertex Class 
 
#ifndef _VERTEX4_H 
#define _VERTEX4_H 
 
#include "patch3.h" 
#include "vector4.h" 
 
class Vertex4   // 4-D homogeneous co-ordinates vertex 
{ 
  private: 
    Spectra color;      // Color 
    Vector4 coord;      // 4-D homogeneous co-ordinates 
 
  public: 
    Spectra &GetColor() { return color; } 
    Vector4 &GetCoord() { return coord; } 
 
    void Set( Point3 &p, Spectra &c, double (*ptm)[4] ) 
    { 
      // Perform projective transformation 
      coord.ProjTransform(p, ptm); 
       
      color = c; 
    } 
 
    void Set( Vector4 &v, Spectra &c ) 
    { coord = v; color = c; } 
}; 
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#endif 

Listing 4.4 - VERTEX4.H 

The third class implements the pseudocode Put function and output vertex array discussed in Section 

4.8.3: 

// OUT_POLY.H - Output Polygon Class 
 
#ifndef _OUT_POLY_H 
#define _OUT_POLY_H 
 
#include "vertex4.h" 
 
// Maximum  number of output vertices 
static const int MaxOutVert = 10; 
 
class OutPolygon        // Output polygon 
{ 
  private: 
    class OutVertex     // Output vertex 
    { 
      private: 
        Spectra color;  // Color 
        Point3 posn;    // 3-D position 
 
      public: 
        Point3 &GetPosn() { return posn; } 
        Spectra &GetColor() { return color; } 
 
        void Set( Vertex4 &v ) 
        { 
          // Perform perspective division 
          v.GetCoord().Perspective(&posn); 
 
          color = v.GetColor(); 
        } 
    } 
    vertex[MaxOutVert];     // Output vertex array 
    int num_vert;           // Number of vertices 
 
    void AddVertex( Vertex4 &v ) 
    { vertex[num_vert++].Set(v); } 
    void Reset() { num_vert = 0; } 
 
    friend class ClipEdge; 
    friend class PolyClip4; 
 
  public: 
    OutPolygon() { num_vert = 0; } 
 
    int GetNumVert() { return num_vert; } 
    Point3 &GetVertexPosn( int i ) 
    { return vertex[i].GetPosn(); } 
    Spectra &GetVertexColor( int i ) 
    { return vertex[i].GetColor(); } 
}; 
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#endif 

Listing 4.5 - OUT_POLY.H 

Since an Element3 object represents either a triangular or quadrilateral polygon, the maximum number 

of output vertices resulting from clipping against six planes is ten. (To see why, imagine a diamond-shaped 

quadrilateral that has been clipped by the side planes into an octagon. Now, rotate this polygon horizontally 

about its center so that its top and bottom edges coincide with the boundaries of the front and back clipping 

planes with the top and bottom planes. A total of ten vertices will be generated. In general, the maximum 

number of vertices resulting from clipping a convex polgon against n planes will be .) 6+n

This determines the constant value MaxOut and the size of the nested class OutVertex array in 

OutPolygon. Only the friend classes ClipEdge and PolyClip4 (described below) are allowed to set the 

contents of this array. 

As was previously noted in Section 4.8.3, hardware graphics accelerators typically implement the 

Sutherland-Hodgman algorithm as a pipeline. Révész [1993] noted that each stage of this pipeline can be 

modeled in C++ as an object with the same member functions but different data for the clipping plane 

normals. The following ClipEdge class builds on this idea by linking together an array of six “edge-plane 

clipper” objects, where each object is responsible for clipping and closing a polygon against a single plane. 

This class embodies most of the pseudocode shown in Figure 4.20. 

Finally, we need an executive PolyClip4 class to translate Vertex3 objects into view space vertices and 

to clip and close the polygon. This class is also responsible for initializing the array of ClipEdge objects. 

This requires two source code files: 

// P_CLIP4.H - 4-D Polygon Clipper Class 
 
#ifndef _P_CLIP4_H 
#define _P_CLIP4_H 
 
#include "out_poly.h" 
 
enum Plane { Front, Back, Left, Right, Top, Bottom }; 
 
class ClipEdge              // Edge-plane clipper 
{ 
  private: 
    ClipEdge *pnext;        // Next clipper pointer 
    Vector4 normal;         // Plane normal 
    Vertex4 first;          // First vertex 
    Vertex4 start;          // Start vertex 
    BOOL first_inside;      // First vertex inside flag 
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    BOOL start_inside;      // Start vertex inside flag 
    BOOL first_flag;        // First vertex seen flag 
 
    BOOL IsInside( Vertex4 &v ) 
    { return (Dot(normal, v.GetCoord()) >= 0.0); } 
    Vertex4 Intersect( Vertex4 &, Vertex4 & ); 
    void Output( Vertex4 &, OutPolygon & ); 
 
  public: 
    ClipEdge() { first_flag = FALSE; } 
 
    void Add( ClipEdge *pc ) { pnext = pc; } 
    void Clip( Vertex4 &, OutPolygon & ); 
    void Close( OutPolygon & ); 
    void SetNormal( Vector4 &n ) { normal = n; } 
}; 
 
class PolyClip4             // 4-D polygon clipper 
{ 
  private: 
    int num_vert;           // Number of output vertices 
    ClipEdge clipper[6];    // Clipper array 
    ClipEdge *pclip;        // Clipper list head pointer 
 
  public: 
    PolyClip4(); 
 
    int Clip( Element3 *, OutPolygon &, double (*)[4] ); 
}; 
 
#endif 

Listing 4.6 - P_CLIP4.H 

and: 

// P_CLIP4.CPP - 4-D Polygon Clipper Class 
 
#include "p_clip4.h" 
 
PolyClip4::PolyClip4()  // PolyClip4 class constructor 
{ 
  Vector4 temp;     // Temporary vector 
 
  // Link edge-plane clippers 
  pclip = &(clipper[Front]); 
  clipper[Front].Add(&(clipper[Back])); 
  clipper[Back].Add(&(clipper[Left])); 
  clipper[Left].Add(&(clipper[Right])); 
  clipper[Right].Add(&(clipper[Top])); 
  clipper[Top].Add(&(clipper[Bottom])); 
  clipper[Bottom].Add(NULL); 
 
  // Set clipper plane normals 
 
  temp = Vector4(0.0, 0.0, 1.0, 0.0); 
  clipper[Front].SetNormal(temp.Norm()); 
 
  temp = Vector4(0.0, 0.0, -1.0, 1.0); 
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  clipper[Back].SetNormal(temp.Norm()); 
 
  temp = Vector4(1.0, 0.0, 0.0, 0.0); 
  clipper[Left].SetNormal(temp.Norm()); 
 
  temp = Vector4(-1.0, 0.0, 0.0, 1.0); 
  clipper[Right].SetNormal(temp.Norm()); 
 
  temp = Vector4(0.0, -1.0, 0.0, 1.0); 
  clipper[Top].SetNormal(temp.Norm()); 
 
  temp = Vector4(0.0, 1.0, 0.0, 0.0); 
  clipper[Bottom].SetNormal(temp.Norm()); 
} 
 
// Clip polygon 
int PolyClip4::Clip( Element3 *pelem, OutPolygon &out, 
    double (*ptm)[4] ) 
{ 
  int i;            // Loop index 
  int num_vert;     // Number of vertices 
  Vertex3 *pvert;   // 3-D world space vertex pointer 
  Vertex4 hv;       // 4-D homogeneous co-ord vertex 
 
  out.Reset();  // Reset output polygon 
 
  num_vert = pelem->GetNumVert(); 
  for (i = 0; i < num_vert; i++) 
  { 
    // Get world space vertex position pointer 
    pvert = pelem->GetVertexPtr(i); 
 
    // Set homogeneous co-ordinates vertex 
    hv.Set(pvert->GetPosn(), pvert->GetExitance(), ptm); 
 
    pclip->Clip(hv, out);       // Clip polygon edge 
  } 
 
  pclip->Close(out);    // Close polygon 
       
  return out.GetNumVert(); 
} 
 
// Output view space vertex 
void ClipEdge::Output( Vertex4 &v, OutPolygon &out ) 
{ 
  if (pnext != NULL)    // More planes ? 
    pnext->Clip(v, out); 
  else 
    out.AddVertex(v); 
} 
 
// Calculate intersection vertex 
Vertex4 ClipEdge::Intersect( Vertex4 &s, Vertex4 &e ) 
{ 
  double d, t;      // Temporary variables 
  Spectra color;    // Temporary color 
  Vector4 p, r;     // Temporary vectors 
  Vertex4 v;        // Temporary vertex 
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  // Calculate parameter 
  r = (e.GetCoord() - s.GetCoord()); 
  d = Dot(normal, r); 
 
  if (fabs(d) > MIN_VALUE) 
    t = -Dot(normal, s.GetCoord()) / d; 
  else 
    t = 1.0; 
 
  // Calculate intersection vertex co-ordinates 
  r *= t; 
  p = s.GetCoord() + r; 
       
  // Linearly interpolate vertex color 
  color = Blend(s.GetColor(), e.GetColor(), t); 
 
  v.Set(p, color); 
 
  return v; 
} 
 
// Clip polygon edge 
void ClipEdge::Clip( Vertex4 &current, OutPolygon &out ) 
{ 
  BOOL curr_inside;     // Current point inside flag 
  Vertex4 isect;        // Intersection vertex 
 
  // Determine vertex visibility 
  curr_inside = IsInside(current); 
 
  if (first_flag == FALSE)      // First vertex seen ? 
  { 
    first = current; 
    first_inside = curr_inside; 
    first_flag = TRUE; 
  } 
  else 
  { 
    // Does edge intersect plane ? 
    if (start_inside ^ curr_inside) 
    { 
      isect = Intersect(start, current); 
      Output(isect, out); 
    } 
  } 
 
  if (curr_inside == TRUE) 
    Output(current, out); 
 
  start = current; 
  start_inside = curr_inside; 
} 
 
// Close polygon 
void ClipEdge::Close( OutPolygon &out ) 
{ 
  Vertex4 isect;        // Intersection vertex 
 
  if (first_flag == TRUE) 
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  { 
    // Does edge intersect plane ? 
    if (start_inside ^ first_inside) 
    { 
      isect = Intersect(start, first); 
      Output(isect, out); 
    } 
 
    if (pnext != NULL)  // More planes ? 
      pnext->Close(out); 
 
    // Reset first vertex seen flag 
    first_flag = FALSE; 
  } 
} 

Listing 4.7 - P_CLIP4.CPP 

In clipping a polygon edge, we must remember that our polygons vertices have color attributes, and the 

color of a polygon may vary across its visible surface. ClipEdge::Intersect therefore linearly interpolates 

the intersection vertex color from the start and end vertex colors. This assumes that we will later linearly 

interpolate a polygon’s color across its surface (see Section 4.13). 

ClipEdge and PolyClip4 are a more or less straightforward implementation of the Sutherland-Hodgman 

algorithm. Readers interested in optimizing their code for speed should examine the C implementation 

presented in Heckbert [1990b]. It is production-quality code at its finest: fast, compact and well 

documented. 

4.9 Wireframe Displays 

We now have the tools to transform our polygons from world space to view space, perform a 

perspective transformation and to clip them to a view volume. Our next step is an intermediate but very 

satisfying one: to create a wireframe display of an environment. 

Most computer graphics environments offer at a minimum the ability to display polygons in outline. 

That is, given a polygon as an ordered list of vertices in 2-D screen space, we can usually call a C++ 

graphics library function that will display the polygon as a connected set of lines drawn between its 

vertices. By displaying each visible polygon in the view volume, we can create a wireframe display such as 

that shown in Figure 4.24. 

True, these images are somewhat less than photorealistic. On the other hand, wireframe displays can be 

generated very quickly. A highly complex environment may take several seconds to a minute or so to 
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render, but most of that time will be spent reading in the environment and entity files and clipping the 

polygons to the view volume. Since the same image may takes minutes to an hour or more to render using 

radiosity methods, the ability to preview it using a wireframe display is often invaluable.  

 

Figure 4.24 - A wireframe display 

Creating a wireframe view of an environment can be as simple as the following: 

Initialize display device 
FOR each instance 
  FOR each surface 
    FOR each polygon 
      Perform backface culling 
      IF polygon is visible 
        Clip polygon to view volume 
        Convert polygon vertices to screen space co-ordinates 
        Draw 2-D polygon 
     ENDIF 
    ENDFOR 
  ENDFOR 
ENDFOR 

Figure 4.25 - Wireframe display pseudocode 

where the C++ graphics library function needed to draw the 2-D polygon is compiler-dependent. We also 

need to remember that the output polygon vertices generated by PolyClip4::Clip are in the normalized 

device co-ordinates of our canonical view volume, and to use Equation 4.18 to convert them into screen 

space co-ordinates. 

While we have discussed screen space co-ordinates in terms of a video monitor, we can of course draw 

polygons with a laser printer, a pen plotter, a photographic film recorder or (being somewhat ambitious 

here) a video recorder to capture animated sequences of images. Regardless of which device we choose, it 
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is a safe bet that it will require a unique set of initialization and polygon draw commands. There is no 

remedy for this; drawing directly to the display device is an inherently device-specific task. 

GUI-based environments such as Microsoft Windows are more forgiving. MS-Windows in particular is 

designed to work with a wide variety of video display adapters, monitors and other display devices. With 

this in mind, we shall temporarily abandon our device-independent approach and develop a wireframe 

display capability for MS-Windows, followed by a discussion of how to emulate it in other GUI 

environments. 

4.10 Graphics Metafiles 

Since MS-Windows is a GUI-based environment, we shall want to draw our wireframe display inside a 

window. This means that the size of the “screen” we are drawing to is not fixed in terms of pixels or scan 

lines, since the user can resize it at any time. We can either display a portion of the wireframe display in a 

small window or redraw it each time according to the window’s size. Redrawing is a more useful approach, 

since we can shrink a window to any size and still see the entire image. 

The key to redrawing complex wireframe displays at interactive rates is the graphics metafile. Many 

graphics programming environments support this feature (also known as display files or display lists). They 

are used to temporarily or permanently store drawing instructions such as “draw polygon”. You can open a 

metafile either in memory or on disk and write any number of draw instructions to it to build an image, one 

instruction at a time. When you are finished, you close the file and store a metafile “handle” for it. This 

allows you to later display the entire image by requesting the Windows manager to “play” the file. Finally, 

you can delete the metafile when you no longer need its image. 

The advantage of metafiles over writing directly to the display device is that while an image may take 

the same amount of time to build, it can be redisplayed at any time with minimal delay. They also conserve 

system resources–a metafile typically occupies far less memory or disk space than an equivalent bitmap 

file. 

The MS-Windows API (Applications Programming Interface) supports metafiles, but only as a loose 

collection of C-callable functions. They can be encapsulated in a reasonably robust C++ class as follows: 

// WIN_META.H - MS-Windows Metafile Class 
 
#ifndef _WIN_META_H 
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#define _WIN_META_H 
 
#include <windows.h> 
#include <stdio.h> 
 
class WinMetaFile       // MS-Windows metafile 
{ 
  private: 
    char file_name[144];        // File name 
    BOOL file_flag;             // File name flag 
    HDC hmdc;                   // Device context handle 
    HMETAFILE hmf;              // Metafile handle 
 
  public: 
    WinMetaFile() 
    { 
      *file_name = '\0'; 
      file_flag = FALSE; 
      hmdc = NULL; 
      hmf = NULL; 
    } 
 
    ~WinMetaFile() { Erase(); } 
 
    void Erase()        // Erase metafile 
    { 
      Stop();   // Stop recording 
 
      if (hmf != NULL) 
      { 
        DeleteMetaFile(hmf);    // Delete metafile handle 
        hmf = NULL; 
      } 
 
      if (file_flag == TRUE) 
      { 
        unlink(file_name);      // Remove metafile 
        file_flag = FALSE; 
      } 
    } 
 
    // Play metafile to display device 
    void Play( HWND hwnd, int win_w, int win_h, int view_w, 
        int view_h ) 
    { 
      HDC hdc;          // Device context handle 
      PAINTSTRUCT ps;   // Paint structure 
 
      if (hmf != NULL) 
      { 
        hdc = BeginPaint(hwnd, &ps); 
 
        // Initialize window-to-viewport mapping mode 
        SetMapMode(hdc, MM_ISOTROPIC); 
        SetWindowExtEx(hdc, win_w, win_h, NULL); 
        SetViewportExtEx(hdc, view_w, -view_h, NULL); 
        SetViewportOrgEx(hdc, 0, view_h, NULL); 
 
        PlayMetaFile(hdc, hmf); 
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        EndPaint(hwnd, &ps); 
      } 
    } 
     
   // Add polygon draw instruction to metafile 
    BOOL Polygon( POINT *vertex, int num ) 
    { return ::Polygon(hmdc, vertex, num); } 
 
    BOOL Record( char *fname )  // Start metafile recording 
    { 
      Erase();          // Erase previous metafile 
 
      if (fname != NULL) 
      { 
        // Save metafile file name 
        lstrcpy(file_name, fname); 
        file_flag = TRUE; 
         
        // Create file-based metafile 
        if ((hmdc = CreateMetaFile(fname)) == NULL) 
          return FALSE; 
      } 
      else 
      { 
        // Create memory-based metafile 
        if ((hmdc = CreateMetaFile(NULL)) == NULL) 
          return FALSE; 
      } 
 
      // Select transparent brush for polygon fill 
      SelectObject(hmdc, GetStockObject(NULL_BRUSH));  
 
      return TRUE; 
    } 
 
    BOOL Stop()         // Stop metafile recording 
    { 
      if (hmdc != NULL) 
      { 
        hmf = CloseMetaFile(hmdc); 
        hmdc = NULL; 
      } 
      return (hmf != NULL) ? TRUE : FALSE; 
    } 
}; 
 
#endif 

Listing 4.8 - WIN_META.H 

As you may have noticed, WinMetaFile models a videocassette recorder. You call Record to begin 

recording an image. Polygons are written to the metafile by calling (what else?) Polygon. Note the global 

scope specifier used in the body of this function. Since Polygon is also the name of the MS-Windows API 
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function, it has to be called as ::Polygon to avoid an infinite loop. Calling Stop closes the metafile, while 

Play displays it in a window indicated by the parameter hwnd. Finally, Erase deletes the metafile. 

It should not be too difficult to port WinMetaFile to another GUI environment. Its member functions 

are almost completely generic, and the MS-Windows API functions are mostly self-explanatory. The 

exception is Play, where BeginPaint initializes the window for drawing and EndPaint requests the 

Windows manager to update its display. The functions SetMapMode, SetWindowExt, SetViewPort and 

SetWindowOrg are responsible for telling the Windows manager how to position and scale the logical 

(screen space) co-ordinates of the wireframe display in the physical co-ordinates of the window. 

At worst, you may have to roll your own metafile support for your target environment. All you need is 

a “draw polygon” primitive, which is presumably available from your C++ compiler’s graphics library. 

The metafile can be a block of memory or a binary file that you fill with polygon records having a structure 

similar to: 

Number of vertices 
Vertex 0 : { float x, float y } 
Vertex 1 : { float x, float y } 
  … 
Vertex n : { float x, float y } 

where each vertex field contains its floating point x-y co-ordinates. The number of vertex fields in each 

polygon record is variable, depending on the value of the leading “number of vertices” field. 

These records can be written to the metafile using sprintf or fprintf as required. To play the file back, 

read each record using sscanf (or fscanf) and pass the retrieved values as parameters to your “draw 

polygon” function. 

So where is the wireframe display? Unfortunately, we need more than WIN_META.H to display an 

image in an MS-Windows application. After all, displaying “Hello, World” in MS-Windows usually 

requires some 200 lines of C source code (e.g., Petzold [1992]). Rather than introducing C and C++ source 

code for a full-blown application at this point, we should continue on with the device-independent aspects 

of our “minimal” viewing system. 
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4.11 Bitmap File Formats 

Going from a wireframe display to a photorealistic image takes less work than you might think. 

However, displaying these images requires a bitmapped display. Our device-independent approach 

therefore takes another detour into the intricacies of bitmap file formats. 

BMP, PCX, TARGA, TIFF, JPEG … there are innumerable formats to choose from, and a number of 

excellent books and technical publications which describe them. Our concern being radiosity, we will not 

dwell on their relative merits and peculiarities. Instead, we will simply choose one of the simplest: 

Microsoft Window’s BMP. 

Yes, BMP is specific to the Microsoft Windows 3.x and NT environments. If we were to choose a more 

platform-independent format, TARGA would be the likely choice. However, the 24-bit RGB version of 

BMP is very simple, which makes it highly portable across environments. 

Photorealistic images usually require a 24-bit (16.7 million color) RGB color display to do them full 

justice. You can display them using an 8-bit (256 color) display by carefully optimizing the color palette, 

but the results will not always be satisfactory. Furthermore, you have to generate a 24-bit bitmap first in 

order to determine the color gamut and select the 256 colors which best represent it for an 8-bit display. 

There are several techniques for color palette optimization, including the popularity and median cut 

algorithms (Heckbert [1982]) and octree quantization (Gervautz and Purgathofer [1990]). The latter 

technique requires the least amount of memory while still producing good quality images. 

As of this writing, most desktop PCs support 8-bit rather than 24-bit color displays. Accordingly, the 

diskette accompanying this book includes a standalone utility for generating 8-bit BMP files with 

optimized color palettes (using octree quantization) from 24-bit BMP files. 

That said, we will design our viewing system to generate 24-bit BMP files. They require more memory 

and disk space than do 8-bit BMP files, but their quality is unsurpassed. 

4.11.1 DIB - The Device-Independent Bitmap 

BMP is actually the file extension used to identify MS-Windows device-independent bitmap files, 

otherwise known as DIB files. While aficionados of other GUIs may dispute the moniker, it certainly 
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applies within the MS-Windows environment. A 24-bit color DIB can be displayed on any 24-bit color 

display device that MS-Windows supports. 

Unlike some file formats such as JPEG, 24-bit DIBs are not compressed. The bitmap is a 2-D array of 

RGB triples, as in: 

struct DIB_RGB // DIB bitmap RGB triple 
{ 
  BYTE blue; 
  BYTE green; 
  BYTE red; 
}; 

Note carefully that this data structure reverses the normal R-G-B order of the three members. 

A 24-bit DIB file consists of a file header (BITMAPFILEHEADER), a bitmap information header 

(BITMAPINFOHEADER), an optional dummy palette (RGBQUAD) and the bitmap array. It has the same 

representation in memory, except that the file header is removed. This simple representation make it easy 

to both generate DIB files and to convert them to other file formats. 

There is one minor complication. The 80x86 CPU architecture segments memory into 64K blocks. 

While an array can be larger than 64K, no element of the array can span a 64K block boundary (at least for 

16-bit operating systems such as MS-DOS, which underlays Windows 3.1). Each scan line in the bitmap 

array must therefore be padded to a multiple of 4 bytes. For example, a bitmap that measures 498 pixels 

across requires 1494 bytes of space, but the bitmap row width must be 1496 bytes. 

So, assuming once again that our target environment is MS-Windows, we have the following bitmap 

class: 

// WIN_BMAP.H - MS-Windows Bitmap Class 
 
#ifndef _WIN_BMAP_H 
#define _WIN_BMAP_H 
 
#include <windows.h> 
#include <stdio.h> 
#include "color.h" 
 
// __huge data type is undefined for Win32 
#ifdef WIN32 
#define __huge 
#endif 
 
// Round number upwards to next multiple of four 
#define WIDTHBYTES(i)   (((i + 3) / 4) * 4) 
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// Number of bytes per pixel (24-bit RGB) 
static const int BytesPerPixel = 3; 
 
// File write block size 
static const WORD MaxWrite = 0x8000; 
 
class WinBitmap     // Device-independent bitmap (DIB) 
{ 
  private: 
    int height;                 // Bitmap height 
    int width;                  // Bitmap width 
    BITMAPFILEHEADER bm_file;   // DIB file header 
    BITMAPINFO bm_info;         // DIB information 
    BYTE __huge *pbm;           // DIB bitmap pointer 
    DWORD bm_size;              // Padded bitmap size 
    DWORD bm_width;             // Padded bitmap width 
    HANDLE hdib;                // DIB bitmap handle 
    HBITMAP hddb;               // DDB bitmap handle 
 
    BOOL AllocBitmap(); 
    BOOL WriteBitmap( int ); 
    void FreeBitmap(); 
 
  public: 
    WinBitmap() 
    { 
      bm_file.bfType = 0x4d42;  // 'BM' signature 
      bm_file.bfSize = 0L; 
      bm_file.bfReserved1 = 0; 
      bm_file.bfReserved2 = 0; 
      bm_file.bfOffBits = (DWORD) (sizeof(BITMAPFILEHEADER) 
          + sizeof(BITMAPINFOHEADER) + sizeof(RGBQUAD)); 
 
      bm_info.bmiHeader.biSize = (DWORD) 
          sizeof(BITMAPINFOHEADER); 
      bm_info.bmiHeader.biWidth = 0L; 
      bm_info.bmiHeader.biHeight = 0L; 
      bm_info.bmiHeader.biPlanes = 1; 
      bm_info.bmiHeader.biBitCount = 24; 
      bm_info.bmiHeader.biCompression = BI_RGB; 
      bm_info.bmiHeader.biSizeImage = 0L; 
      bm_info.bmiHeader.biXPelsPerMeter = 0L; 
      bm_info.bmiHeader.biYPelsPerMeter = 0L; 
      bm_info.bmiHeader.biClrUsed = 0L; 
      bm_info.bmiHeader.biClrImportant = 0L; 
 
      bm_info.bmiColors[0].rgbBlue = 0; 
      bm_info.bmiColors[0].rgbGreen = 0; 
      bm_info.bmiColors[0].rgbRed = 0; 
      bm_info.bmiColors[0].rgbReserved = 0; 
 
      pbm = NULL; 
      hdib = NULL; 
      hddb = NULL; 
      width = height = 0; 
    } 
 
    ~WinBitmap() { FreeBitmap(); } 
 
    BOOL Display( HDC, POINT &, RECT & ); 
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    BOOL Open( int, int ); 
    BOOL Write( char * ); 
    int GetHeight() { return height; } 
    int GetWidth() { return width; } 
    void Close(); 
    void GetPixel( int, int, ColorRGB * ); 
    void SetPixel( int, int, ColorRGB & ); 
}; 
 
#endif 

Listing 4.9 - WIN_BMAP.H 

The details of the MS-Windows API structures used in this class are not important, as long as they 

work. If you need to write an equivalent class for another bitmap file format, you can ignore them 

altogether. As you can see, the WinBitmap function prototypes are almost completely generic. (The HDC 

data type in Display is a handle to a data structure describing the display device, while POINT and RECT 

describe the co-ordinates of a rectangle within the display window.) Their internal details, on the other 

hand, are somewhat less so: 

// WIN_BMAP.CPP - MS-Windows Bitmap Class 
 
#include "win_bmap.h" 
 
// Open device-independent bitmap 
BOOL WinBitmap::Open( int w, int h ) 
{ 
  FreeBitmap();         // Release current bitmap (if any) 
  width = w; 
  height = h; 
  return AllocBitmap();         // Allocate new bitmap 
} 
 
// Display the bitmap 
BOOL WinBitmap::Display( HDC hdc, POINT &pos, RECT &rect ) 
{ 
  BOOL status = FALSE;  // Return status 
  HBITMAP holddb;       // Previous DDB bitmap handle 
  HDC hmemdc;           // Memory device context handle 
   
  if (hddb == NULL) 
  { 
    // Convert DIB to device-dependent bitmap 
    if ((hddb = CreateDIBitmap(hdc, &(bm_info.bmiHeader), 
        CBM_INIT, (LPSTR) pbm, &bm_info, DIB_RGB_COLORS)) == 
        NULL) 
      return FALSE; 
  } 
 
  // Create memory device context 
  if ((hmemdc = CreateCompatibleDC(hdc)) != NULL) 
  { 
    // Select bitmap 
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    if ((holddb = SelectObject(hmemdc, hddb)) != NULL) 
    { 
      // Copy bitmap from memory to display device 
      BitBlt(hdc, rect.left, rect.top, rect.right, 
          rect.bottom, hmemdc, pos.x, pos.y, SRCCOPY); 
 
      // Select previous bitmap 
      SelectObject(hmemdc, holddb); 
 
      status = TRUE; 
    } 
 
    // Delete memory device context 
    DeleteDC(hmemdc); 
  } 
  return status; 
} 
 
// Write bitmap to file 
BOOL WinBitmap::WriteBitmap( int hfile ) 
{ 
  DWORD remain = bm_size;       // Bytes remaining 
  BYTE __huge *pbuff = pbm;     // Buffer pointer 
 
  // Write buffer to file in blocks 
  while (remain > (DWORD) MaxWrite) 
  { 
    if (_lwrite(hfile, pbuff, MaxWrite) != MaxWrite) 
      return FALSE; 
    remain -= MaxWrite; 
    pbuff += MaxWrite; 
  } 
 
  // Write last block to file 
  if ((DWORD) _lwrite(hfile, pbuff, (WORD) remain) == 
      remain) 
    return TRUE; 
  else 
    return FALSE; 
} 
 
// Close device-independent bitmap 
void WinBitmap::Close() 
{ 
  FreeBitmap(); 
  width = height = 0; 
} 
 
// Allocate bitmap from global heap 
BOOL WinBitmap::AllocBitmap() 
{ 
  bm_info.bmiHeader.biWidth = (LONG) width; 
  bm_info.bmiHeader.biHeight = (LONG) height; 
 
  // Bitmap width must be multiple of DWORD (4 bytes) to 
  // avoid segmentation arithmetic problems with __huge 
  // pointers on 80x86 CPU 
  bm_width = (DWORD) WIDTHBYTES(width * BytesPerPixel); 
 
  bm_size = bm_width * bm_info.bmiHeader.biHeight; 
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  bm_file.bfSize = (DWORD) (bm_file.bfOffBits + bm_size); 
 
  // Allocate global memory for bitmap 
  if ((hdib = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT, 
      bm_size)) != NULL) 
  { 
    // Lock bitmap memory 
    pbm = (BYTE __huge *) GlobalLock(hdib); 
    return TRUE; 
  } 
  else 
    return FALSE; 
} 
 
// Read 24-bit RGB pixel from bitmap 
void WinBitmap::GetPixel( int x, int y, ColorRGB *pc ) 
{ 
  BYTE __huge *ppixel;  // Pixel pointer 
 
  // Get pixel pointer 
  ppixel = pbm + (y * bm_width) + (x * BytesPerPixel); 
 
  // Set pixel colors (NOTE REVERSED ORDER!) 
  pc->SetBlue(ppixel[0]); 
  pc->SetGreen(ppixel[1]); 
  pc->SetRed(ppixel[2]); 
} 
 
// Write 24-bit RGB pixel to bitmap (NOTE REVERSED ORDER!) 
void WinBitmap::SetPixel( int x, int y, ColorRGB &c ) 
{ 
  BYTE __huge *ppixel;  // Pixel pointer 
 
  ppixel = pbm + (y * bm_width) + (x * BytesPerPixel); 
  ppixel[0] = c.GetBlue(); 
  ppixel[1] = c.GetGreen(); 
  ppixel[2] = c.GetRed(); 
} 
 
// Write DIB as MS-Windows BMP file 
BOOL WinBitmap::Write( char *fname ) 
{ 
  HFILE hfile;  // File handle 
 
  if (pbm == NULL)      // Check for existing bitmap 
    return FALSE; 
 
  // Open the file 
  if ((hfile = _lcreat(fname, 0)) == HFILE_ERROR) 
    return FALSE; 
 
  // Write the file header (member-by-member to avoid 
  // structure alignment problems with Win32) 
  _lwrite(hfile, (LPSTR) &(bm_file.bfType), 
      sizeof(bm_file.bfType)); 
  _lwrite(hfile, (LPSTR) &(bm_file.bfSize), 
      sizeof(bm_file.bfSize)); 
  _lwrite(hfile, (LPSTR) &(bm_file.bfReserved1), 
      sizeof(bm_file.bfReserved1)); 
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  _lwrite(hfile, (LPSTR) &(bm_file.bfReserved2), 
      sizeof(bm_file.bfReserved2)); 
  _lwrite(hfile, (LPSTR) &(bm_file.bfOffBits), 
      sizeof(bm_file.bfOffBits)); 
 
  // Write the information header 
  _lwrite(hfile, (LPSTR) &(bm_info.bmiHeader), 
      sizeof(BITMAPINFOHEADER)); 
 
  // Write the dummy palette 
  _lwrite(hfile, (LPSTR) &(bm_info.bmiColors), 
      sizeof(RGBQUAD)); 
 
  WriteBitmap(hfile);   // Write the bitmap 
  _lclose(hfile);       // Close the file 
 
  return TRUE; 
} 
 
void WinBitmap::FreeBitmap() 
{ 
  if (hdib != NULL)     // Release DIB memory 
  { 
    GlobalUnlock(hdib); 
    GlobalFree(hdib); 
    pbm = NULL; 
    hdib = NULL; 
  } 
 
  if (hddb != NULL)     // Release DDB memory 
  { 
    DeleteObject(hddb); 
    hddb = NULL; 
  } 
 
  width = height = 0; 
} 

Listing 4.10 - WIN_BMAP.CPP 

While WinBitmap is obviously tailored to MS-Windows, you can easily create a similar class for other 

environments. The _lopen, _lwrite and _lclose functions are equivalent to the unbuffered creat, open, write 

and close functions available in K&R and most UNIX C compilers (but not Standard C). If you are not 

fettered with 80x86 segmented architecture restrictions, you can replace them with fopen, fwrite and fclose. 

Similarly, GlobalAlloc, GlobalLock, GlobalUnlock and GlobalFree can be replaced with new and delete. 

MS-Windows cannot display a device-independent bitmap (DIB) directly. Instead, Display has to 

convert the DIB to a device-dependent bitmap (DDB) by calling CreateDIBitmap. This bitmap is 

compatible with the current display device, but it first has to be linked to a “memory device context” by 
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calling CreateCompatibleDC before it can be “bit-blitted” to the display window. Both the DIB and DDB 

are kept in memory to allow the bitmapped image to be displayed or written to a file at any time. 

If you need to port Display to another environment, you will likely find that it has similar functions. If 

not, you will have to find some other way of displaying the DIB. Fortunately, this should not be too 

difficult–a 24-bit RGB bitmap is probably the lowest common denominator of all bitmap file formats. 

That’s about it for device-dependent code. WinBitmap allows us to allocate memory for a bitmap using 

Open, set individual pixels with SetPixel, create a DIB (BMP) file using Write, and release the bitmap 

memory with Close when we are done. We can now look at what we why we need a bitmap class in the 

first place. 

4.12 Filling Polygons 

Taking another step towards our goal of photorealistic images, we now consider how to draw a filled 

polygon to an arbitrary bitmap. Surely this is a trivial problem! After all, all we want to do is to draw a 

polygon outline and then fill its interior with pixels of whatever color we choose. Most graphics libraries 

include this as a option with their draw_polygon or equivalent function. 

On closer inspection though, it becomes evident that we have to be careful. While filling an isolated 

polygon is not all that difficult, we need to ensure that adjacent polygons will always be drawn such that 

there are no overlapping or missing pixels along their shared edges. Figure 4.26 shows a filled polygon as a 

graphics library function might display it on a video monitor. However, the edge pixels of this polygon 

would overlap with those of any adjacent polygons. 

0

8

8  
Figure 4.26 - Filling polygons - a naive approach 
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We can avoid this problem by adopting some rigid rules regarding the plotting of edges and vertices. 

Recalling Section 4.4, we convert from view space to screen space co-ordinates by truncating the floating 

point view space values. A pixel with integer screen space co-ordinates { }yx,  therefore has continuous co-

ordinates 






 ++

2
1,

2
1 yx , and can represent any pair of view space co-ordinates ranging from x to 1+x  

along the x-axis and y to  along the y-axis. Based on this, we can avoid overlapping and missing 

pixels if we: 

1+y

1. Ignore horizontal edges. 

2. Plot a polygon that extends from scan line co-ordinates  to  as scan lines  to miny maxy miny 1max −y . 

3. Plot a scan line segment that extends from pixel co-ordinates  to  as pixels  to 

. 

minx maxx minx

1max −x

The first rule makes sense, since any horizontal edge will be automatically drawn by the scan line 

connecting its vertices. The second rule implies that we should not draw the top scan line of a polygon, 

whether it is a single pixel or a horizontal scan line. This prevents any overlap with the bottom scan line of 

a polygon of an adjoining polygon. Similarly, the third rule implies that we should not draw the right edge 

of a polygon, again to avoid overlapping pixels. It also implies that we should not plot a scan line where 

. maxmin xx =

 It may take a few tries with pencil and paper to convince yourself, but these rules do work (e.g., Fig. 

4.27). True, they do have a few shortcomings. Edge-on polygons are not displayed (which is usually 

desirable), small polygons may be distorted from their true geometrical shapes, and thin polygonal slivers 

may have missing pixels where . In addition, all polygons are displaced by up to one-half pixel 

to the left and downwards from their true positions. While some of these deficiencies can be corrected by 

employing a larger and more complex set of rules, they are usually not worth bothering about. 

maxmin xx =
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0

8

8  
Figure 4.27 - Filling polygons - a better approach 

Implementing these rules can be a challenge, particularly if we allow concave polygons and polygons 

with edges that cross each other. However, our polygons are invariably convex (Section 3.4), which 

simplifies the problem considerably. 

We begin by noting that a horizontal scan line can only intersect a convex polygon at one or two points 

(i.e., a vertex or two edges). For each scan line then, we need to store information about at most two 

intersection points. (This is not true for a concave polygon with an arbitrary number of edges.) 

Referring to our OutPolygon class (Section 4.8.6), each output vertex has a 3-D position and a color, 

where the n-axis component of its position is the pseudodepth. If a scan line intersects an edge, we can 

determine the intersection’s pseudodepth by linearly interpolating between the edge’s vertices. We can 

similarly determine the intersection’s color by linearly interpolating each of the three color bands between 

the vertices. (We will see why we do this in the following section.) This gives us a data structure 

something like: 

struct ScanInfo         // Scan line intersection info 
{ 
  float x;              // X-axis co-ordinate 
  float z;              // Pseudodepth 
  Spectra color;        // Color 
}; 

Suppose we allocate an edge list, a 2-D array of ScanInfo structures, arranged as two columns (one for 

each intersection) by however many scan lines (i.e., rows) are in our bitmap. Each polygon edge is 

represented by a pair of adjacent vertices in its vertex array. By stepping through the vertex array, we can 

compute the x-axis intersection of each scan line with each polygon edge (with appropriate allowances for 
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Rules 1 and 2 above), interpolate the intersection pseudodepth and color, and enter the data into the edge 

list. 

Once all the edges have been entered (or scan converted) into the edge list, we can step through the list 

and for every valid entry plot the pixels of the scan line segment between the x-axis points indicated by 

each pair of ScanInfo entries (with allowance for Rule 3). 

Calculating the x-axis co-ordinate of each scan line-edge intersection requires a digital differential 

analyzer (DDA) algorithm. Terminology aside, this means we have to determine the floating point 

incremental change in x for each integer scan line step in y for each edge. Then, given a pair of vertex co-

ordinates {  and  where } }sysx, { eyex, syey > , we execute the following algorithm: 

sxx =  
( ) ( )syeysxexm −−=  

FOR syy =  TO  eyy <
  SetPixel(x, y, color ) 
  x += m 
ENDFOR 

Figure 4.28 - Digital differential analyzer pseudocode 

where x and m (which is the inverse slope of the edge) are floating point numbers. 

An integer-only version of this algorithm is possible (Swanson and Thayer [1986]). It is much like the 

classic Bresenham line scan algorithm (e.g., Foley et al. [1990]), except that only one point per scan line is 

computed. The following example is adapted from Fleisher and Salesin [1992]: 

// Integer-Only Differential Digital Analyzer - EXAMPLE ONLY 
 
#include <stdio.h> 
#include <stdlib.h> 
 
class IntDDA    // Integer-only DDA 
{ 
  private: 
    int xi;     // X-axis intersection value 
    int si; 
    int r; 
    int inc;    // Increment value 
    int dec;    // Decrement value 
 
  public: 
    int FloorDiv( int, int ); 
    void Setup( int, int, int, int ); 
    void Scan( int, int ); 
}; 
 
int main() 
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{ 
  int x0, x1, y0, y1; 
  IntDDA dda; 
 
  char buffer[80]; 
 
  printf("Enter start x: "); 
  x0 = atoi(gets(buffer)); 
  printf("Enter start y: "); 
  y0 = atoi(gets(buffer)); 
  printf("Enter end x:   "); 
  x1 = atoi(gets(buffer)); 
  printf("Enter end y:   "); 
  y1 = atoi(gets(buffer)); 
 
  if (y1 != y0) 
  { 
    dda.Setup(x0, y0, x1, y1); 
    dda.Scan(y0, y1); 
  } 
  else 
    printf("Horizontal line\n"); 
 
  return 0; 
} 
 
// Set up for line scan (assumes y0 != y1) 
void IntDDA::Setup( int x0, int y0, int x1, int y1 ) 
{ 
  int sf; 
  int dx = x1 - x0; 
  int dy = y1 - y0; 
 
  si = FloorDiv(dx, dy); 
  xi = x0; 
  sf = dx - si * dy; 
  r = 2 * sf - dy; 
  inc = sf; 
  dec = sf - dy; 
} 
 
// Scan line from y0 to (y1 - 1) 
void IntDDA::Scan( int y0, int y1 ) 
{ 
  int y = y0; 
   
  while (y < y1) 
  { 
    printf("x = %d  y = %d\n", xi, y++); 
    if (r >= 0) 
    { 
      xi += si + 1; 
      r += dec; 
    } 
    else 
    { 
      xi += si; 
      r += inc; 
    } 
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  } 
} 
 
// Calculate floor(x,y) - assumes y > 0 
int IntDDA::FloorDiv( int x, int y ) 
{ 
  if (x >= 0) 
    return x / y; 
  else 
    return (x / y) + ((x % y) == 0 ? 0 : - 1); 
} 

Listing 4.11 - INT_DDA.CPP 

This is an example only! While it is definitely faster than an equivalent floating point implementation 

(at least for the Intel 80x86 architecture; floating point and integer calculations on RISC CPUs are typically 

comparable in speed), it represents only a small part of the time needed to render a photorealistic image. 

Also, the forthcoming code is going to be difficult enough to follow without it. We will use the floating 

point version shown in Figure 4.28; Listing 4.11 is provided for those readers interested in improving the 

completed program’s performance. 

4.13 Incremental (Gouraud) Shading 

Now that we can draw a filled polygon to a bitmap without overlapping or missing pixels, we can ask 

what color or colors should be passed to SetPixel. Recalling our initial discussion of the radiosity approach 

in Section 2.4, let us assume that we know the radiance of a polygon. More accurately, we assume that we 

know its average spectral radiant exitance in each color band. Converting this into a ColorRGB class object 

gives us a 24-bit color that we can use to fill the polygon when we draw it in our bitmap. 

This simple approach has one major disadvantage. Adjacent polygons representing a contiguous 

surface may have different colors. If the polygons are small and numerous, we will probably perceive the 

surface as having a continuous gradation of color when we view it in a bitmap image. As we zoom in for a 

closer look, however, the individual polygons will occupy more of the display screen. At some point the 

polygon boundaries will become evident as noticeable steps in color gradation. 

Henri Gouraud (Gouraud [1971]) addressed this problem by assigning individual colors to a polygon’s 

vertices rather than a single color to the entire polygon. Colors are then linearly interpolated at each scan 

line-edge intersection (as we just did in scan converting a polygon edge above) and also along each scan 
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line segment between the edge intersections. The result is a smoothly varying color gradation across the 

entire surface. 

Gouraud shading can be formally described as: 
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Figure 4.29 - Gouraud shading interpolation 
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and where A, C, D and P are the Spectra color band values of interest at the polygon and vertices and 

pixels. However, it is also an incremental technique that proceeds exactly as our DDA algorithm above. 

Instead of x-y vertex and pixel co-ordinates, we have three Spectra color band values for each vertex. 

These simply replace the x-axis co-ordinates in Figure 4.28. Implementing the linear interpolation as the 

two step process described above implicitly implements Equation 4.33. 

One of the primary advantages of Gouraud shading is that it is extremely simple and fast, particularly 

when it can be implemented in a hardware graphics accelerator. On the downside are its disadvantages. 

The worst of these is that the interpolated color of an interior point is dependent on the orientation of a 

quadrilateral polygon in screen space. (Apply Equation 4.33 to a point inside a rectangle, then do the same 

after rotating the rectangle through 45 and 90 degrees.) This means that different views of an environment 

may result in noticeably different color gradations across large quadrilateral polygons. Fortunately, 

triangular polygons do not suffer from this problem. 
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Another problem occurs when polygons have “T-vertices”, where the vertex of one polygon lies on the 

edge of another. Again, there may be undesirable color artifacts in the rendered image. Since both T-

vertices and quadrilateral polygons can be eliminated by subdividing the polygons into triangles (see 

Chapter Seven), we can usually minimize these color interpolation problems. 

It must be remembered, however, that Gouraud shading provides linear color interpolation only. This 

can result in first derivative discontinuities across polygon edges, where the slope of the color gradation 

changes abruptly. Unfortunately, the human visual system can be acutely sensitive to such changes. The 

visual effect is called Mach banding (e.g., Foley et al. [1990]), and can be quite noticeable on what should 

be evenly shaded surfaces. Cohen and Wallace [1993] discuss this problem and review several possible 

solutions. These are advanced rendering techniques that are beyond the scope of this book. For our 

purposes, Gouraud shading provides a useful and effective color rendering technique for radiosity images. 

4.14 Hidden Surface Elimination 

Our final problem really is a trivial one. Looking into a real 3-D environment, we see objects obscuring 

one another. Backface culling eliminates those surfaces that are directed away from our line of sight, but it 

does not solve the problem of hidden surface elimination. How do we determine whether a visible polygon 

partially or completely hides an otherwise visible polygon behind it? 

There have been numerous hidden surface elimination algorithms developed over the years–Sutherland 

et al. [1974] and Rogers [1985] offer excellent summaries. In recent years, however, the availability of 

sufficient memory has made a brute force technique known as the Z-buffer algorithm (Catmull [1974]) the 

most popular choice. 

Think of a geometrical ray extending from our eye position through a screen pixel and into the 

environment (Fig. 4.30). This ray may intersect one or more visible polygons, each of which will be 

projected onto the view window at the pixel co-ordinates. 
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Figure 4.30 - Hidden surface elimination 

Suppose we assign a “depth” value to the ray (or equivalently, the pixel) and initialize it to infinity. 

Then, as we scan convert each visible polygon, we determine the pseudodepth of the point where the ray 

intersects the polygon surface. If this value is less than the current ray depth, we plot the pixel in the 

bitmap and set the ray depth to this value. In other words, the polygon is visible at this point. If, on the 

other hand, the polygon’s pseudodepth at the point of intersection is equal to or greater than the current ray 

depth, then the polygon is hidden at this point and we do nothing but continue on to the next pixel or 

polygon. 

Of course, we need a depth value for each pixel in our bitmap. This can require a lot of memory. 

Assuming we use a 16-bit float data type, a 1024 × 768 bitmap will require 1.5 megabytes of RAM 

memory! It should come as no surprise that graphics workstations usually have dedicated Z-buffers. For 

personal desktop computers, we must either have the memory available or limit our maximum bitmap sizes 

accordingly. (An alternative is to successively apply the Z-buffer algorithm to bands of scan lines. This 

limits the amount of memory required, but at the expense of scanning the list of polygons to be displayed 

for each band. See Rogers [1985] for implementation details.) 

Much of the Z-buffer algorithm is identical in form to the polygon fill and Gouraud shading algorithms. 

Similar to linear color interpolation for Gouraud shading, we can substitute the pseudodepth for the x-axis 

co-ordinates in our DDA algorithm (Figure 4.28). Even better, we can combine all three algorithms into 

one procedure. We can also perform color mapping (to grayscale or pseudocolor), gamma correction and 

color jittering (Section 3.5) immediately before writing the pixel to the frame buffer. This gives us: 

// Initialize the Z-buffer and bitmap 
FOR each row y 
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  FOR each column x 
    Z_Buffer[y][x] = INFINITY 
    SetPixel(x, y, BLACK) 
  ENDFOR 
ENDFOR 

FOR each polygon 
  Scan convert polygon edges 
  FOR each scan line segment in edge list 
    FOR each scan line pixel 
      Get edge intersection information 
      Linearly interpolate pixel pseudodepth Z 
      Linearly interpolate pixel color 
      IF (Z < Z_Buffer[y][x] 
        Z_Buffer[y][x] = Z 
        IF grayscale flag set 
          SetMono(color) 
        ELSE IF pseudocolor flag set 
          SetPseudo(color) 
        ELSE 
          SetColor(color) 
        ENDIF 
        IF gamma correction enabled 
          GammaCorrect(color) 
        ENDIF 
        IF color jittering enabled 
          Reduce(color) 
        ENDIF 
        SetPixel(x, y, color) 
      ENDIF 
    ENDFOR 
  ENDFOR 
ENDFOR 

Figure 4.31 - Polygon rendering pseudocode 

The Z-buffer algorithm has one minor disadvantage. Remember that perspective projection distorts the 

view space n-axis (depth), resulting in a pseudodepth scale (Section 4.3). It may happen that two distinct 

floating point depth values are mapped to the same pseudodepth, due to the limited precision of the float 

data type. Consequently, a polygon that should be hidden may be displayed or vice versa. This problem can 

be alleviated only by increasing the number of bits used to represent the Z-buffer pseudodepth. For a C++ 

software implementation, this means going to a double representation, with its consequent doubling of the 

Z-buffer memory requirements. (An unsigned long data type could be used for an integer-only version.) 

Fortunately, typical radiosity images rarely require this level of pseudodepth precision. 
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4.15 A Polygon Renderer 

As Figure 4.31 indicates, we can incorporate our polygon fill, Gouraud shading and hidden surface 

elimination algorithm in a single class that renders convex 2-D polygons: 

// P_RENDER.H - Polygon Renderer Class 
 
#ifndef _P_RENDER_H 
#define _P_RENDER_H 
 
#include <limits.h> 
#include "out_poly.h" 
#include "gamma.h" 
#include "c_jitter.h" 
#include "win_bmap.h" 
 
#define PR_RGB          0       // RGB color 
#define PR_MONO         1       // Grayscale 
#define PR_PSEUDO       2       // Pseudocolor 
 
static const float PR_Infinity = MAX_VALUE; 
 
struct VertexInfo       // Vertex information 
{ 
  POINT screen;         // Integer screen co-ordinates 
  Point3 posn;          // Scaled position 
  Spectra color;        // Spectral radiant exitance 
}; 
 
struct ScanInfo         // Scan line intersection info 
{ 
  double x;             // X-axis co-ordinate 
  double z;             // Pseudodepth 
  Spectra color;        // Color 
}; 
 
struct EdgeInfo         // Edge information 
{ 
  BOOL first;           // First intersection flag 
  ScanInfo isect[2];    // Scan line intersection array 
}; 
 
class PolyRender        // Polygon renderer 
{ 
  private: 
    BOOL gamma_flag;            // Gamma correction flag 
    BOOL jitter_flag;           // Color reduction flag 
    int color_type;             // Display color type 
    int ymin;                   // Minimum y-axis co-ord 
    int ymax;                   // Maximum y-axis co-ord 
    int width;                  // Display width 
    int height;                 // Display height 
    int num_vert;               // Number of vertices 
    float **z_buffer;           // Depth buffer pointer 
    EdgeInfo *edge_list;        // Edge list pointer 
    Gamma gamma;                // Gamma correction object 
    ColorJitter jitter;         // Color reduction filter 
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    VertexInfo v_info[8];       // Vertex info table 
    WinBitmap *pbmap;           // Bitmap object pointer 
 
    void GetVertexInfo( OutPolygon & ); 
    void ScanEdges(); 
    void DrawEdgeList(); 
 
  public: 
    PolyRender() 
    { 
      gamma_flag = TRUE; 
      jitter_flag = FALSE; 
      color_type = PR_RGB; 
    } 
 
    BOOL GetStatus() { return jitter.GetStatus(); } 
    BOOL GammaFlag() { return gamma_flag; } 
    BOOL JitterFlag() { return jitter_flag; } 
    BOOL Open( WinBitmap * ); 
    double GetGamma() { return gamma.GetGamma(); } 
    int GetNoiseLevel() { return jitter.GetNoiseLevel(); } 
    int GetColorType() { return color_type; } 
    void Close(); 
    void DisableGamma() { gamma_flag = FALSE; } 
    void DisableJitter() { jitter_flag = FALSE; } 
    void EnableGamma() { gamma_flag = TRUE; } 
    void EnableJitter() { jitter_flag = TRUE; } 
    void Render( OutPolygon & ); 
    void SetGamma( double g ) { gamma.SetGamma(g); } 
    void SetNoiseLevel( int n ) { jitter.SetNoiseLevel(n); } 
    void SetColorType( int type) { color_type = type; } 
}; 
 
#endif 

Listing 4.12 - P_RENDER.H 

and: 

// P_RENDER.CPP - Polygon Renderer Class 
 
#include "p_render.h" 
 
// Open polygon renderer 
BOOL PolyRender::Open( WinBitmap *pb ) 
{ 
  int row, col;         // Loop indices 
 
  pbmap = pb;   // Save bitmap object pointer 
 
  height = pbmap->GetHeight(); 
  width = pbmap->GetWidth(); 
 
  // Allocate edge list 
  if ((edge_list = new EdgeInfo[height]) == NULL) 
    return FALSE; 
 
  // Allocate depth buffer 
  if ((z_buffer = new (float (*[height]))) != NULL) 
  { 
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    for (row = 0; row < height; row++) 
    { 
      if ((z_buffer[row] = new float[width]) == NULL) 
      { 
        // Release partially allocated depth buffer 
        row--; 
        for ( ; row >= 0; row--) 
          delete [] z_buffer[row]; 
        delete [] z_buffer; 
 
        // Release edge list memory  
        delete [] edge_list; 
 
        return FALSE; 
      } 
    } 
  } 
  else 
  { 
    delete [] edge_list;        // Release edge list memory 
    return FALSE; 
  } 
 
  // Initialize depth buffer 
  for (row = 0; row < height; row++) 
    for (col = 0; col < width; col++) 
      z_buffer[row][col] = PR_Infinity; 
 
  return TRUE; 
} 
 
void PolyRender::Close()        // Close polygon shader 
{ 
  int row;      // Loop index 
   
  delete [] edge_list;          // Release edge list memory 
 
  // Delete depth buffer 
  for (row = 0; row < height; row++) 
    delete [] z_buffer[row]; 
  delete [] z_buffer; 
} 
 
// Render polygon 
void PolyRender::Render( OutPolygon &out ) 
{ 
  GetVertexInfo(out);   // Get vertex information 
  ScanEdges();          // Scan convert edges 
  DrawEdgeList();       // Draw edge list 
} 
 
// Get vertex information 
void PolyRender::GetVertexInfo( OutPolygon &out ) 
{ 
  int i;                // Loop index 
  VertexInfo *pv;       // Vertex info element pointer 
  Point3 posn;          // Normalized vertex position 
 
  // Initialize polygon y-axis limits 
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  ymax = 0; 
  ymin = height - 1; 
 
  // Get number of vertices 
  num_vert = out.GetNumVert(); 
 
  for (i = 0; i < num_vert; i++) 
  { 
    pv = &(v_info[i]);  // Get vertex info element pointer 
 
    // Get vertex normalized view space co-ordinates 
    posn = out.GetVertexPosn(i); 
 
    // Scale view space u-v co-ordinates 
    pv->posn.SetX(posn.GetX() * width); 
    pv->posn.SetY(posn.GetY() * height); 
    pv->posn.SetZ(posn.GetZ()); 
 
    // Convert to screen space x-y co-ordinates 
    // 
    // NOTE: top scan line and rightmost pixels are never 
    //       drawn, so there is no need to limit screen 
    //       co-ordinate to (width - 1) and (height - 1) 
    // 
    pv->screen.x = (int) pv->posn.GetX(); 
    pv->screen.y = (int) pv->posn.GetY(); 
 
    // Update polygon y-axis limits 
    if (pv->screen.y < ymin) 
      ymin = pv->screen.y; 
    if (pv->screen.y > ymax) 
      ymax = pv->screen.y; 
 
    // Get vertex color 
    pv->color = out.GetVertexColor(i); 
  } 
} 
 
void PolyRender::ScanEdges()    // Scan convert edges 
{ 
  int i, j;             // Loop indices 
  double dx;            // X-axis delta 
  double dz;            // Pseudodepth delta 
  double ix;            // Intersection X-axis co-ordinate 
  double iz;            // Intersection pseudodepth 
  double y_dist;        // Y-axis distance 
  Spectra dc;           // Intersection color delta 
  Spectra ic;           // Intersection color 
  EdgeInfo *pedge;      // Edge info pointer 
  ScanInfo *pscan;      // Scan line info pointer 
  VertexInfo *psv;      // Start vertex info pointer 
  VertexInfo *pev;      // End vertex info pointer 
  VertexInfo *psw;      // Swap vertex info pointer 
 
  // Initialize edge list 
  for (i = ymin; i < ymax; i++) 
    edge_list[i].first = FALSE; 
 
  for (i = 0; i < num_vert; i++) 
  { 
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    // Get edge vertex pointers 
    psv = &(v_info[i]); 
    pev = &(v_info[(i + 1) % num_vert]); 
     
    if (psv->screen.y == pev->screen.y) 
    { 
      continue;         // Ignore horizontal edges 
    } 
 
    if (psv->screen.y > pev->screen.y) 
    { 
      // Swap edge vertex pointers 
      psw = psv; psv = pev; pev = psw; 
    } 
 
    // Get start vertex info 
    ix = psv->posn.GetX(); 
    iz = psv->posn.GetZ(); 
    ic = psv->color; 
 
    // Determine inverse slopes 
    y_dist = (double) (pev->screen.y - psv->screen.y); 
 
    dx = (pev->posn.GetX() - ix) / y_dist; 
    dz = (pev->posn.GetZ() - iz) / y_dist; 
 
    dc.SetRedBand((pev->color.GetRedBand() -  
        psv->color.GetRedBand()) / (float) y_dist); 
    dc.SetGreenBand((pev->color.GetGreenBand() -  
        psv->color.GetGreenBand()) / (float) y_dist); 
    dc.SetBlueBand((pev->color.GetBlueBand() -  
        psv->color.GetBlueBand()) / (float) y_dist); 
 
    // Scan convert edge 
    pedge = &(edge_list[psv->screen.y]); 
    for (j = psv->screen.y; j < pev->screen.y; j++) 
    { 
      // Determine intersection info element 
      if (pedge->first == FALSE) 
      { 
        pscan = &(pedge->isect[0]); 
        pedge->first = TRUE; 
      } 
      else 
        pscan = &(pedge->isect[1]); 
 
      // Insert edge intersection info 
      pscan->x = ix; 
      pscan->z = iz; 
      pscan->color = ic; 
 
      // Update edge intersection info 
      ix += dx; 
      iz += dz; 
      ic.Add(dc); 
 
      pedge++;  // Point to next edge list element 
    } 
  } 
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} 
 
void PolyRender::DrawEdgeList()         // Draw edge list 
{ 
  int x, y;             // Loop indices 
  int sx, ex;           // Scan line x-axis co-ordinates 
  double dz;            // Pseudodepth delta 
  double iz;            // Pixel pseudodepth 
  double x_dist;        // X-axis distance 
  ColorRGB rgb;         // Pixel RGB color 
  Spectra dc;           // Pixel color delta 
  Spectra ic;           // Pixel color 
  EdgeInfo *pedge;      // Edge info pointer 
  ScanInfo *pss;        // Scan line start info pointer 
  ScanInfo *pse;        // Scan line end info pointer 
  ScanInfo *psw;        // Swap scan line info pointer 
 
  pedge = &(edge_list[ymin]); 
  for (y = ymin; y < ymax; y++) 
  { 
    // Get scan line info pointers 
    pss = &(pedge->isect[0]); 
    pse = &(pedge->isect[1]); 
 
    if (pss->x > pse->x) 
    { 
      // Swap scan line info pointers 
      psw = pss; pss = pse; pse = psw; 
    } 
 
    // Get scan line x-axis co-ordinates 
    sx = (int) pss->x; 
    ex = (int) pse->x; 
 
    if (sx < ex)        // Ignore zero-length segments 
    { 
      // Determine scan line start info 
      iz = pss->z; 
      ic = pss->color; 
 
      // Determine inverse slopes 
      x_dist = pse->x - pss->x; 
 
      dz = (pse->z - iz) / x_dist; 
 
      dc.SetRedBand((pse->color.GetRedBand() -  
          pss->color.GetRedBand()) / (float) x_dist); 
      dc.SetGreenBand((pse->color.GetGreenBand() -  
          pss->color.GetGreenBand()) / (float) x_dist); 
      dc.SetBlueBand((pse->color.GetBlueBand() -  
          pss->color.GetBlueBand()) / (float) x_dist); 
 
      // Render scan line (Gouraud shading) 
      for (x = sx; x < ex; x++) 
      { 
        // Check pixel visibility 
        if (iz < (double) z_buffer[y][x]) 
        { 
          z_buffer[y][x] = (float) iz;  // Update Z-buffer 
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          switch (color_type) 
          { 
            case PR_RGB:        // RGB color 
              rgb.SetColor(ic); 
              break; 
 
            case PR_MONO:       // Grayscale 
              rgb.SetMono(ic); 
              break; 
 
            case PR_PSEUDO:     // Pseudocolor 
              rgb.SetPseudo(ic); 
              break; 
 
            default: 
              break; 
          } 
 
          if (gamma_flag == TRUE) 
          { 
            // Perform gamma correction 
            gamma.Correct(rgb); 
          } 
 
          if (jitter_flag == TRUE) 
          { 
            // Perform color reduction 
            jitter.Reduce(&rgb, x, y); 
          } 
 
          // Set bitmap pixel 
          pbmap->SetPixel(x, y, rgb); 
        } 
 
        // Update pixel info 
        iz += dz; 
        ic.Add(dc); 
      } 
    } 
    pedge++;    // Point to next edge list element 
  } 
} 

Listing 4.13 - P_RENDER.CPP 

Ignoring the myriad details, PolyRender is a reasonably straightforward implementation of the 

algorithms discussed in the previous three sections. Open dynamically allocates memory for a Z-buffer and 

an edge list that are sized according to the dimensions of the bitmap, while Close releases it when it is no 

longer needed. 

A large bitmap may require a megabyte or more of memory for its Z-buffer. Rather than allocating this 

memory in one monolithic block, Open requests it one scan line at a time. The details of this technique 

(including a discussion of its advantages and disadvantages) are explained in a text file included with the 
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diskette accompanying this book. As currently implemented, PolyRender assumes that the entire Z-buffer 

will be allocated from physical memory and that it will not be paged to disk by a virtual memory manager 

while DrawEdgeList is being executed. This should only be a concern for pre-emptive multitasking 

environments such as Windows NT and UNIX. If paging does occur, the scan conversion execution time 

may increase drastically. 

4.16 Vertex Exitance Interpolation 

There are two minor discrepancies between our environment and viewing system models that we need 

to resolve. First, reflectance and initial exitance values are only defined for surfaces. When Parse reads an 

environment data file, it sets the vertex exitances to zero. However, we need these exitances in order to 

display elements using Gouraud shading. 

One trivial solution is to simply copy the appropriate surface reflectance values to the exitance of each 

vertex. Since vertices are shared by patches and elements but not surfaces, each surface will be displayed 

as having a solid color. This will prove useful later on as a quick means of displaying color images. If 

nothing else, it will let us determine whether our polygon rendering software is functioning properly. 

The second discrepancy is somewhat more involved. Recalling our discussion of radiosity theory in 

Chapter Two, radiosity methods generally (but not always) calculate the final exitance of each element. 

Again, we need transfer these exitances to the element vertices in order to display them. The problem here, 

of course, is that each vertex may be shared by one or more elements (but not adjoining surfaces). 

What we are trying to model is a continuously shaded surface. Figure 4.32 shows a cross-section 

through a surface with its exitance plotted as a continuously varying function above it. The vertex 

exitances sample this function at the position of each vertex on the surface. Similarly, the element exitances 

sample the function at the center of each element. Given only the element exitances as a result of our 

radiosity calculations, we need to somehow determine the vertex exitances. 
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Surface

Exitance
Vertex exitance
Element center exitance

 
Figure 4.32 - Sampling the continuous exitance distribution across a surface 

This is a common problem in many different fields of mathematics and engineering (particularly finite 

element methods, which are closely related to the radiosity problem). Of course, we do not know the exact 

exitance distribution across the surface. All we can do is to interpolate a reasonable approximation. 

The easiest solution is to use piecewise linear interpolation. In the one-dimensional example shown in 

Figure 4.32, we simply draw a straight line between each pair of element exitances and interpolate the 

vertex exitances where they intersect the lines (Fig. 4.33). We can clearly extend this approach to 2-D 

surfaces by using piecewise bilinear interpolation. This can be applied to both triangular and quadrilateral 

elements, even if they have unequal areas. 

Surface

Exitance
Actual vertex exitance
Element center exitance

Interpolated vertex exitance

 
Figure 4.33 - Piecewise linear interpolation of vertex exitances 

An even simpler approach is to assume that the elements form a regular spaced grid across the surface. 

If this is true, then each vertex exitance can be interpolated by averaging the exitances of the elements that 

share the vertex (Fig. 4.34). The technique is called nodal averaging. It has an advantage over bilinear 

interpolation in that we do not need to account for the dimensions of each element. 
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Figure 4.34 - Interpolating vertex exitances using nodal averaging 

One problem with piecewise bilinear interpolation is that the surface shading becomes discontinuous at 

the element boundaries. This may lead to visible Mach bands (see Section 4.13) extending across what 

should be smoothly shaded surfaces. There are several solutions to this problem, but they are beyond the 

scope of this book. See Cohen and Wallace [1993] for a detailed discussion and references to the 

associated literature. For our purposes, nodal averaging will generally provide quite adequate results. 

4.17 Tone Reproduction Problems 

Another problem we have to address is that of tone reproduction. The human eye is capable adapting to 

a very wide range of average scene luminances. We can see during broad daylight as well as by starlight–a 

truly astounding luminance range of nearly ten trillion to one. Unfortunately, our methods of reproducing 

these scenes have luminance scales ranging from 50:1 (four-color printing) to 1000:1 (photographic 

transparencies). Most computer display terminals have a dynamic range of 100:1. 

Our radiosity methods will accurately calculate the exitances that we need to display a photorealistic 

image. However, if these images include any light sources, that is likely all we will see. Their exitances 

may be in excess of the other surfaces by a factor of 100:1 or more, in which case our display devices will 

be unable to render them and the surfaces at the same time. This is not what we see when we look at a 

typical scene in real life. We need to devise a tone reproduction technique that compensates for this 

problem. 

One ad hoc but usually satisfactory solution is to scale the vertex exitances according to the vertex with 

the greatest reflected exitance. That is, each exitance value is scaled such that the greatest reflected 
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exitance (in whichever color band of the Spectra data type) is assigned a value of slightly less than 1.0. If 

the exitance of a light source exceeds this value, it is individually scaled to equal 1.0 (again in whichever 

color band) as well. This ensures that the light sources will be displayed in their proper colors. They will 

also appear as the “brightest” objects in the image, closely approximating what we would expect to see. We 

might refer to this process as exitance normalization. 

With this, we can develop the following tone reproduction class: 

// TONE_REP.H - Tone Reproduction Class 
 
#ifndef _TONE_REP_H 
#define _TONE_REP_H 
 
#include "instance.h" 
 
// Maximum reflected exitance value 
#define T_MaxExitance   ((double) 254 / 255) 
 
class ToneRep   // Tone reproduction 
{ 
  public: 
    void Interpolate( Instance * ); 
    void Normalize( Instance * ); 
    void Shade( Instance * ); 
}; 
 
#endif 

Listing 4.14 - TONE_REP.H 

and: 

// TONE_REP.CPP - Tone Reproduction Class 
 
#include "tone_rep.h" 
 
// Shade the vertex exitances 
void ToneRep::Shade( Instance *penv ) 
{ 
  Instance *pinst; 
  Vertex3 *pvert; 
 
  // Walk the instance list 
  pinst = penv; 
  while (pinst != NULL) 
  { 
    // Walk the vertex list 
    pvert = pinst->GetVertPtr(); 
    while (pvert != NULL) 
    { 
      // Set vertex exitance to parent surface reflectance 
      pvert->SetExitance(pvert->GetElemListPtr()-> 
          GetElemPtr()->GetParentPtr()->GetParentPtr()-> 
          GetReflectance()); 
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      pvert = pvert->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
} 
 
// Interpolate vertex reflected exitances 
void ToneRep::Interpolate( Instance *penv ) 
{ 
  int num_elem;         // Number of elements 
  Element3 *pelem;      // Element pointer 
  ElemList *pel;        // Element list pointer 
  Instance *pinst;      // Instance pointer 
  Vertex3 *pvert;       // Vertex pointer 
 
  // Walk the instance list 
  pinst = penv; 
  while (pinst != NULL) 
  { 
    // Walk the vertex list 
    pvert = pinst->GetVertPtr(); 
    while (pvert != NULL) 
    { 
      // Initialize vertex reflected exitance 
      pvert->GetExitance().Reset(); 
 
      // Walk the element list 
      pel = pvert->GetElemListPtr(); 
      num_elem = 0; 
      while (pel != NULL) 
      { 
        // Get the element pointer 
        pelem = pel->GetElemPtr(); 
 
        // Add element reflected exitance 
        pvert->GetExitance().Add(pelem->GetExitance()); 
 
        pel = pel->GetNext(); 
        num_elem++; 
      } 
 
      // Scale vertex reflected exitance according to number 
      // of shared elements 
      pvert->GetExitance().Scale(1.0 / (double) num_elem); 
 
      pvert = pvert->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
} 
 
// Normalize vertex exitances 
void ToneRep::Normalize( Instance *penv ) 
{ 
  double rmax = 0.0;    // Maximum reflected color 
  double emax;          // Maximum color 
  Instance *pinst;      // Instance pointer 
  Spectra emit;         // Surface emittance 
  Vertex3 *pvert;       // Vertex pointer 
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  // Walk the instance list 
  pinst = penv; 
  while (pinst != NULL) 
  { 
    // Walk the vertex list 
    pvert = pinst->GetVertPtr(); 
    while (pvert != NULL) 
    { 
      // Find maximum reflected color band value 
      rmax = max(pvert->GetExitance().GetMaxColor(), rmax); 
 
      pvert = pvert->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  // Check for non-zero maximum vertex exitance 
  if (rmax > MIN_VALUE) 
  { 
    // Walk the instance list 
    pinst = penv; 
    while (pinst != NULL) 
    { 
      // Walk the vertex list 
      pvert = pinst->GetVertPtr(); 
      while (pvert != NULL) 
      { 
        // Get parent surface emittance 
        emit = pvert->GetElemListPtr()->GetElemPtr()-> 
            GetParentPtr()->GetParentPtr()->GetEmittance(); 
 
        // Add surface initial exitance to reflected vertex 
        // exitance 
        pvert->GetExitance().Add(emit); 
 
        // Scale vertex exitance 
        pvert->GetExitance().Scale(T_MaxExitance / rmax); 
 
        // Clip vertex exitance to unity 
        if ((emax = pvert->GetExitance().GetMaxColor()) > 
            1.0) 
          pvert->GetExitance().Scale(1.0 / emax); 
 
        pvert = pvert->GetNext(); 
      } 
      pinst = pinst->GetNext(); 
    } 
  } 
} 

Listing 4.15 - TONE_REP.CPP 

ToneRep is a catch-all class that also implements the vertex shading and exitance interpolation 

discussed in Section 4.16. In that it has no data members, ToneRep should not even be an independent class 

at all. Unfortunately, there are no other classes that these functions can be logically assigned to. 
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Exitance normalization has no physical justification–it simply produces results that are visually 

appealing. The reality is much more complicated. We can clearly sense whether a room is dark or brightly 

lit, and we can definitely tell the difference between starlight and sunlight! Unfortunately, our approach 

completely ignores this ability. 

Fortunately, there is a growing body of literature on tone reproduction algorithms that takes the 

observer into account. Two papers of particular interest are Meyer [1986] and Tumblin and Rushmeier 

[1993] (see also Barbour and Meyer [1992]). This will undoubtedly become a more important topic as 

photorealistic imagery becomes more commonplace. 

Finally, it is possible to store floating point color representations using 32 bits (four bytes) per pixel 

(Ward [1991]). Each color is represented by an eight-bit mantissa, followed by an eight-bit exponent. 

While this does not address the limited dynamic range of most display media, it does allow the user to 

correct the image presentation using only a stored bitmap image. 

4.18 A Synthetic Camera 

That’s it–we finally have all the components we need to construct our viewing system! We can model 

this system as a synthetic camera, with a wireframe display as its viewfinder and a bitmap file as its film. 

As we saw in Section 4.1, changing the view distance is equivalent to changing the focal length setting of a 

zoom lens. 

The viewfinder image lets us preview our image, and to adjust the camera’s position and orientation. 

Once we have the desired composition, we can “shoot” a fully rendered view of the environment. We can 

even “crop” the image by specifying the bitmap width and height, and we can choose our film (RGB, 

grayscale or pseudocolor display, plus color jittering and gamma correction). 

Implementing this model requires ViewSys for the viewing system, PolyClip4 for clipping the polygons, 

PolyRender to render them, WinMetaFile for the wireframe display and WinBitmap for the bitmap file 

manager. The following SynCamera class provides a wrapper that makes it easier to access these classes 

from our application code (which is still to come). 

// SYN_CAM.H - Synthetic Camera Class 
 
#ifndef _SYN_CAM_H 
#define _SYN_CAM_H 
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#include "instance.h" 
#include "p_clip4.h" 
#include "p_render.h" 
#include "win_meta.h" 
#include "win_bmap.h" 
#include "view_sys.h" 
 
#ifdef _NOT_WINAPP 
struct POINT    // Raster display point 
{ 
  int x;        // X-axis co-ordinate 
  int y;        // Y-axis co-ordinate 
}; 
#endif 
 
class SynCamera : public ViewSys        // Synthetic camera 
{ 
  private: 
    // Note: angles are in degrees 
    double vdv_horz;        // View direction horz angle 
    double vdv_vert;        // View direction vert angle 
    double vup_horz;        // View-up vector horz angle 
    double vup_vert;        // View-up vector vert angle 
    int height;             // Window height 
    int width;              // Window width 
    PolyClip4 clipper;      // Polygon clipper 
    PolyRender renderer;    // Polygon renderer 
 
  public: 
    SynCamera( int w, int h, double vdvh, double vdvv, 
        double vuph, double vupv ) : ViewSys() 
    { 
      width = w; height = h; 
      vdv_horz = vdvh; vdv_vert = vdvv; 
      vup_horz = vuph; vup_vert = vupv; 
      aspect = (double) w / (double) h; 
 
      SetViewDirVector(vdvh, vdvv); 
      SetViewUpVector(vuph, vupv); 
 
      UpdateViewSystem(); 
 
      EnableGamma(); 
    } 
 
    BOOL GammaFlag() { return renderer.GammaFlag(); } 
    BOOL GetStatus() { return renderer.GetStatus(); } 
    BOOL JitterFlag() { return renderer.JitterFlag(); } 
    BOOL Preview( Instance *, WinMetaFile * ); 
    BOOL Shoot( Instance *, WinBitmap * ); 
    double GetGamma() { return renderer.GetGamma(); } 
    double GetViewDirHorz() { return vdv_horz; } 
    double GetViewDirVert() { return vdv_vert; } 
    double GetViewUpHorz() { return vup_horz; } 
    double GetViewUpVert() { return vup_vert; } 
    int GetColorType() { return renderer.GetColorType(); } 
    int GetHeight() { return height; } 
    int GetWidth() { return width; } 
    int GetNoiseLevel() 
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    { return renderer.GetNoiseLevel(); } 
    void DisableGamma() { renderer.DisableGamma(); } 
    void DisableJitter() { renderer.DisableJitter(); } 
    void EnableGamma() { renderer.EnableGamma(); } 
    void EnableJitter() { renderer.EnableJitter(); } 
    void SetColorType( int type ) 
    { renderer.SetColorType(type); } 
    void SetGamma( double g ) { renderer.SetGamma(g); } 
    void SetHeight( int h ) { height = h; } 
    void SetNoiseLevel( int n ) 
    { renderer.SetNoiseLevel(n); } 
    void SetViewDirVector( double, double ); 
    void SetViewUpVector( double, double ); 
    void SetWidth( int w ) { width = w; } 
    void UpdateViewSystem(); 
}; 
 
#endif 

Listing 4.16 - SYM_CAM.H 

Our ViewSys class represents the viewing system’s orientation in rectangular co-ordinates. To this 

SynCamera adds a set of spherical co-ordinates, mostly as a convenience for the application program’s user 

interface, and information about the width and height of the bitmap. 

SynCamera also adds to ViewSys the ability to preview and shoot a view of an environment: 

// SYN_CAM.CPP - Synthetic Camera Class 
 
#include "spheric3.h" 
#include "syn_cam.h" 
 
// Record wireframe display in metafile format 
BOOL SynCamera::Preview( Instance *pinst, WinMetaFile 
    *pmeta ) 
{ 
  int i;                // Loop index 
  int num_vert;         // Number of vertices 
  Element3 *pelem;      // Element pointer 
  OutPolygon out;       // Output polygon 
  POINT vertex[8];      // Polygon vertex array 
  Point3 posn;          // Point co-ordinates 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
 
  // Start wireframe metafile recording 
  if (pmeta->Record(tmpnam(NULL)) == FALSE) 
    return FALSE; 
 
  // Walk the instance list 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 



A Viewing System 223 
________________________________________________________________________ 
  
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Determine patch visibility 
        if (BackFaceCull(ppatch) == FALSE) 
        { 
          // Walk the element list 
          pelem = ppatch->GetElementPtr(); 
          while (pelem != NULL) 
          { 
            // Clip the 3-D element (polygon) 
            num_vert = clipper.Clip(pelem, out, 
                GetProjMatrix()); 
                 
            // Initialize the 2-D polygon vertices array 
            for (i = 0; i < num_vert; i++) 
            { 
              posn  = out.GetVertexPosn(i); 
 
              // Convert normalized device co-ordinates to 
              // screen space co-ordinates 
              vertex[i].x = (int) (posn.GetX() * width); 
              vertex[i].y = (int) (posn.GetY() * height); 
            } 
 
            // Add 2-D polygon draw command to metafile 
            if (pmeta->Polygon(vertex, num_vert) == FALSE) 
            { 
              pmeta->Erase();   // Erase metafile recording 
              return FALSE; 
            } 
 
            pelem = pelem->GetNext(); 
          } 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
  return pmeta->Stop();         // Stop metafile recording 
} 
 
// Record rendered display as bitmap file 
BOOL SynCamera::Shoot( Instance *pinst, WinBitmap *pbmap ) 
{ 
  Element3 *pelem;      // Element pointer 
  OutPolygon out;       // Output polygon 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
 
  // Initialize polygon renderer 
  if (renderer.Open(pbmap) == FALSE) 
    return FALSE; 
       
  // Walk the instance list 
  while (pinst != NULL) 
  { 
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    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Determine patch visibility 
        if (BackFaceCull(ppatch) == FALSE) 
        { 
          // Walk the element list 
          pelem = ppatch->GetElementPtr(); 
          while (pelem != NULL) 
          { 
            // Clip the 3-D polygon 
            (void) clipper.Clip(pelem, out, 
                GetProjMatrix()); 
 
            // Render the 2-D polygon 
            renderer.Render(out); 
 
            pelem = pelem->GetNext(); 
          } 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  renderer.Close();     // Close the polygon renderer 
  return TRUE; 
} 
 
// Set view system parameters 
void SynCamera::UpdateViewSystem() 
{ 
  aspect = (double) width / (double) height; 
  BuildTransform(); 
} 
 
// Set view direction vector 
void SynCamera::SetViewDirVector( double h, double v ) 
{ 
  Spheric3 angle;       // View direction angles (radians) 
  Vector3 view_dir;     // View direction vector 
 
  vdv_horz = h; vdv_vert = v; 
 
  angle.SetVert(DegToRad(v)); 
  angle.SetHorz(DegToRad(h)); 
  angle.SpherToRect(&view_dir); 
 
  SetViewDir(view_dir); 
} 
 
// Set view-up vector 
void SynCamera::SetViewUpVector( double h, double v ) 
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{ 
  Spheric3 angle;       // View-up vector angles (radians) 
  Vector3 view_up;      // View-up vector 
 
  vup_horz = h; vup_vert = v; 
 
  angle.SetVert(DegToRad(v)); 
  angle.SetHorz(DegToRad(h)); 
  angle.SpherToRect(&view_up); 
 
  SetViewUp(view_up); 
} 

Listing 4.17 - SYN_CAM.CPP 

Preview implements the wireframe display pseudocode presented in Figure 4.25 with one difference: 

the “display device” is a metafile. It sets the metafile to record mode, then walks through the linked list of 

polygons representing the parsed environment, performing backface culling, clipping and co-ordinate 

conversion before drawing the visible polygons to the metafile. The metafile recording is stopped when all 

of the polygons have been processed. Playing the completed metafile afterwards is the responsibility of the 

application program. 

Shoot is almost identical to Preview. Instead of drawing the visible polygons to a metafile, however, it 

renders them in a bitmap. (The PolyRender class performs its own co-ordinate conversion.) Again, the 

application program is responsible for saving the bitmap to a file. 

Finally, UpdateViewSystem should be called to update the view system’s aspect ratio and 

transformation matrix whenever any of the view system parameters are changed, either through 

SetViewDirVector or SetViewUpVector, or through calling one of the ViewSys public member functions 

such as ViewSys::SetOrigin. 

4.19 A Viewing System for MS-Windows 

We have written some 2,500 lines of C++ source code so far, but does it work? The only way to answer 

this question–and to provide a non-trivial example of its use–is to build an application around it. Rather 

than writing a demonstration program, we might as well bite the bullet and develop a complete user 

interface for our radiosity renderer. 

Our program development and target environments will be the same: Microsoft MS-Windows. The 

following code is therefore completely and unabashedly concerned with MS-Windows programming. In 
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that this book is not about MS-Windows programming tricks and techniques, the commentary will not 

address Windows-specific programming issues or belabor porting the code to other environments. 

The good news is that the following application program does little more than provide pull-down 

menus and pop-up dialog boxes for the user. If you need to write a user interface for another platform, your 

best bet is to emulate the interface of the MS-Windows executable provided on the accompanying diskette. 

Porting MS-Windows source code verbatim to another GUI environment is not recommended unless you 

are fully familiar with the MS-Windows API (see Petzold [1992]). 

A few specifications before we begin. Naturally, our program should display both wireframe and 

bitmapped images. MS-Windows does this with relative ease, with the added bonus that it is device-

independent. Unlike its underlying MS-DOS operating system, MS-Windows 3.1 is fully cognizant of its 

display device’s capabilities. We thankfully do not have to concern ourselves with the many varieties of 

video display adapters and their arcane programming requirements. (The same capabilities are of course 

available with MS-Windows NT.) 

Beyond this, we should take full advantage of the graphical user interface provided MS-Windows. In 

particular, we should have pull-down menus and their options that provide the following: 

Menu Options 
_______________________________________________________________________  

File Open File dialog box to open world (environment) files. 

 Save As dialog box to save the displayed bitmapped image as a BMP file. 

 Directories dialog box to specify a path to where the entity files can be found. 

Camera Camera Parameters dialog box to set the view distance, the front and back clipping plane 

distances and the bitmap image width and height 

View View Parameters dialog box to set the eye position, view direction vector and view-up 

vector (using spherical co-ordinates). 

Render Wireframe menu item to display a wireframe image of the specified view of the 

environment. 

 Shaded menu item to display a full-color (but not photorealistic) view of the environment. 
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 Rendering menu item to perform the radiosity calculations and display a photorealistic view 

of the environment. 

 Redisplay menu item to redisplay the bitmapped image without having to repeat the radiosity 

calculations. 

Options Convergence dialog box to specify the maximum number of allowed iterations for solving 

the radiosity equation (see Chapter Six), to specify a “stopping criterion” (see below), and to 

toggle the “ambient exitance” and “positive overshoot” features (to be discussed in Chapter 

Six). 

 Display Parameters dialog box to enable or disable gamma correction and to specify a 

gamma correction value (see Section 3.5.1), to enable or disable color jittering and to specify 

a “noise level” value (see Section 3.5.2), and choose 24-bit color, grayscale or pseudocolor 

display (see Section 3.5). 

Help About dialog box to identify the program. 

Figure 4.35 - Viewing system menu specification 

This short list completely describes our user interface requirements. It accepts an environment files, 

allows us to specify a view of the environment, and displays both wireframe and bitmapped images. We 

can optionally save the bitmapped image as a BMP file. 

As for the Rendering and Convergence menu items, we have yet to develop our radiosity rendering 

code. All we can do for now is provide the following do-nothing base class: 

// RAD_EQN.H - Radiosity Equation Solver Base Class 
 
#ifndef _RAD_EQN_H 
#define _RAD_EQN_H 
 
#include "environ.h" 
#include "tone_rep.h" 
 
class RadEqnSolve   // Radiosity equation solver 
{ 
  protected: 
    int step_count;         // Step count 
    int max_step;           // Maximum number of steps 
    double stop_criterion;  // Stopping criterion 
    double convergence;     // Convergence 
    double total_area;      // Total patch area 
    double total_flux;      // Total environment flux 
    double total_unsent;    // Total unsent exitance 
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    BOOL amb_flag;          // Ambient exitance flag 
    Environ *penv;          // Environment pointer 
    Patch3 *pmax;           // Maximum unsent flux patch ptr 
    Spectra ambient;        // Ambient exitance 
    Spectra irf;            // Interreflection factors 
    ToneRep tone;           // Tone reproduction object 
 
    void CalcAmbient(); 
    void CalcInterReflect(); 
    void InitExitance(); 
    void UpdateUnsentStats(); 
 
  public: 
    RadEqnSolve() 
    { 
      amb_flag = FALSE; 
      max_step = 100; 
      stop_criterion = 0.001; 
    } 
 
    virtual ~RadEqnSolve() { Close(); } 
 
    BOOL AmbientFlag() { return amb_flag; } 
    BOOL Calculate() { return TRUE; } 
    BOOL GetStatus() { return TRUE; } 
    BOOL Open( Environ * ) { return TRUE; } 
    BOOL OverShootFlag() { return FALSE; } 
    double GetStopCriterion() { return stop_criterion; } 
    double GetConvergence() { return convergence; } 
    int GetMaxStep() { return max_step; } 
    int GetStepCount() { return step_count; } 
    void Close() { } 
    void DisableAmbient() { amb_flag = FALSE; } 
    void DisableOverShoot() { } 
    void EnableAmbient() { amb_flag = TRUE; } 
    void EnableOverShoot() { } 
    void SetMaxStep( int max ) { max_step = max; } 
    void SetStopCriterion( double s ) 
    { stop_criterion = s; } 
    void Shade( Instance *pinst ) { tone.Shade(pinst); } 
}; 
 
#endif 

Listing 4.18 - RAD_EQN.H 

A quick preview: RadEqnSolve will later serve as a base class for one of several radiosity equation 

solvers (described in Chapter Six). It will accept a pointer to a parsed environment and then compute the 

polygon vertex colors needed to generate a photorealistic image. We call GetStatus to ensure that the 

derived class object was properly constructed. If so, we call Open to initialize the equation solver. If this 

function returns TRUE, we then repeatedly call Calculate until it returns TRUE. 

The radiosity equation solvers are iterative procedures that begin with a trial solution and successively 

refine it with each call to Calculate. The max_pass member specifies the maximum number of allowed 
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iterations before the derived Calculate function returns TRUE. The stop_criterion member provides a 

single quantity that Calculate will use to determine whether the latest solution is “close enough.” 

Once Calculate returns TRUE, we can call ToneRep::Interpolate (if necessary) and 

ToneRep::Normalize to generate element vertex exitances that are suitable for viewing purposes. The 

details of Calculate will be discussed in Chapter Six. 

Shade is not really part of a radiosity equation solver, since it only calls ToneRep::Shade to set the 

vertex exitances to their parent surface reflectances (Section 4.17). Nevertheless, it is convenient to include 

it with RadEqnSolve. 

Finally, calling Close releases any memory that was dynamically allocated to the equation solver. 

RadEqnSolve has a number of other functions whose purpose will become evident in Chapter Six. In 

this base class, they essentially return dummy values that we can ignore. This requires the following set of 

“stub” functions: 

// RAD_TMP.H - Dummy Radiosity Equation Solver Base Class 
 
// NOTE: This file provides TEMPORARY function stubs for the 
//       RadEqnSolve class. 
 
#include "rad_eqn.h" 
 
void RadEqnSolve::CalcAmbient() { } 
void RadEqnSolve::CalcInterReflect() { } 
void RadEqnSolve::InitExitance() { } 
void RadEqnSolve::UpdateUnsentStats() { } 

Listing 4.19 - RAD_TMP.CPP 

which do nothing other than allow us to continue our development without having to come back and 

change the code later on. RAD_TMP.CPP is a temporary file that will be replaced by RAD_EQN.CPP in 

Chapter Six. 

That’s it for platform-independent code in this chapter. The rest of our application program is entirely 

concerned with user interface details. 

4.19.1 A Scroll Bar Class 

Our bitmapped image can be whatever size we choose, subject only to the limits of available memory. 

As such, it may be larger than our display screen. To view the image in its entirety, we need to implement 

scroll bars. These are traditionally implemented in C within the dreaded “big switch” statement of 
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WinMain. (e.g., Petzold [1992]). However, the same code must be repeated for every child window that 

requires scroll bars. In C++, it makes more sense to create a scroll bar control class: 

// WIN_SBAR.H - MS-Windows Scroll Bar Control Class 
 
#ifndef _WIN_SBAR_H 
#define _WIN_SBAR_H 
 
#include "general.h" 
 
class WinScroll         // Scroll bar control 
{ 
  private: 
    HWND hwnd;          // Client window handle 
    POINT curr_pos;     // Current scroll position 
    POINT max_range;    // Maximum scroll range 
    POINT inc;          // Scroll increment 
    POINT size;         // Client window size 
 
  public: 
    WinScroll( HWND hw) 
    { 
      RECT rect;        // Rectangle structure 
 
      curr_pos.x = curr_pos.y = 0; 
      max_range.x = max_range.y = 0; 
      inc.x = inc.y = 0; 
 
      hwnd = hw; 
      GetClientRect(hwnd, &rect); 
      size.x = rect.right; 
      size.y = rect.bottom; 
 
      Hide(); 
    } 
 
    POINT Pos() { return curr_pos; } 
    void Hide(); 
    void Horz( WPARAM, WORD ); 
    void Init( int, int ); 
    void Set( int, int ); 
    void Vert( WPARAM, WORD ); 
}; 
 
#endif 

Listing 4.20 - WIN_SBAR.H 

where a WinScroll object is dynamically created for each window when the WM_CREATE message is 

processed and deleted under WM_DESTROY. 

As for the public member functions, Pos returns the current scroll bar button positions, Hide hides the 

scroll bars from view, Init initializes the scroll bars for a given bitmap image, Set reinitializes the scroll 
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bars after the window has been resized, and Horz and Vert process messages from the mouse and 

keyboard. These functions are implemented as: 

// WIN_SBAR.CPP - MS-Windows Scroll Bar Control Class 
 
#include "win_sbar.h" 
 
// Set scroll bar positions and ranges 
void WinScroll::Set( int width, int height ) 
{ 
  RECT rect; 
 
  GetClientRect(hwnd, &rect); 
  size.x = rect.right; 
  size.y = rect.bottom; 
 
  max_range.x = max(0, width - size.x); 
  curr_pos.x = min(curr_pos.x, max_range.x); 
 
  SetScrollRange(hwnd, SB_HORZ, 0, max_range.x, FALSE); 
  SetScrollPos(hwnd, SB_HORZ, curr_pos.x, TRUE); 
 
  max_range.y = max(0, height - size.y); 
  curr_pos.y = min(curr_pos.y, max_range.y); 
 
  SetScrollRange(hwnd, SB_VERT, 0, max_range.y, FALSE); 
  SetScrollPos(hwnd, SB_VERT, curr_pos.y, TRUE); 
} 
 
// Initialize scroll bar positions and ranges 
void WinScroll::Init( int width, int height ) 
{ 
  curr_pos.x = curr_pos.y = 0; 
  Set(width, height); 
} 
 
void WinScroll::Hide()  // Hide scroll bars 
{ 
  SetScrollRange(hwnd, SB_HORZ, 0, 0, TRUE); 
  SetScrollRange(hwnd, SB_VERT, 0, 0, TRUE); 
} 
 
// Process vertical scroll bar message 
void WinScroll::Vert( WPARAM sb_code, WORD sb_pos ) 
{ 
  switch (sb_code) 
  { 
    case SB_LINEUP: 
      inc.y = -1; 
      break; 
    case SB_LINEDOWN: 
      inc.y = 1; 
      break; 
    case SB_PAGEUP: 
      inc.y = min(-1, -size.y >> 2); 
      break; 
    case SB_PAGEDOWN: 
      inc.y = max(1, size.y >> 2); 
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      break; 
    case SB_TOP: 
      inc.y = -inc.y; 
      break; 
    case SB_BOTTOM: 
      inc.y = max_range.y - curr_pos.y; 
      break; 
    case SB_THUMBPOSITION: 
      inc.y = sb_pos - curr_pos.y; 
      break; 
    default: 
      inc.y = 0; 
  } 
 
  if ((inc.y = max(-curr_pos.y, min(inc.y, max_range.y - 
      curr_pos.y))) != 0) 
  { 
    curr_pos.y += inc.y; 
    ScrollWindow(hwnd, 0, -inc.y, NULL, NULL); 
    SetScrollPos(hwnd, SB_VERT, curr_pos.y, TRUE); 
    UpdateWindow(hwnd); 
  } 
} 
 
// Process horizontal scroll bar message 
void WinScroll::Horz( WPARAM sb_code, WORD sb_pos ) 
{ 
  switch (sb_code) 
  { 
    case SB_LINEUP: 
      inc.x = -1; 
      break; 
    case SB_LINEDOWN: 
      inc.x = 1; 
      break; 
    case SB_PAGEUP: 
      inc.x = min(-1, -size.x >> 2); 
      break; 
    case SB_PAGEDOWN: 
      inc.x = max(1, size.x >> 2); 
      break; 
    case SB_THUMBPOSITION: 
      inc.x = sb_pos - curr_pos.x; 
      break; 
    default: 
      inc.x = 0; 
  } 
 
  if ((inc.x = max(-curr_pos.x, min(inc.x, max_range.x - 
      curr_pos.x))) != 0) 
  { 
    curr_pos.x += inc.x; 
    ScrollWindow(hwnd, -inc.x, 0, NULL, NULL); 
    SetScrollPos(hwnd, SB_HORZ, curr_pos.x, TRUE); 
    UpdateWindow(hwnd); 
  } 
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} 

Listing 4.21 - WIN_SBAR.CPP 

WinScroll can be considered much like any other set of library functions: a black box. As long as it 

works, we need not concern ourselves with the details. We will see an example of its use shortly, but first 

we have to consider something more general. 

4.19.2 An Aside: MS-Windows Programming Issues 

Developing MS-Windows applications is at heart an exercise in C programming. The MS-Windows 

API is not designed for C++. Worse, the dreaded “big switch” statement in WinMain can be hidden but not 

ignored. Several C++ compiler vendors market class libraries designed to make Windows development in 

C++ easier, but these are at best proprietary solutions. 

Lacking an industry standard C++ compiler for MS-Windows (there are currently two strong 

contenders and several dark horses), we must take the traditional approach of programming in C. We 

thankfully do not have to abandon our C++ code, since C and C++ can (by design) coexist quite nicely. 

In fact, the only real problem lies in C++’s delightful habit of “name mangling”. While this may be 

necessary in order for the linker and debugger to distinguish between class functions with the same name, 

it wreaks havoc with callback functions (i.e., functions that are called by Windows rather than your own 

code). You declare your callback functions (such as MainWndProc) in the EXPORTS section of your 

module definition (.DEF) files. If the C++ compiler changes the names of these functions from 

“func_name” to something like “?func_name@@YAHH@Z”, your linker will be unable to resolve (i.e., 

find) them later. 

There are two solutions. First, you can add the _export keyword to the function prototypes and remove 

the function declarations from your .DEF file. Unfortunately, this precludes using ordinals to identify the 

exported functions to Windows, as in: 

EXPORTS 
  MainWndProc @1 
  About  @2 

Ordinals serve two purposes. One, Windows can process them faster, since it can use the ordinal to 

directly index a function pointer table instead of first matching a text string when calling the function. 
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Two, they hide the function names from people doing reverse engineering–an important issue for 

commercial applications. 

You could write your program using _export, then use the EXEHDR utility to look up the C++ 

mangled function names, add them to your .DEF file with accompanying ordinals, remove the _export 

references, and recompile. That’s the hard way. 

The second and simpler solution is to write the callback functions in C and declare them as such using 

C++’s extern “C” mechanism. The C++ compiler considers them to be C functions and compiles them 

without name mangling. This allows you to declare them in your module definition file as is and with 

ordinals. 

No, this book is not about MS-Windows programming. However, finding this particular information in 

the MS-Windows API documentation can be a painful experience. Enough said. 

One more comment regarding programming issues. Many older books on MS-Windows 3.x 

programming recommend using the medium memory model. This advice made sense when MS-Windows 

3.0 could run in real mode on an Intel 80286 or 8088 CPU. However, support for this mode was thankfully 

dropped from MS-Windows 3.1, which runs in standard or enhanced mode only. (Of course, there are no 

memory models to worry about in the 32-bit Windows NT operating system.) 

Another argument is that by using near rather than far pointers, a medium model program runs faster. 

While this may be true, the difference is usually minimal. Moreover, the source code becomes 

exponentially unintelligible with endless typecasts to far pointers. Worst of all, many otherwise standard C 

library functions are not usable in the medium model. You have to either copy function arguments between 

far and near memory or writing your own far code versions that accept near data. What a mess! 

This leads to one simple recommendation for all non-trivial 16-bit MS-Windows programs: 

16-BIT MS-WINDOWS: COMPILE USING THE LARGE MEMORY MODEL 

4.19.3 HELIOS - A Radiosity Renderer for MS-Windows 

HELIOS is our “minimal” viewing system for MS-Windows 3.1 and MS-Windows NT. None of the 

following pertains directly to radiosity rendering. For those readers familiar with MS-Windows 
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programming, it is an entirely straightforward implementation of a user interface. Otherwise, it is an 

imposingly large block of inscrutable code. 

Fortunately, we can view it as the proverbial black box. It works, and it provides all the user interface 

support we need for our radiosity renderer. As we saw in Listing 4.18, its relation to our radiosity renderer 

per se consists of a few function calls. If you must understand its details, a copy of Petzold [1992] and the 

MS-Windows API documentation is highly recommended as a tour guide. 

With this, we have: 

// HELIOS.H - Radiosity Renderer for MS-Windows 
 
#ifndef _HELIOS_H 
#define _HELIOS_H 
 
static const int MaxLen = 256; 
static const int Offset = 2; 
 
// Display type 
#define H_NONE  0       // None 
#define H_WIRE  1       // Wireframe 
#define H_BMAP  2       // Bitmap 
 
#ifdef WIN32 
// WIN32 message cracking macros 
#define GET_WM_COMMAND_ID(wp, lp)   LOWORD(wp) 
#define GET_WM_HSCROLL_POS(wp, lp)  HIWORD(wp) 
#define GET_WM_VSCROLL_POS(wp, lp)  HIWORD(wp) 
#else 
// WIN16 message cracking macros 
#define GET_WM_COMMAND_ID(wp, lp)   (wp) 
#define GET_WM_HSCROLL_POS(wp, lp)  LOWORD(lp) 
#define GET_WM_VSCROLL_POS(wp, lp)  LOWORD(lp) 
#endif 
 
int WINAPI WinMain( HINSTANCE, HINSTANCE, LPSTR, int ); 
 
static BOOL InitApplication( HINSTANCE ); 
static BOOL InitInstance( HINSTANCE, int ); 
static double GetDlgItemFloat( HWND, int ); 
static void CalcWireDim( short, short, short *, short * ); 
static void DoKeyDown( HWND, WPARAM ); 
static void SetDlgItemFloat( HWND, int, double ); 
 
extern "C" 
{ 
  LRESULT WINAPI MainWndProc( HWND, UINT, WPARAM, 
      LPARAM ); 
  LRESULT WINAPI WireWndProc( HWND, UINT, WPARAM, 
      LPARAM ); 
  BOOL CALLBACK About( HWND, UINT, WPARAM, LPARAM ); 
  BOOL CALLBACK SetCamera( HWND, UINT, WPARAM, LPARAM ); 
  BOOL CALLBACK SetConverge( HWND, UINT, WPARAM, LPARAM ); 
  BOOL CALLBACK SetDisplay( HWND, UINT, WPARAM, LPARAM ); 
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  BOOL CALLBACK SetEntityDir( HWND, UINT, WPARAM, LPARAM ); 
  BOOL CALLBACK SetView( HWND, UINT, WPARAM, LPARAM ); 
} 
 
#endif 

Listing 4.22 - HELIOS.H 

Note the use of the extern “C” mechanism. This is the one C++ language feature makes writing MS-

Windows applications using (mostly) generic C++ possible. 

Next, and with no apologies for its length, is the (again, mostly) C source for HELIOS. Thanks to the 

intimate relation between C and C++, HELIOS.CPP can be compiled as a C++ program. 

// HELIOS.CPP - Radiosity Renderer for MS-Windows 
 
#include <windows.h> 
#include <windowsx.h> 
#include <commdlg.h> 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include "error.h" 
#include "spheric3.h" 
#include "parse.h" 
#include "syn_cam.h" 
#include "win_meta.h" 
#include "win_bmap.h" 
#include "win_sbar.h" 
 
#if (defined(_HEMI_CUBE) || defined(_CUBIC_TETRA)) 
#include "prog_rad.h" 
#elif defined(_RAY_CAST) 
#include "ray_rad.h" 
#else 
#include "rad_eqn.h" 
#endif 
 
#include "resource.h" 
#include "helios.h" 
 
static char EntityDir[MaxLen];  // Entity directory 
static char WorldName[MaxLen];  // World file name buffer 
static char BitmapName[MaxLen]; // Bitmap file name buffer 
static char FileTitle[MaxLen];  // File title buffer 
static char StrBuffer[MaxLen];  // Temporary string buffer 
static HINSTANCE hInst;         // Current instance handle 
static OPENFILENAME Ofn;        // Open filename structure 
 
// Synthetic camera 
static SynCamera Camera(640, 480, -180.0, 90.0, 0.0, 0.0); 
 
static Environ Environment;     // Environment 
static Parse Parser;            // World file parser 
static WinMetaFile Wire;        // Metafile manager 
static WinBitmap Bitmap;        // Bitmap file manager 
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// Radiosity equation solver 
#if (defined(_HEMI_CUBE) || defined(_CUBIC_TETRA)) 
static ProgRad Radiosity;       // Progressive radiosity 
#elif defined(_RAY_CAST) 
static RayRad Radiosity;        // Ray cast radiosity 
#else 
static RadEqnSolve Radiosity;   // Dummy equation solver 
#endif 
 
static const char AppName[] = "HELIOS"; 
static const char BitmapSection[] = "Bitmap"; 
static const char EyeDistError[] = "Front distance is " 
    "behind eye position"; 
static const char FrontDistError[] = "Front distance must " 
    "be greater than zero"; 
static const char GammaError[] = "Gamma value must be " 
    "greater than zero"; 
static const char HeightEntry[] = "Height"; 
static const char HorzError[] = "Horizontal angles must be " 
    "between -180 and 180 degrees"; 
static const char InitFileName[] = "HELIOS.INI"; 
static const char MaxStepError[] = "Maximum number of " 
    "steps must be between 1 and 2000"; 
static const char NoiseError[] = "Noise level must be " 
    "between 0 and 8"; 
static const char PixelError[] = "Pixel values must be " 
    "between 32 and 1024"; 
static const char StopError[] = "Stopping criterion must be" 
    "between 0.0 and 1.0"; 
static const char WidthEntry[] = "Width"; 
static const char VertError[] = "Vertical angles must be " 
    "between 0 and 180 degrees"; 
static const char ViewDirName[] = "View Direction"; 
static const char ViewDistError[] = "View distance must be " 
    "greater than zero"; 
static const char ViewUpName[] = "View Up Vector"; 
static const char ViewUpError[] = "View-up vector is " 
    "collinear with view direction vector"; 
static const char WireClass[] = "WIRE"; 
 
// File type filters 
static const char InputFilterSpec[128] = 
    "World Files (*.WLD)\0*.WLD\0All Files (*.*)\0*.*\0"; 
static const char OutputFilterSpec[128] = 
    "BMP Files (*.BMP)\0*.BMP\0All Files (*.*)\0*.*\0"; 
 
static const int MaxStep = 2000; 
static const int MinPixel = 32; 
static const int MaxPixel = 1024; 
 
int WINAPI WinMain( HINSTANCE hinstance, HINSTANCE hpinst, 
    LPSTR pcmdline, int cmdshow ) 
{ 
  MSG msg;      // Window message 
 
  // Other instances of application running ? 
  if (!hpinst) 
    if (!InitApplication(hinstance)) 
      return FALSE; 
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  // Initialize current instance 
  if (!InitInstance(hinstance, cmdshow)) 
      return FALSE; 
 
  // Process window messages 
  while (GetMessage(&msg, NULL, NULL, NULL)) 
  { 
    TranslateMessage(&msg); 
    DispatchMessage(&msg); 
  } 
  return (int) msg.wParam; 
} 
 
// Initialize window data and register window classes 
static BOOL InitApplication( HINSTANCE hinstance ) 
{ 
  WNDCLASS wc;  // Window class 
 
  // Register main window class 
  wc.style = CS_VREDRAW | CS_HREDRAW; 
  wc.lpfnWndProc = (WNDPROC) MainWndProc; 
  wc.cbClsExtra = 0; 
  wc.cbWndExtra = 0; 
  wc.hInstance = hinstance; 
  wc.hIcon = LoadIcon(NULL, IDI_APPLICATION); 
  wc.hCursor = LoadCursor(NULL, IDC_ARROW); 
  wc.hbrBackground = GetStockObject(LTGRAY_BRUSH); 
  wc.lpszMenuName =  "HeliosMenu"; 
  wc.lpszClassName = AppName; 
 
  if (!RegisterClass(&wc)) 
    return FALSE; 
 
  // Register wireframe window class 
  wc.lpfnWndProc = (WNDPROC) WireWndProc; 
  wc.hIcon = NULL; 
  wc.hbrBackground = GetStockObject(WHITE_BRUSH); 
  wc.lpszClassName = WireClass; 
 
  return (RegisterClass(&wc) ? TRUE : FALSE); 
} 
 
// Save instance handle and create main window 
static BOOL InitInstance( HINSTANCE hinstance, int 
    cmdshow ) 
{ 
  HWND hwnd;    // Main window handle 
 
  hInst = hinstance;    // Save current instance handle 
 
  // Create main window for current instance 
  hwnd = CreateWindow(AppName, "HELIOS Radiosity " 
      "Renderer", WS_OVERLAPPEDWINDOW | WS_VSCROLL | 
      WS_HSCROLL, CW_USEDEFAULT, CW_USEDEFAULT, 
      CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, hinstance, 
      NULL); 
       
  if (hwnd == 0) 
    return FALSE; 
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  // Initialize open filename structure 
  Ofn.lStructSize = sizeof(OPENFILENAME); 
  Ofn.hwndOwner = hwnd; 
  Ofn.lpstrFilter = NULL; 
  Ofn.lpstrCustomFilter = NULL; 
  Ofn.nMaxCustFilter = 0; 
  Ofn.nFilterIndex = 1; 
  Ofn.lpstrFile = NULL; 
  Ofn.nMaxFile = MaxLen; 
  Ofn.lpstrInitialDir = NULL; 
  Ofn.lpstrFileTitle = FileTitle; 
  Ofn.nMaxFileTitle = MaxLen; 
  Ofn.lpstrTitle = NULL; 
  Ofn.lpstrDefExt = NULL; 
  Ofn.Flags = 0; 
 
  ShowWindow(hwnd, cmdshow);    // Show the window 
  UpdateWindow(hwnd);           // Paint the client area 
 
  return TRUE; 
} 
 
// Main window message handler 
LRESULT WINAPI MainWndProc( HWND hwnd, UINT msg, WPARAM 
    wparam, LPARAM lparam ) 
{ 
  static short xclient;         // Client area width 
  static short yclient;         // Client area height 
  static short xwire;           // Wireframe window width 
  static short ywire;           // Wireframe window height 
  static int d_type = H_NONE;   // Display type 
  static HWND hwnd_wire;        // Wireframe window handle 
  static WinScroll *pscroll;    // Scroll bar manager ptr 
  BOOL redraw;                  // Redraw flag 
  FARPROC pfunc;                // Exported fcn prolog ptr 
  HCURSOR hcursor;              // Cursor handle 
  HDC hdc;                      // Device context handle 
  HMENU hmenu;                  // Menu handle 
  PAINTSTRUCT ps;               // Window paint structure 
  POINT pos;                    // Point co-ordinates 
  RECT rc;                      // Rectangle co-ordinates 
 
  switch (msg) 
  { 
    case WM_CREATE:     // Create window 
      // Instantiate scroll bar manager 
      pscroll = new WinScroll(hwnd); 
      break; 
    case WM_SIZE:       // Get client area dimensions 
      xclient = LOWORD(lparam); 
      yclient = HIWORD(lparam); 
      switch (d_type) 
      { 
        case H_WIRE: 
          // Update wireframe display 
          CalcWireDim(xclient, yclient, &xwire, &ywire); 
          MoveWindow(hwnd_wire, Offset, Offset, xwire, 
              ywire, TRUE); 
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          break; 
        case H_BMAP: 
          // Set scroll bar manager 
          pscroll->Set(Camera.GetWidth(), 
              Camera.GetHeight()); 
          break; 
        default: 
          break; 
      } 
      break; 
    case WM_PAINT:      // Paint client area  
      hdc = BeginPaint(hwnd, &ps); 
      if (d_type == H_BMAP)         // Display bitmap ? 
      { 
        GetClientRect(hwnd, &rc); 
        pos = pscroll->Pos(); 
        if (Bitmap.Display(hdc, pos, rc) == FALSE) 
        { 
          d_type = H_NONE; 
          pscroll->Hide(); 
        } 
      } 
      EndPaint(hwnd, &ps); 
      break; 
    case WM_HSCROLL:    // Process horz scroll bar message 
      pscroll->Horz(wparam, GET_WM_HSCROLL_POS(wparam, 
          lparam)); 
      break; 
    case WM_VSCROLL:    // Process vertical scroll bar msg 
      pscroll->Vert(wparam, GET_WM_VSCROLL_POS(wparam, 
          lparam)); 
      break; 
    case WM_KEYDOWN:    // Process key down message 
      DoKeyDown(hwnd, wparam); 
      break; 
    case WM_COMMAND:    // Process window message 
      hmenu = GetMenu(hwnd);    // Get menu handle 
      switch (GET_WM_COMMAND_ID(wparam, lparam)) 
      { 
        case IDM_FILEOPEN:      // Open file 
          Ofn.lpstrDefExt = "WLD"; 
          Ofn.lpstrFilter = InputFilterSpec; 
          Ofn.lpstrFile = WorldName; 
          Ofn.Flags = OFN_HIDEREADONLY | OFN_READONLY; 
          if (GetOpenFileName((LPOPENFILENAME) &Ofn)) 
          { 
            switch (d_type) 
            { 
              case H_WIRE: 
                // Erase wireframe metafile 
                Wire.Erase(); 
                d_type = H_NONE; 
 
                // Destroy wireframe window 
                DestroyWindow(hwnd_wire); 
                break; 
              case H_BMAP: 
                Bitmap.Close();     // Close bitmap 
                d_type = H_NONE; 
                pscroll->Hide();    // Hide scroll bars 
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                // Disable Save As menu item 
                EnableMenuItem(hmenu, IDM_SAVEAS, 
                    MF_GRAYED); 
 
                InvalidateRect(hwnd, NULL, TRUE); 
                break; 
              default: 
                break; 
            } 
 
            // Parse environment file 
            if ((Parser.ParseFile(Ofn.lpstrFile, EntityDir, 
                &Environment)) == TRUE) 
            { 
              // Display environment statistics 
              wsprintf(StrBuffer, "Number of Instances = " 
                  "%u\nNumber of Surfaces = %u\nNumber of" 
                  " Patches = %u\nNumber of Elements = %u\n" 
                  "Number of Vertices = %u", 
                  Environment.GetNumInst(), 
                  Environment.GetNumSurf(), 
                  Environment.GetNumPatch(), 
                  Environment.GetNumElem(), 
                  Environment.GetNumVert()); 
              MessageBox(hwnd, StrBuffer, 
                  "Environment Statistics", MB_OK | 
                  MB_ICONINFORMATION); 
 
              // Update window title 
              wsprintf(StrBuffer, "HELIOS - %s", 
                  Ofn.lpstrFile); 
              SetWindowText(hwnd, StrBuffer); 
 
              // Enable rendering menu items 
              EnableMenuItem(hmenu, IDM_WIREFRAME, 
                  MF_ENABLED); 
              EnableMenuItem(hmenu, IDM_SHADED, 
                  MF_ENABLED); 
              EnableMenuItem(hmenu, IDM_RENDER, 
                  MF_ENABLED); 
 
              // Disable Redisplay menu item 
              EnableMenuItem(hmenu, IDM_REDISPLAY, 
                  MF_GRAYED); 
            } 
          } 
          break; 
        case IDM_SAVEAS:        // Save BMP file 
          Ofn.lpstrDefExt = "BMP"; 
          Ofn.lpstrFilter = OutputFilterSpec; 
          Ofn.lpstrFile = BitmapName; 
          Ofn.Flags = OFN_OVERWRITEPROMPT | 
              OFN_HIDEREADONLY; 
          if (GetSaveFileName((LPOPENFILENAME) &Ofn)) 
          { 
            // Write bitmap file 
            if (Bitmap.Write(Ofn.lpstrFile) == FALSE) 
            { 
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              sprintf(StrBuffer, "Could not save file %s", 
                  Ofn.lpstrFile); 
              ReportError(StrBuffer); 
            } 
          } 
          break; 
        case IDM_EXIT:          // Exit application 
          DestroyWindow(hwnd); 
          break; 
        case IDM_SETCAMERA:     // Set camera parameters 
          pfunc = (DLGPROC) MakeProcInstance((FARPROC) 
              SetCamera, hInst); 
          redraw = DialogBox(hInst, "SetCamera", hwnd, 
              pfunc); 
          FreeProcInstance((FARPROC) pfunc); 
          if (redraw == TRUE) 
          { 
            if (d_type == H_BMAP) 
            { 
              Bitmap.Close();   // Close bitmap 
              d_type = H_NONE; 
              pscroll->Hide();  // Hide scroll bars 
 
              // Disable Save As menu item 
              EnableMenuItem(hmenu, IDM_SAVEAS, MF_GRAYED); 
 
              InvalidateRect(hwnd, NULL, TRUE); 
            } 
 
            if (d_type == H_WIRE) 
            { 
              // Record wireframe display 
              Camera.Preview(Environment.GetInstPtr(), 
                  &Wire); 
 
              // Resize and redraw wireframe window 
              InvalidateRect(hwnd_wire, NULL, TRUE); 
              CalcWireDim(xclient, yclient, &xwire, &ywire); 
              MoveWindow(hwnd_wire, Offset, Offset, xwire, 
                  ywire, TRUE); 
            } 
          } 
          break; 
        case IDM_SETVIEW:       // Specify view direction 
          pfunc = (DLGPROC) MakeProcInstance((FARPROC) 
              SetView, hInst); 
          redraw = DialogBox(hInst, "SetView", hwnd, 
              pfunc); 
          FreeProcInstance((FARPROC) pfunc); 
          if (redraw == TRUE) 
          { 
            if (d_type == H_BMAP) 
            { 
              Bitmap.Close();   // Close bitmap 
              d_type = H_NONE; 
              pscroll->Hide();  // Hide scroll bars 
 
              // Disable Save As menu item 
              EnableMenuItem(hmenu, IDM_SAVEAS, MF_GRAYED); 
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              InvalidateRect(hwnd, NULL, TRUE); 
            } 
 
            if (d_type == H_WIRE) 
            { 
              // Record wireframe display 
              Camera.Preview(Environment.GetInstPtr(), 
                  &Wire); 
              InvalidateRect(hwnd_wire, NULL, TRUE); 
            } 
          } 
          break; 
        case IDM_WIREFRAME:     // Wireframe display 
          if (d_type != H_WIRE) 
          { 
            if (d_type == H_BMAP) 
            { 
              Bitmap.Close();   // Close bitmap 
              d_type = H_NONE; 
              pscroll->Hide();  // Hide scroll bars 
 
              // Disable Save As menu item 
              EnableMenuItem(hmenu, IDM_SAVEAS, MF_GRAYED); 
 
              InvalidateRect(hwnd, NULL, TRUE); 
            } 
 
            // Create wireframe window 
            CalcWireDim(xclient, yclient, &xwire, 
                &ywire); 
            hwnd_wire = CreateWindow(WireClass, NULL, 
                WS_CHILD | WS_VISIBLE | WS_BORDER | 
                WS_DISABLED, Offset, Offset, xwire, ywire, 
                    hwnd, NULL, hInst, NULL); 
            d_type = H_WIRE; 
 
            // Record wireframe display 
            if (Camera.Preview(Environment.GetInstPtr(), 
                &Wire) == FALSE) 
              OutOfMemory(); 
          } 
          break; 
        case IDM_SHADED:        // Shaded display 
        case IDM_RENDER:        // Radiosity rendering 
          // Display hourglass cursor 
          hcursor = SetCursor(LoadCursor(NULL, IDC_WAIT)); 
 
          if (wparam == IDM_RENDER) 
          { 
            // Confirm radiosity equation solver status 
            if (Radiosity.GetStatus() == FALSE) 
            { 
              OutOfMemory(); 
              break; 
            } 
 
            // Initialize equation solver 
            if (Radiosity.Open(&Environment) == FALSE) 
            { 
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              OutOfMemory(); 
              break; 
            } 
 
            // Perform radiosity calculations 
            while (Radiosity.Calculate() == FALSE) 
              ; 
 
            // Close radiosity equation solver 
            Radiosity.Close(); 
 
            // Disable Rendering menu item 
            EnableMenuItem(hmenu, IDM_RENDER, MF_GRAYED); 
          } 
          else 
          { 
            // Set vertice exitances to parent surface 
            // reflectances 
            Radiosity.Shade(Environment.GetInstPtr()); 
 
            // Enable Rendering menu item 
            EnableMenuItem(hmenu, IDM_RENDER, MF_ENABLED); 
          } 
   
          // Open bitmap 
          if (Bitmap.Open(Camera.GetWidth(), 
              Camera.GetHeight()) == TRUE) 
          { 
            // Record shaded display 
            if (Camera.Shoot(Environment.GetInstPtr(), 
                &Bitmap) == TRUE) 
            { 
              if (d_type == H_WIRE) 
              { 
                // Erase wireframe metafile (if any) 
                Wire.Erase(); 
 
                // Destroy wireframe window 
                DestroyWindow(hwnd_wire); 
              } 
 
              // Initialize scroll bar manager 
              pscroll->Init(Camera.GetWidth(), 
                  Camera.GetHeight()); 
 
              // Enable bitmap Redisplay menu item 
              EnableMenuItem(hmenu, IDM_REDISPLAY, 
                  MF_ENABLED); 
 
              // Enable Save As menu item 
              EnableMenuItem(hmenu, IDM_SAVEAS, MF_ENABLED); 
 
              // Display bitmap (via WM_PAINT) 
              InvalidateRect(hwnd, NULL, TRUE); 
              d_type = H_BMAP; 
            } 
 
            SetCursor(hcursor);     // Redisplay old cursor 
 
            if (d_type == H_BMAP)   // Check for error 
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            { 
              if (wparam == IDM_RENDER) 
              { 
                MessageBeep(MB_OK);     // Signal completion 
 
                // Display convergence statistics 
                sprintf(StrBuffer, "Number of Steps = %d\n" 
                    "Convergence = %f", 
                Radiosity.GetStepCount(), 
                Radiosity.GetConvergence()); 
 
                MessageBox(hwnd, StrBuffer, "Convergence " 
                    "Statistics", MB_OK | 
                    MB_ICONINFORMATION); 
              } 
            } 
            else 
              OutOfMemory(); 
          } 
          break; 
        case IDM_REDISPLAY:     // Redisplay bitmap 
          // Display hourglass cursor 
          hcursor = SetCursor(LoadCursor(NULL, IDC_WAIT)); 
 
          // Open bitmap 
          if (Bitmap.Open(Camera.GetWidth(), 
              Camera.GetHeight()) == TRUE) 
          { 
            // Record shaded display 
            if (Camera.Shoot(Environment.GetInstPtr(), 
                &Bitmap) == TRUE) 
            { 
              if (d_type == H_WIRE) 
              { 
                // Erase wireframe metafile (if any) 
                Wire.Erase(); 
 
                // Destroy wireframe window 
                DestroyWindow(hwnd_wire); 
              } 
 
              // Initialize scroll bar manager 
              pscroll->Init(Camera.GetWidth(), 
                  Camera.GetHeight()); 
 
              // Enable Save As menu item 
              EnableMenuItem(hmenu, IDM_SAVEAS, MF_ENABLED); 
 
              // Display bitmap (via WM_PAINT) 
              InvalidateRect(hwnd, NULL, TRUE); 
              d_type = H_BMAP; 
            } 
 
            SetCursor(hcursor);     // Redisplay old cursor 
          } 
          break; 
        case IDM_DIRECTORY:     // Set entity directory 
          pfunc = (DLGPROC) MakeProcInstance((FARPROC) 
              SetEntityDir, hInst); 
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          DialogBox(hInst, "SetEntityDir", hwnd, pfunc); 
          FreeProcInstance((FARPROC) pfunc); 
          break; 
        case IDM_SETCONVERGE:   // Set convergence 
          pfunc = (DLGPROC) MakeProcInstance((FARPROC) 
              SetConverge, hInst); 
          redraw = DialogBox(hInst, "SetConverge", hwnd, 
              pfunc); 
          FreeProcInstance((FARPROC) pfunc); 
          if (redraw == TRUE) 
          { 
            // Enable Rendering menu item 
            EnableMenuItem(hmenu, IDM_RENDER, MF_ENABLED); 
          } 
          break; 
        case IDM_SETDISPLAY:    // Set display parameters 
          pfunc = (DLGPROC) MakeProcInstance((FARPROC) 
              SetDisplay, hInst); 
          DialogBox(hInst, "SetDisplay", hwnd, pfunc); 
          FreeProcInstance((FARPROC) pfunc); 
          break; 
        case IDM_ABOUT:         // Display About box 
          pfunc = (DLGPROC) MakeProcInstance((FARPROC) 
              About, hInst); 
          DialogBox(hInst, "AboutBox", hwnd, pfunc); 
          FreeProcInstance((FARPROC) pfunc); 
          break; 
        default: 
          break; 
      } 
      break; 
    case WM_DESTROY:    // Destroy window 
      delete pscroll;           // Delete scroll bar manager 
      Wire.Erase();             // Erase wireframe metafile 
      Bitmap.Close();           // Release bitmap memory 
      PostQuitMessage(0); 
      break; 
    default: 
      return DefWindowProc(hwnd, msg, wparam, lparam); 
  } 
  return NULL; 
} 
 
// Wireframe window message handler 
LRESULT WINAPI WireWndProc( HWND hwnd, UINT msg, WPARAM 
    wparam, LPARAM lparam ) 
{ 
  static short xclient;         // Client area width 
  static short yclient;         // Client area height 
 
  switch (msg) 
  { 
    case WM_SIZE: 
      xclient = LOWORD(lparam); 
      yclient = HIWORD(lparam); 
      break; 
    case WM_PAINT:      // Paint client area 
      Wire.Play(hwnd, Camera.GetWidth(), Camera.GetHeight(), 
          xclient, yclient); 
      break; 
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    default: 
      return DefWindowProc(hwnd, msg, wparam, lparam); 
  } 
  return NULL; 
} 
 
// Set entities directory 
BOOL CALLBACK SetEntityDir( HWND hdlg, UINT msg, WPARAM 
    wparam, LPARAM lparam ) 
{ 
  switch (msg) 
  { 
    case WM_INITDIALOG: 
        SetDlgItemText(hdlg, IDC_ENTITY, EntityDir); 
      return TRUE; 
    case WM_COMMAND: 
      switch (GET_WM_COMMAND_ID(wparam, lparam)) 
      { 
        case IDOK: 
          GetDlgItemText(hdlg, IDC_ENTITY, EntityDir, 
              sizeof(EntityDir)); 
          EndDialog(hdlg, TRUE); 
          return TRUE; 
        case IDCANCEL: 
          EndDialog(hdlg, FALSE); 
          return TRUE; 
        default: 
          break; 
      } 
      break; 
    default: 
      break; 
  } 
  return FALSE; 
} 
 
// Set camera parameters 
BOOL CALLBACK SetCamera( HWND hdlg, UINT msg, WPARAM 
    wparam, LPARAM lparam ) 
{ 
  double vpd, fpd, bpd;     // Camera distances 
  int w, h;                 // Bitmap window dimensions 
  BOOL dummy;               // Dummy parameter 
 
  switch (msg) 
  { 
    case WM_INITDIALOG: 
      // Get camera distances 
      SetDlgItemFloat(hdlg, IDC_VDIST, 
          Camera.GetViewDist()); 
      SetDlgItemFloat(hdlg, IDC_FDIST, 
          Camera.GetFrontDist()); 
      SetDlgItemFloat(hdlg, IDC_BDIST, 
          Camera.GetBackDist()); 
 
      // Get bitmap window dimensions 
      SetDlgItemInt(hdlg, IDC_HPIXSZ, Camera.GetWidth(), 
          FALSE); 
      SetDlgItemInt(hdlg, IDC_VPIXSZ, Camera.GetHeight(), 
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          FALSE); 
 
      return TRUE; 
    case WM_COMMAND: 
      switch (GET_WM_COMMAND_ID(wparam, lparam)) 
      { 
        case IDOK: 
          // Validate distances 
          vpd = GetDlgItemFloat(hdlg, IDC_VDIST); 
          fpd = GetDlgItemFloat(hdlg, IDC_FDIST); 
          bpd = GetDlgItemFloat(hdlg, IDC_BDIST); 
 
          if (vpd <= 0.0) 
          { 
            MessageBox(hdlg, ViewDistError, AppName, 
                MB_ICONEXCLAMATION | MB_OK); 
            return FALSE; 
          } 
 
          if (fpd >= bpd) 
          { 
            MessageBox(hdlg, FrontDistError, AppName, 
                MB_ICONEXCLAMATION | MB_OK); 
            return FALSE; 
          } 
 
          if (fpd < -(vpd - MIN_VALUE)) 
          { 
            MessageBox(hdlg, EyeDistError, AppName, 
                MB_ICONEXCLAMATION | MB_OK); 
            return FALSE; 
          } 
 
          // Validate bitmap window dimensions 
          w =  (int) GetDlgItemInt(hdlg, IDC_HPIXSZ, &dummy, 
              FALSE); 
          h =  (int) GetDlgItemInt(hdlg, IDC_VPIXSZ, &dummy, 
              FALSE); 
          if (w < MinPixel || w > MaxPixel || h < MinPixel 
              || h > MaxPixel) 
          { 
            MessageBox(hdlg, PixelError, AppName, 
                MB_ICONEXCLAMATION | MB_OK); 
            return FALSE; 
          } 
 
          // Set distances 
          Camera.SetViewDist(vpd); 
          Camera.SetFrontDist(fpd); 
          Camera.SetBackDist(bpd); 
 
          // Set bitmap window dimensions 
          Camera.SetWidth(w); 
          Camera.SetHeight(h); 
 
          // Update view system parameters 
          Camera.UpdateViewSystem(); 
 
          EndDialog(hdlg, TRUE); 
          return TRUE; 
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        case IDCANCEL: 
          EndDialog(hdlg, FALSE); 
          return TRUE; 
        default: 
          break; 
      } 
      break; 
    default: 
      break; 
  } 
  return FALSE; 
} 
 
// Set camera view direction 
BOOL CALLBACK SetView( HWND hdlg, UINT msg, WPARAM 
    wparam, LPARAM lparam ) 
{ 
  double vdvv;          // View dir vert angle (degrees) 
  double vdvh;          // View dir horz angle (degrees) 
  double vupv;          // View-up vert angle (degrees) 
  double vuph;          // View-up horz angle (degrees) 
  Point3 eye_posn;      // Camera eye position 
  Vector3 view_dir;     // View direction vector 
  Vector3 view_up;      // View-up vector 
  Spheric3 vdv_angle;   // View direction angles (radians) 
  Spheric3 vup_angle;   // View-up vector angles (radians) 
 
  switch (msg) 
  { 
    case WM_INITDIALOG: 
      // Get camera eye position 
      eye_posn = Camera.GetEyePosn(); 
      SetDlgItemFloat(hdlg, IDC_XPOS, eye_posn.GetX()); 
      SetDlgItemFloat(hdlg, IDC_YPOS, eye_posn.GetY()); 
      SetDlgItemFloat(hdlg, IDC_ZPOS, eye_posn.GetZ()); 
 
      // Get view direction vector angles 
      SetDlgItemFloat(hdlg, IDC_VDVV, 
          Camera.GetViewDirVert()); 
      SetDlgItemFloat(hdlg, IDC_VDVH, 
          Camera.GetViewDirHorz()); 
 
      // Get view-up vector angles 
      SetDlgItemFloat(hdlg, IDC_VUPV, 
          Camera.GetViewUpVert()); 
      SetDlgItemFloat(hdlg, IDC_VUPH,  
          Camera.GetViewUpHorz()); 
 
      return TRUE; 
    case WM_COMMAND: 
      switch (GET_WM_COMMAND_ID(wparam, lparam)) 
      { 
        case IDOK: 
          // Get eye position 
          eye_posn.SetX(GetDlgItemFloat(hdlg, IDC_XPOS)); 
          eye_posn.SetY(GetDlgItemFloat(hdlg, IDC_YPOS)); 
          eye_posn.SetZ(GetDlgItemFloat(hdlg, IDC_ZPOS)); 
 
          // Validate view direction angles 
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          vdvv = GetDlgItemFloat(hdlg, IDC_VDVV); 
          vdvh = GetDlgItemFloat(hdlg, IDC_VDVH); 
 
          if (vdvv < 0.0 || vdvv > 180.0) 
          { 
            MessageBox(hdlg, VertError, ViewDirName, MB_OK | 
                MB_ICONEXCLAMATION); 
            return FALSE; 
          } 
 
          if (vdvh < -180.0 || vdvh > 180.0) 
          { 
            MessageBox(hdlg, HorzError, ViewDirName, MB_OK 
                | MB_ICONEXCLAMATION); 
            return FALSE; 
          } 
 
          vdv_angle.SetVert(DegToRad(vdvv)); 
          vdv_angle.SetHorz(DegToRad(vdvh)); 
          vdv_angle.SpherToRect(&view_dir); 
 
          // Validate view-up angles 
          vupv = GetDlgItemFloat(hdlg, IDC_VUPV); 
          vuph = GetDlgItemFloat(hdlg, IDC_VUPH); 
 
          if (vupv < 0.0 || vupv > 180.0) 
          { 
            MessageBox(hdlg, VertError, ViewUpName, MB_OK | 
                MB_ICONEXCLAMATION); 
            return FALSE; 
          } 
 
          if (vuph < -180.0 || vuph > 180.0) 
          { 
            MessageBox(hdlg, HorzError, ViewUpName, MB_OK | 
                MB_ICONEXCLAMATION); 
            return FALSE; 
          } 
 
          vup_angle.SetVert(DegToRad(vupv)); 
          vup_angle.SetHorz(DegToRad(vuph)); 
 
          // Check for collinear vectors 
          vup_angle.SpherToRect(&view_up); 
 
          if ((1.0 - fabs(Dot(view_dir, view_up))) < 
              MIN_VALUE) 
          { 
            MessageBox(hdlg, ViewUpError, AppName, MB_OK | 
                MB_ICONEXCLAMATION); 
            return FALSE; 
          } 
 
          // Set camera view parameters 
          Camera.SetEyePosn(eye_posn); 
          Camera.SetViewDirVector(vdvh, vdvv); 
          Camera.SetViewUpVector(vuph, vupv); 
 
          // Update view system parameters 
          Camera.UpdateViewSystem(); 
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          EndDialog(hdlg, TRUE); 
          return TRUE; 
        case IDCANCEL: 
          EndDialog(hdlg, FALSE); 
          return TRUE; 
        default: 
          break; 
      } 
      break; 
    default: 
      break; 
  } 
  return FALSE; 
} 
 
// Set radiosity rendering convergence parameters 
BOOL CALLBACK SetConverge( HWND hdlg, UINT msg, WPARAM 
    wparam, LPARAM lparam ) 
{ 
  int mp;       // Maximum number of steps 
  double sc;    // Stopping criterion 
  BOOL dummy;   // Dummy parameter 
 
  switch (msg) 
  { 
    case WM_INITDIALOG: 
      SetDlgItemInt(hdlg, IDC_MSTEP, Radiosity.GetMaxStep(), 
          FALSE); 
      SetDlgItemFloat(hdlg, IDC_STOPC, 
          Radiosity.GetStopCriterion()); 
      CheckDlgButton(hdlg, IDC_AMBIENT_EN, 
          Radiosity.AmbientFlag()); 
      if (Radiosity.OverShootFlag() == TRUE) 
        CheckDlgButton(hdlg, IDC_OVER_EN, TRUE); 
      return TRUE; 
    case WM_COMMAND: 
      switch (GET_WM_COMMAND_ID(wparam, lparam)) 
      { 
        case IDOK: 
          // Validate parameters 
          mp = GetDlgItemInt(hdlg, IDC_MSTEP, &dummy, TRUE); 
          sc = GetDlgItemFloat(hdlg, IDC_STOPC); 
 
          if (mp < 1 || mp > MaxStep) 
          { 
            MessageBox(hdlg, MaxStepError, AppName, 
                MB_ICONEXCLAMATION | MB_OK); 
            return FALSE; 
          } 
 
          if (sc <= 0.0 || sc > 1.0) 
          { 
            MessageBox(hdlg, StopError, AppName, 
                MB_ICONEXCLAMATION | MB_OK); 
            return FALSE; 
          } 
 
          // Set convergence parameters 
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          Radiosity.SetMaxStep(mp); 
          Radiosity.SetStopCriterion(sc); 
 
          if (IsDlgButtonChecked(hdlg, IDC_AMBIENT_EN) != 0) 
            Radiosity.EnableAmbient(); 
          else 
            Radiosity.DisableAmbient(); 
 
          if (IsDlgButtonChecked(hdlg, IDC_OVER_EN) != 0) 
            Radiosity.EnableOverShoot(); 
          else 
            Radiosity.DisableOverShoot(); 
 
          EndDialog(hdlg, TRUE); 
          return TRUE; 
        case IDCANCEL: 
          EndDialog(hdlg, FALSE); 
          return TRUE; 
        default: 
          break; 
      } 
      break; 
    default: 
      break; 
  } 
  return FALSE; 
} 
 
// Set display parameters 
BOOL CALLBACK SetDisplay( HWND hdlg, UINT msg, WPARAM 
    wparam, LPARAM lparam ) 
{ 
  double gamma;         // Gamma value 
  int noise;            // Noise level 
  BOOL dummy;           // Dummy parameter 
  static int c_type;    // Display color type 
 
  switch (msg) 
  { 
    case WM_INITDIALOG: 
      c_type = Camera.GetColorType(); 
      CheckDlgButton(hdlg, IDC_GAMMA_EN, 
          Camera.GammaFlag()); 
      SetDlgItemFloat(hdlg, IDC_GAMMA, Camera.GetGamma()); 
      CheckDlgButton(hdlg, IDC_JITTER_EN, 
          Camera.JitterFlag()); 
      SetDlgItemInt(hdlg, IDC_JITTER, 
          Camera.GetNoiseLevel(), FALSE); 
      CheckRadioButton(hdlg, IDC_RGB, IDC_PSEUDO, c_type + 
          IDC_RGB); 
      return TRUE; 
    case WM_COMMAND: 
      switch (GET_WM_COMMAND_ID(wparam, lparam)) 
      { 
        case IDC_RGB: 
        case IDC_MONO: 
        case IDC_PSEUDO: 
          c_type = wparam - IDC_RGB; 
          CheckRadioButton(hdlg, IDC_RGB, IDC_PSEUDO, 
              wparam); 
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          break; 
        case IDOK: 
          if (IsDlgButtonChecked(hdlg, IDC_GAMMA_EN) != 0) 
            Camera.EnableGamma(); 
          else 
            Camera.DisableGamma(); 
 
          gamma = GetDlgItemFloat(hdlg, IDC_GAMMA); 
 
          if (gamma <= 0.0) 
          { 
            MessageBox(hdlg, GammaError, AppName, 
                MB_ICONEXCLAMATION | MB_OK); 
            return FALSE; 
          } 
 
          // Set gamma correction parameter 
          Camera.SetGamma(gamma); 
 
          if (IsDlgButtonChecked(hdlg, IDC_JITTER_EN) != 0) 
            Camera.EnableJitter(); 
          else 
            Camera.DisableJitter(); 
 
          noise = GetDlgItemInt(hdlg, IDC_JITTER, &dummy, 
              TRUE); 
 
          if (noise < 0 || noise > 8) 
          { 
            MessageBox(hdlg, NoiseError, AppName, 
                MB_ICONEXCLAMATION | MB_OK); 
            return FALSE; 
          } 
 
          // Set noise level parameter 
          Camera.SetNoiseLevel(noise); 
 
          // Set display color type 
          Camera.SetColorType(c_type); 
 
          EndDialog(hdlg, TRUE); 
          return TRUE; 
        case IDCANCEL: 
          EndDialog(hdlg, FALSE); 
          return TRUE; 
        default: 
          break; 
      } 
      break; 
    default: 
      break; 
  } 
  return FALSE; 
} 
 
// Display About dialog box 
BOOL CALLBACK About( HWND hdlg, UINT msg, WPARAM wparam, 
    LPARAM lparam ) 
{ 
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  switch (msg) 
  { 
    case WM_INITDIALOG: 
      return TRUE; 
    case WM_COMMAND: 
      if (wparam == IDOK || wparam == IDCANCEL) 
      { 
        EndDialog(hdlg, TRUE); 
        return TRUE; 
      } 
      break; 
    default: 
      break; 
  } 
  return FALSE; 
} 
 
// Get floating point dialog item 
static double GetDlgItemFloat( HWND hdlg, int id ) 
{ 
  (void) GetDlgItemText(hdlg, id, StrBuffer, 
      sizeof(StrBuffer)); 
  return atof(StrBuffer); 
} 
 
// Set floating point dialog item 
static void SetDlgItemFloat( HWND hdlg, int id, double num ) 
{ 
  sprintf(StrBuffer, "%6.5f", num); 
  SetDlgItemText(hdlg, id, StrBuffer); 
} 
 
// Calculate wireframe window dimensions 
void CalcWireDim( short xclient, short yclient, short 
    *pxchild, short *pychild ) 
{ 
  double client_aspect; 
  double child_aspect; 
 
  if (yclient > 0) 
  { 
    client_aspect = (double) xclient / (double) yclient; 
    child_aspect = (double) Camera.GetWidth() / (double) 
        Camera.GetHeight(); 
    if (client_aspect >= child_aspect) 
    { 
      *pychild = (short) max(yclient - Offset * 2, Offset); 
      *pxchild = (short) ((double) *pychild * child_aspect); 
    } 
    else 
    { 
      *pxchild = (short) max(xclient - Offset * 2, Offset); 
      *pychild = (short) ((double) *pxchild / child_aspect); 
    } 
  } 
  else 
    *pxchild = *pychild = Offset; 
} 
 
// Process WM_KEYDOWN message 
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void DoKeyDown( HWND hwnd, WPARAM wparam ) 
{ 
  switch (GET_WM_COMMAND_ID(wparam, lparam)) 
  { 
    case VK_HOME: 
      SendMessage(hwnd, WM_VSCROLL, SB_TOP, 0L); 
      break; 
    case VK_END: 
      SendMessage(hwnd, WM_VSCROLL, SB_BOTTOM, 0L); 
      break; 
    case VK_PRIOR: 
      SendMessage(hwnd, WM_VSCROLL, SB_PAGEUP, 0L); 
      break; 
    case VK_NEXT: 
      SendMessage(hwnd, WM_VSCROLL, SB_PAGEDOWN, 0L); 
      break; 
    case VK_UP: 
      SendMessage(hwnd, WM_VSCROLL, SB_LINEUP, 0L); 
      break; 
    case VK_DOWN: 
      SendMessage(hwnd, WM_VSCROLL, SB_LINEDOWN, 0L); 
      break; 
    case VK_LEFT: 
      SendMessage(hwnd, WM_HSCROLL, SB_PAGEUP, 0L); 
      break; 
    case VK_RIGHT: 
      SendMessage(hwnd, WM_HSCROLL, SB_PAGEDOWN, 0L); 
      break; 
  } 
} 

Listing 4.23 - HELIOS.CPP 

Being an MS-Windows program, HELIOS needs a few additional files. Its menus and dialog boxes are 

defined in its “resource script” file, HELIOS.RC. This file is compiled separately and appended to the 

executable file during the linking process. 

RESOURCE.H is an include file for HELIOS.RC: 

// RESOURCE.H - HELIOS.RC Include File 
 
#ifndef _RESOURCE_H 
#define _RESOURCE_H 
 
#define IDM_FILEOPEN    100 
#define IDM_SAVEAS      101 
#define IDM_EXIT        102 
#define IDM_DIRECTORY   103 
#define IDM_SETCAMERA   104 
#define IDM_SETVIEW     105 
#define IDM_WIREFRAME   106 
#define IDM_SHADED      107 
#define IDM_RENDER      108 
#define IDM_REDISPLAY   109 
#define IDM_SETCONVERGE 110 
#define IDM_SETDISPLAY  111 
#define IDM_ABOUT       112 
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#define IDC_XPOS        1000 
#define IDC_YPOS        1001 
#define IDC_ZPOS        1002 
#define IDC_VDVV        1003 
#define IDC_VDVH        1004 
#define IDC_VUPV        1005 
#define IDC_VUPH        1006 
#define IDC_VDIST       1007 
#define IDC_FDIST       1008 
#define IDC_BDIST       1009 
#define IDC_HPIXSZ      1010 
#define IDC_VPIXSZ      1011 
#define IDC_ENTITY      1012 
#define IDC_GAMMA       1013 
#define IDC_GAMMA_EN    1014 
#define IDC_JITTER      1015 
#define IDC_JITTER_EN   1016 
#define IDC_MSTEP       1017 
#define IDC_STOPC       1018 
#define IDC_AMBIENT_EN  1019 
#define IDC_OVER_EN     1020 
#define IDC_RGB         1021 
#define IDC_MONO        1022 
#define IDC_PSEUDO      1023 
#define IDC_STATIC      -1 
 
#endif 

Listing 4.24 - RESOURCE.H 

The resource script itself is: 

// HELIOS.RC - Resource Script 
 
#include <windows.h> 
#include "resource.h" 
 
HELIOSMENU MENU DISCARDABLE  
BEGIN 
  POPUP "&File" 
  BEGIN 
    MENUITEM "&Open...",              IDM_FILEOPEN 
    MENUITEM "&Save As...",           IDM_SAVEAS, GRAYED 
    MENUITEM SEPARATOR 
    MENUITEM "&Directories...",       IDM_DIRECTORY 
    MENUITEM SEPARATOR 
    MENUITEM "&Exit",                 IDM_EXIT 
  END 
  POPUP "&Camera" 
  BEGIN 
    MENUITEM "Set &Parameters...",    IDM_SETCAMERA 
  END 
  POPUP "&View" 
  BEGIN 
    MENUITEM "Specify &View...",      IDM_SETVIEW 
  END 
  POPUP "&Render" 
  BEGIN 
    MENUITEM "&Wireframe",            IDM_WIREFRAME, GRAYED 
    MENUITEM "&Shaded",               IDM_SHADED, GRAYED 
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    MENUITEM "&Rendering",            IDM_RENDER, GRAYED 
    MENUITEM "Re&display",            IDM_REDISPLAY, GRAYED 
  END 
  POPUP "&Options" 
  BEGIN 
    MENUITEM "&Set Convergence...",   IDM_SETCONVERGE 
    MENUITEM "&Set Display...",       IDM_SETDISPLAY 
  END 
  POPUP "&Help" 
  BEGIN 
    MENUITEM "&About HELIOS...",      IDM_ABOUT 
  END 
END 
 
SETENTITYDIR DIALOG DISCARDABLE  32, 32, 255, 52 
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU 
CAPTION "Directories" 
FONT 8, "MS Sans Serif" 
BEGIN 
  LTEXT         "Entities File Path:",IDC_STATIC,6,10,60,8 
  EDITTEXT      IDC_ENTITY,73,8,118,12,ES_AUTOHSCROLL 
  DEFPUSHBUTTON "OK",IDOK,199,6,48,16 
  PUSHBUTTON    "Cancel",IDCANCEL,199,26,48,16 
END 
 
SETCAMERA DIALOG DISCARDABLE  32, 32, 198, 154 
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU 
CAPTION "Camera Parameters" 
FONT 8, "MS Sans Serif" 
BEGIN 
  GROUPBOX      "Camera Distances",IDC_STATIC,6,6,127,76 
  LTEXT         "View Distance:",IDC_STATIC,12,22,68,8 
  LTEXT         "Front Plane Distance:",IDC_STATIC,12,42,68, 
                8 
  LTEXT         "Back Plane Distance:",IDC_STATIC,12,62,68, 
                8 
  GROUPBOX      "Window Dimensions",IDC_STATIC,6,88,127,56 
  LTEXT         "Horizontal Pixels:",IDC_STATIC,12,104,78,8 
  LTEXT         "Vertical Pixels:",IDC_STATIC,12,124,78,8 
  EDITTEXT      IDC_VDIST,82,20,42,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_FDIST,82,40,42,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_BDIST,82,60,42,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_HPIXSZ,104,102,20,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_VPIXSZ,104,122,20,12,ES_AUTOHSCROLL 
  DEFPUSHBUTTON "OK",IDOK,142,10,48,16 
  PUSHBUTTON    "Cancel",IDCANCEL,142,30,48,16 
END 
 
SETVIEW DIALOG DISCARDABLE  32, 32, 152, 192 
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU 
CAPTION "View Parameters" 
FONT 8, "MS Sans Serif" 
BEGIN 
  GROUPBOX      "Eye Position",IDC_STATIC,6,6,81,64 
  LTEXT         "X-Axis:",IDC_STATIC,11,20,24,8 
  LTEXT         "Y-Axis:",IDC_STATIC,11,36,24,8 
  LTEXT         "Z-Axis:",IDC_STATIC,11,52,24,8 
  GROUPBOX      "View Direction",IDC_STATIC,6,78,120,48 
  LTEXT         "Vertical:",IDC_STATIC,11,108,36,8 
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  LTEXT         "Horizontal:",IDC_STATIC,11,92,36,8 
  LTEXT         "Degrees",IDC_STATIC,92,92,28,8 
  LTEXT         "Degrees",IDC_STATIC,92,108,28,8 
  GROUPBOX      "View-Up Vector",IDC_STATIC,6,134,120,48 
  LTEXT         "Horizontal:",IDC_STATIC,11,148,36,8 
  LTEXT         "Vertical:",IDC_STATIC,11,164,36,8 
  LTEXT         "Degrees",IDC_STATIC,92,148,28,8 
  LTEXT         "Degrees",IDC_STATIC,92,164,28,8 
  EDITTEXT      IDC_XPOS,36,18,42,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_YPOS,36,34,42,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_ZPOS,36,50,42,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_VDVH,48,90,38,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_VDVV,48,106,38,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_VUPH,48,146,38,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_VUPV,48,162,38,12,ES_AUTOHSCROLL 
  DEFPUSHBUTTON "OK",IDOK,96,10,48,16 
  PUSHBUTTON    "Cancel",IDCANCEL,96,30,48,16 
END 
 
#ifdef _RAY_CAST 
SETCONVERGE DIALOG DISCARDABLE  32, 32, 178, 74 
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU 
CAPTION "Convergence Parameters" 
FONT 8, "MS Sans Serif" 
BEGIN 
  LTEXT         "Maximum Steps:",IDC_STATIC,6,14,69,8 
  LTEXT         "Stopping Criterion:",IDC_STATIC,6,34,69,8 
  EDITTEXT      IDC_MSTEP,78,12,32,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_STOPC,78,32,32,12,ES_AUTOHSCROLL 
  CONTROL       "Ambient Exitance",IDC_AMBIENT_EN,"Button", 
                BS_AUTOCHECKBOX | WS_TABSTOP,6,54,122,10 
  DEFPUSHBUTTON "OK",IDOK,122,10,48,16 
  PUSHBUTTON    "Cancel",IDCANCEL,122,30,48,16 
END 
#else 
SETCONVERGE DIALOG DISCARDABLE  32, 32, 178, 94 
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU 
CAPTION "Convergence Parameters" 
FONT 8, "MS Sans Serif" 
BEGIN 
  LTEXT         "Maximum Steps:",IDC_STATIC,6,14,69,8 
  LTEXT         "Stopping Criterion:",IDC_STATIC,6,34,69,8 
  EDITTEXT      IDC_MSTEP,78,12,32,12,ES_AUTOHSCROLL 
  EDITTEXT      IDC_STOPC,78,32,32,12,ES_AUTOHSCROLL 
  CONTROL       "Ambient Exitance",IDC_AMBIENT_EN,"Button", 
                BS_AUTOCHECKBOX | WS_TABSTOP,6,54,122,10 
  CONTROL       "Positive Overshoot",IDC_OVER_EN,"Button", 
                BS_AUTOCHECKBOX | WS_TABSTOP,6,74,122,10 
  DEFPUSHBUTTON "OK",IDOK,122,10,48,16 
  PUSHBUTTON    "Cancel",IDCANCEL,122,30,48,16 
END 
#endif 
 
SETDISPLAY DIALOG DISCARDABLE  32, 32, 152, 192 
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU 
CAPTION "Display Parameters" 
FONT 8, "MS Sans Serif" 
BEGIN 
  GROUPBOX      "Gamma Correction",IDC_STATIC,6,6,81,48 
  LTEXT         "Gamma:",IDC_STATIC,12,20,36,8 
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  EDITTEXT      IDC_GAMMA,50,18,28,12,ES_AUTOHSCROLL 
  CONTROL       "Enabled",IDC_GAMMA_EN,"Button", 
                BS_AUTOCHECKBOX | WS_TABSTOP,12,36,40,10 
  GROUPBOX      "Color Reduction",IDC_STATIC,6,61,81,48 
  LTEXT         "Noise Level:",IDC_STATIC,12,75,49,8 
  EDITTEXT      IDC_JITTER,66,73,12,12,ES_AUTOHSCROLL 
  CONTROL       "Enabled",IDC_JITTER_EN,"Button", 
                BS_AUTOCHECKBOX | WS_TABSTOP,12,91,40,10 
  GROUPBOX      "Color Display",IDC_STATIC,5,116,81,66 
  CONTROL       "RGB Color",IDC_RGB,"Button", 
                BS_AUTORADIOBUTTON,10,130,62,10 
  CONTROL       "Grayscale",IDC_MONO,"Button", 
                BS_AUTORADIOBUTTON,10,147,62,10 
  CONTROL       "Pseudocolor",IDC_PSEUDO,"Button", 
                BS_AUTORADIOBUTTON,10,165,62,10 
  DEFPUSHBUTTON "OK",IDOK,96,10,48,16 
  PUSHBUTTON    "Cancel",IDCANCEL,96,30,48,16 
END 
 
ABOUTBOX DIALOG DISCARDABLE  32, 32, 148, 98 
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU 
CAPTION "About HELIOS" 
FONT 8, "MS Sans Serif" 
BEGIN 
  CTEXT         "HELIOS Radiosity Renderer",IDC_STATIC,26,8, 
                96,8 
#if defined(_HEMI_CUBE) 
  CTEXT         "Version 1.00A/HC",IDC_STATIC,26,24,96,8 
#elif defined(_CUBIC_TETRA) 
  CTEXT         "Version 1.00A/CT",IDC_STATIC,26,24,96,8 
#elif defined(_RAY_CAST) 
  CTEXT         "Version 1.00A/RC",IDC_STATIC,26,24,96,8 
#else 
  CTEXT         "Version 1.00A/SH",IDC_STATIC,26,24,96,8 
#endif 
  CTEXT         "Copyright 1994 byHeart Software Ltd.", 
                IDC_STATIC,8,40,132,8 
  CTEXT         "All Rights Reserved",IDC_STATIC,39,56,70,8 
  DEFPUSHBUTTON "OK",IDOK,50,72,48,16 
END 

Listing 4.25 - HELIOS.RC 

Finally, we need a “module definition” file, HELIOS.DEF, to instruct the linker on how HELIOS is to 

be linked: 

NAME            Helios 
DESCRIPTION     'HELIOS Radiosity Renderer' 
EXETYPE         WINDOWS 
STUB            'WINSTUB.EXE' 
CODE            PRELOAD MOVEABLE DISCARDABLE 
DATA            PRELOAD MOVEABLE MULTIPLE 
STACKSIZE       5120 
EXPORTS 
  MAINWNDPROC   @1 
  WIREWNDPROC   @2 
  SETENTITYDIR  @3 
  SETCAMERA     @4 
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  SETVIEW       @5 
  SETCONVERGE   @6 
  SETDISPLAY    @7 
ABOUT         @8 

Listing 4.26 - HELIOS.DEF 

4.19.4 C++ Compiler Quirks and Foibles 

A few comments regarding compilation and linking HELIOS may be helpful. First, you need to specify 

the large memory model–this is essential. The WinText class (Section 3.13) in particular assumes that its 

functions use far pointers. 

Second, be sure to compile and link the necessary files, using either a “make” file or a project file from 

within an integrated development environment (IDE). The complete list consists of: 

HELIOS Version 1.00A/SH 

 16-bit memory model: Large 

 Source code file list: 
 c_jitter.cpp error.cpp gamma.cpp helios.cpp 
 helios.def helios.rc p_clip4.cpp p_render.cpp 
 parse.cpp patch3.cpp rad_tmp.cpp syn_cam.cpp 
 tone_rep.cpp vector3.cpp view_sys.cpp win_bmap.cpp win_sbar.cpp 

Figure 4.36 - HELIOS project files 

Other files will be added to this list in later chapters. However, no changes to HELIOS.CPP will be 

needed, since the necessary hooks have already been included via the conditional compilation directives 

_HEMI_CUBE and _CUBIC_TETRA (in HELIOS.CPP) and _RAY_CAST (in HELIOS.CPP and 

HELIOS.RC). None of these directives should be defined at this time! 

Third, a C++ compiler run from an IDE may assume a default stack size that conflicts with that 

specified in HELIOS.DEF. If so, the linker will be certain to complain about it. You can either clear this 

value or remove the STACKSIZE statement from HELIOS.DEF. 

Fourth but not finally, you may see inscrutable error messages such as: 

Fatal error RW1031: Segment 1 and its relocation information is too large for load optimization. Make 
the segment LOADONCALL or rerun RC using the -K switch if the segment must be preloaded. 

This particular message came from an IDE resource compiler. It occurred using the default compiler 

settings when the build mode was set to include debugging information. Setting the build mode to “release” 

(i.e., no debugging information) allowed the program to compile and link successfully. It took an 
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unreasonably long time to find that load optimization could be turned off from within the IDE. On the 

other hand, the compiler then made an incorrect assumption about pointer aliasing that caused the program 

to fail at run-time. The joys of software development … 

HELIOS was developed and tested using the Microsoft Visual C++ Version 1.5 and Borland C++ 

Version 4.0 compilers. Command-line “make” files for these compilers are included on the diskette 

accompanying this book. If you use either of these products, you should have no problems. Otherwise, you 

may encounter an embarrassment of error messages when you first attempt to compile and link HELIOS. 

As MS-Windows programmers, it is a price we all have to pay. Curse freely, try different options and 

perhaps even read the printed IDE documentation. Take heart, for it will compile eventually. 

4.19.5 Using HELIOS 

We now have some 3,700 lines of C and C++ source code. Once you successfully compile and link 

HELIOS, you can use it to view both wireframe and full-color bitmap images on any personal computer 

that can run MS-Windows 3.1 or MS-Windows NT, including monochrome laptops (in grayscale, of 

course). 

What is there to view? Well, COL_CUBE.WLD (Listing 3.17) presents two colored cubes floating in 

space. For something with a bit more visual interest (one of the chairs shown in Figure 4.24), you can try 

the following: 

WORLD chair 
COMMENT seat 
col_cube.ent 
< 2.0 2.0 0.1> 
< 0.0 0.0 0.0 > 
< -1.0 -1.0 -0.05 > 
COMMENT back 
col_cube.ent 
< 2.0 0.2 3.0 > 
< 0.0 0.0 0.0 > 
< -1.0 -1.0 0.05 > 
COMMENT leg #1 
col_cube.ent 
< 0.2 0.1 2.5 > 
< 0.0 0.0 0.0 > 
< -0.85 -0.8 -2.55 > 
COMMENT leg #2 
col_cube.ent 
< 0.2 0.1 2.5 > 
< 0.0 0.0 0.0 > 
< -0.85 0.8 -2.55 > 
COMMENT leg #3 
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col_cube.ent 
< 0.2 0.1 2.5 > 
< 0.0 0.0 0.0 > 
< 0.75 -0.8 -2.55 > 
COMMENT leg #4 
col_cube.ent 
< 0.2 0.1 2.5 > 
< 0.0 0.0 0.0 > 
< 0.75 0.8 -2.55 > 
END_FILE 

Listing 4.27 - CHAIR.WLD 

To display a wireframe image of this chair, first make sure that COL_CUBE.ENT and CHAIR.WLD 

are in the same directory, then run HELIOS as an MS-Windows program. Once its main window is 

displayed, you can: 

1. Choose File from the menu bar. 

2, Choose the Open… menu item to display the Open common dialog box. 

3. Select the CHAIR.WLD file. 

An Environment Statistics dialog box will then appear with an enumeration of the instances, surfaces, 

polygons and vertices in the environment. 

If the COL_CUBE.ENT file is not in the same directory as CHAIR.WLD, an error message will appear 

in a dialog box. Rather than exiting HELIOS, you can: 

1. Choose File from the menu bar. 

2. Choose the Directories… menu item to display the Directories dialog box. 

3. Enter the correct file path in the Entities File Path edit control. 

and follow the above three steps to select the CHAIR.WLD file again. 

With the environment file parsed and loaded into memory, you can now: 

1. Choose Camera from the menu bar. 

2. Choose the Set Parameters menu item to display the Camera Parameters dialog box. 

3. Enter “2.5” in the View Distance edit control.  

4. Enter “240” in the Horizontal Pixels edit control. 

5. Enter “320” in the Vertical Pixels edit control. 

This sets the camera view distance at 2.5 units, giving a field of view roughly equivalent to a 50 mm 

lens on a 35 mm camera. It also tells HELIOS to display the image as a vertically-oriented bitmap of 
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320240×  pixels. You can change this to whatever size you want, from a minimum of 32 pixels to a 

maximum of 2048 pixels. 

The synthetic camera’s position and orientation must be specified next: 

1. Choose View from the menu bar. 

2. Choose the Specify View… menu item to display the View Parameters dialog box. 

3. Enter “4” in the Eye Position X-Axis edit control. 

4. Enter “5” in the Eye Position Y-Axis edit control. 

5. Enter “6” in the Eye Position Z-Axis edit control. 

6. Enter “-125” (note the minus sign) in the View Direction Horizontal Degrees edit control. 

7. Enter “130” in the View Direction Vertical Degrees edit control. 

The View-Up Vector edit controls remain unchanged. 

The synthetic camera is now set up to display an image, starting with: 

1. Choose Render from the menu bar. 

2. Choose the Wireframe menu item. 

(Note that the Render menu items are grayed (deactivated) until an environment data file is read into 

memory.) 

A wireframe image of the chair will be displayed. This image will automatically resize itself whenever 

the display window size is changed. You can also go back and change any of the previous entries to change 

the view or camera parameters; the wireframe image will update itself accordingly. 

To display a full-color bitmap image: 

1. Choose Render from the menu bar. 

2. Choose the Shaded menu item. 

It may take a few seconds to display the image, depending on the CPU speed and whether a math 

coprocessor is present. If the window’s client (display) area is smaller than the specified horizontal or 

vertical pixels, scroll bars will appear. 

To redisplay the image in grayscale or pseudocolor, you can: 

1. Choose Options from the menu bar. 
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2. Choose the Set Display… menu item to display the Display Parameters dialog box. 

3. Select either the Grayscale or Pseudocolor radio button. 

4. Select the OK button. 

5. Choose Render from the menu bar. 

6. Choose the Redisplay menu item. 

(The other parameters in the Display Parameters dialog box and the parameters in the Convergence 

Parameters dialog box accesible from the Set Convergence… menu item do not have any discernable 

effect for shaded images.) 

You can also choose Rendering from the Render menu item. However, only a blank bitmap will appear 

on the screen, along with a Convergence Statistics dialog box. Choose Render and Shaded again to 

redisplay the image. 

To save this image to a BMP file: 

1. Choose File from the menu bar. 

2. Choose the Save As… menu item to display the Save As common dialog box. 

and specify an appropriate directory and file name. The file can later be viewed using Microsoft Paintbrush 

or any other BMP-compatible graphics program. 

Finally, you can: 

1. Choose Help from the menu bar. 

2. Choose the About Helios… menu item to display the About HELIOS dialog box. 

to view the program’s copyright notice, version number (which should be “1.00A/SH”, where “SH” stands 

for “SHaded”) and so forth. 

If all of the above actions work as described, congratulations! HELIOS is alive and well. 

4.20 Conclusions 

What began as a “minimal” viewing system somehow grew into a major component of this book. Even 

so, our MS-Windows implementation is far from being production quality. It lacks any sort of on-line help, 

it provides a minimal number of error messages, and it does not offer the currently fashionable “chiseled-

in-steel” look for its dialog boxes. 
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The platform-independent portions of our code are also less than perfect. No attempt has been made to 

profile the code to identify those components that should be rewritten by hand using assembly language. 

PolyRender should be rewritten using integer-only DDA algorithms (see Section 4.12) for the Intel 80x86 

platform and other CPUs with slow floating point implementations. This includes not only scan conversion 

for the polygon edges, but also pseudodepth and RGB color interpolation for Gouraud shading. (See also 

Blinn [1992] for further details and comments on Gouraud shading and perspective projection). 

There is more, of course. Support should be added for other bitmap file formats. Antialiasing should be 

added to minimize the “jaggies” on diagonally-oriented polygon edges (Fleisher and Salesin [1992] offer a 

very effective solution for polygons, including C source code). The list goes on and on. 

Somewhere, however, we have to stop. HELIOS is a minimal but effective viewing system that can 

help us investigate a variety of radiosity methods. It’s time to move on. 
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 P A R T 

III 
Radiosity and Realism 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

This world is but a canvas to our imaginations. 

A Week on the Concord and Merrimack Rivers [1849] 
Henry David Thoreau  

Our canvas is a 3-D viewing system, carefully constructed to support the needs of radiosity-based 

rendering. We can now begin to paint … 

Chapter Five investigates the art and science of form factor determination as an essential component of 

the radiosity approach. If the way seems long and tortuous, it is. The problem of form factor determination 

is simply stated but not easily solved. 

 Chapter Six looks at the variety of approaches we can take to solving the radiosity equation. From 

them are derived not one but three fully functional radiosity-based rendering programs. Our dragons 

reappear in the form of matrix mathematics, but they are harmless. 

… and yes, there is art in radiosity, or rather an art to it. More than anything else, choosing an 

appropriate polygon mesh for radiosity-based images requires experience and skill. Chapter Seven 

considers the conundrums of meshing and substructuring techniques for complex environments. 

Finally, Chapter Eight looks at extending the capabilities of our tools and the future of radiosity. There 

are still exciting times to come. 

Radiosity does indeed … model light. 

 



Chapter 5 
Form Factor Determination 

5.0 Introduction 

Having developed a graphics toolkit to manage and display 3-D polygons, we can take some 

satisfaction in being half way to our goal of a functional radiosity-based rendering program (Fig. 5.1). In 

this chapter, we will address the problem of determining form factors between polygons in our 

environments. 

1.  Build the environment 

2.  Determine the form factors 

3.  Solve the radiosity equation 

4.  Render the environment 
 

Figure 5.1 - Radiosity-based rendering program outline 

Form factors are an essential component of the radiosity approach, as much so as geometrical rays are 

essential to ray tracing. As we saw in Chapter Two, a form factor  is a dimensionless constant 

representing the fraction of radiant flux leaving a Lambertian emitter  that is intercepted by another 

surface element (or patch)  (Fig. 5.2). It is based solely on the geometry and geometric relation between 

the two surface patches; no surface properties are involved. 

ijF

iE

jE
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Figure 5.2 - Patch Ej receiving flux Φij from Lambertian emitter Ei (from Fig. 2.5) 

Successfully solving the radiosity equation requires accurate form factors. Unfortunately, form factor 

determination for a complex environment containing several thousand possibly occluded patches can be 

difficult and extremely time consuming. Pietrek [1993] and others have commented that form factor 

calculations can consume up to ninety percent of the time required to solve the radiosity equation. It is 

therefore vitally important that we optimize these calculations, first through a careful choice of algorithms, 

and second through a carefully crafted C++ implementation. 

5.1 Solving A Knotted Problem 

Despite their apparent simplicity, form factors are notoriously difficult to solve using analytic methods. 

Johann Lambert, a pioneer researcher in photometry and likely the first person to consider the problem, 

wrote (Lambert [1760]): 

Although this task appears very simple, its solution is considerably more knotted than one would expect 
... the highly laborious computation would fill even the most patient with disgust and drive them away 
... 

which does not bode well for our own investigations! 

Lambert expressed this opinion in reference to the problem (discussed below) of two perpendicular 

rectangles sharing a common edge. However, his comments apply equally well to form factor 

determination in general. As we saw in Section 2.5, the form factor from a finite area patch  to another 

finite area patch  is given by the double area integral equation: 

iE

jE
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i
ij dAdA
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coscos1
π

θθ
 (5.1) 
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where  and  are the areas of patches  and  respectively (Fig. 5.2). This equation cannot be 

solved directly. Instead, we must either find an analytic solution (that is, transform Equation 5.1 into one 

that does not involve integration) or solve it using numerical integration techniques. 

iA jA iE jE

We will examine a few analytic (or “closed form”) solutions, but only to see why numerical integration 

is the more useful approach. Don’t let the mathematics deter you! If nothing else, keep in mind that: 

Form factor determination requires no more than high school trigonometry. 

5.2 Contour Integration 

Following Lambert’s pioneering efforts, it took 230 years to find an exact solution for the general case 

of two arbitrary but unoccluded polygons (Schröder and Hanrahan [1993]). Schröder reported that it took 

Mathematica (a symbolic mathematics program) only fifteen minutes to solve ninety percent of the 

problem; the remaining ten percent took eight months of research. As you might have guessed, their “non-

elementary” solution is far too complex for practical use. 

Sparrow [1963] found that by applying Stokes’ Theorem to Equation 5.1, it could be converted to a 

double contour integral, namely: 

( ) ( ) ( ) jijijiC Ci
ij dzdzrdydyrdxdxr

A
F

i j
lnlnln

2
1

++= ∫ ∫π
 (5.2) 

where C  and  are the patch boundaries. While this equation can be solved for many polygons and 

other shapes (see for example Siegel and Howell [1992]), it is quite impracticable for our purposes. It does 

however have some historical interest: it was used in one of the two papers that introduced radiosity to the 

computer graphics community (Goral et al. [1984]). 

i jC

Note that Equations 5.1 and 5.2 assume that patches  and  are fully visible to one another. In 

other words, the form factor determination method used by Goral et al. [1984] is only applicable to simple 

unoccluded environments. It cannot be extended to handle our complex environments with possibly 

occluded polygons. 

iE jE
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5.3 Special Cases 

A second approach is to consider special cases for which closed form solutions to Equation 5.1 can be 

derived. Mechanical and aeronautics engineers have long used published tables of formulae for specific 

area-to-area geometries in their radiant heat transfer studies, including those by Howell [1982], Siegel and 

Howell [1992] and Sparrow and Cess [1978]. These include simple shapes such as parallel and 

perpendicular rectangles, circles and hollow tubes. More complex geometries can be analyzed using form 

factor algebra (Section 2.5) to geometrically add and subtract these shapes and their associated form 

factors. 

Despite their availability, these tables are not particularly useful for complex environments. Consider 

one of the simplest geometries, that of two adjoining and perpendicular rectangles (Fig. 5.3). 

C 

A 

B 

H = A / C

W = B / C
Ej 

Ei 

 

Figure 5.3 - Form factor geometry between perpendicular rectangles 

While the geometry may be simple, the following equation for its form factor  from  to  is 

anything but! 
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Remember, this is a “simple” example! Lambert [1760] was clearly justified in his comments. Not shown 

is the equation for two adjoining but non-perpendicular rectangles–it fills an entire page. 
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Even if we had closed form solutions for a useful set of patch geometries, it would not do us much 

good. Like the contour integration approach, these solutions assume that the patches are fully visible to one 

another. This makes them generally unsuitable for complex environments. 

5.4 A Simplified Approach 

We can simplify our problem by considering the form factor from a differential area patch  to a 

finite area patch . In other words, we can model our luminous surface emitter as a point source of light. 

As we saw in Section 2.5, the form factor  is given by the area integral equation: 
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Again, this equation cannot be solved directly for an arbitrary patch . However, there is a 

surprisingly simple analytic solution for planar convex polygons (Lambert [1760]), which is just what we 

need. Referring to Figure 5.4, it is: 
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or equivalently: 
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where n is the number of polygon edges, kβ  is the angle (in radians) between the vectors r  and  

defined from  to each pair of vertices k and (k+1)%n (where “%” is the modulo arithmetic operator), 

αk is the angle (again in radians) between the plane of  and the triangle formed by  and the kth 

edge, and ni is the normal of . 

k
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Actually, Equation 5.6 is the contour integration approach applied to the special case of a differential 

area emitter and a planar convex polygon receiver. It was used to calculate form factors in the second paper 

that introduced radiosity to the computer graphics community (Nishita and Nakamae [1984]). While it is 

certainly simpler than the general contour integration approach used by Goral et al. [1984], it too assumes 

that the patches are fully visible to one another. 
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Figure 5.4 - Differential area  to polygon  form factor geometry idE jE

But wait! The emitting patch  is an infinitesimally small point source. If an intervening polygon 

partially occludes , we can subdivide  into convex polygons that are either fully visible to or 

completely hidden from  (e.g., Fig. 5.5). We can then apply Equation 5.6 to each visible polygon; the 

form factor from  to  is the sum of their individual form factors. 

idE
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idE

jE

idE

jE

This is essentially a hidden surface problem. Seen from , what polygons in the environment are 

visible to it, and what other polygons partially or fully occlude each one? What we need is an area 

subdivision algorithm for hidden surface elimination, such as Warnock’s Algorithm (e.g., Sutherland et al. 

[1974]), that successively divides polygons into smaller and smaller polygons until each one is either fully 

visible or completely hidden from some reference point. 

idE

Unfortunately, area subdivision algorithms are at least an order of magnitude more complex than the 

Z-buffer algorithm presented in the previous chapter (see Rogers [1985] for implementation details of 

Warnock’s Algorithm). While Nishita and Nakamae [1984] demonstrated that their technique works for 

complex environments with partially occluded polygons, numerical integration offers a simpler approach. 
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Figure 5.5 - Area subdivision of partially occluded polygon  into  and  jE 1jE 2jE

5.5 The Five-Times Rule 

Our simplified approach led to an analytic solution for planar convex polygons. Given two arbitrary 

patches, however, are we justified in modeling the emitter as a point source? 

In general, no. If a small but finite polygon is placed parallel to and an infinitesimal distance above a 

large emitter, it will clearly intercept only a small fraction of the emitted flux. Modeling the emitter as a 

point source, however, would lead us to conclude that it intercepts nearly all of the emitted flux. Wrong! 

So, our simplified approach is an approximation. We therefore need to consider the consequences of 

this approximation, and under what conditions we are justified in modeling a luminous patch as a point 

source. 

It is a thorny question, since the differences between approximate and actual form factors are not 

directly manifested in the rendered image. The predicted distribution of light within the environment will 

be subtly different from what it would be in real life, but there are many other approximations in the 

rendering process that can overshadow these differences (e.g., Meyer et al. [1986] ). 

Murdoch [1981] investigated this problem as part of a theoretical study in illumination engineering. He 

demonstrated that modeling a Lambertian luminous rectangle as a point source results in worst-case 

illuminance prediction errors (using the inverse square law) of less than 1±  percent if the distance from the 

illuminated point to the rectangle is at least five times its maximum projected width. In other words, the 
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luminous rectangle should subtend an angle of less than 0.2 radians, or approximately 11.5 degrees, as seen 

from the illuminated point. (Note the caveat projected width: a long but narrow light source will subtend a 

smaller angle when viewed from one end.) 

This Five-Times Rule (Fig. 5.6) has been used by illumination engineers for nearly a century. If the 

maximum dimension of a lighting fixture is less than five times its distance from a surface being 

illuminated, then the fixture is modeled as a point source and the inverse square law for point sources (Eqn. 

1.7) can be applied. 

> 5

1 < 11.5 deg. 

Light source Receiving surface 

 
Figure 5.6 - Illumination engineering’s Five-Times Rule 

There have been several other detailed studies of form factor calculation errors, including Saraiji and 

Mistrick [1992], Emery et al. [1991], Baum et al. [1989], Max and Troutman [1993] and Sbert [1993]. 

While there is no firm consensus on the topic, it appears that the Five-Times Rule can be applied to form 

factor calculations as follows: 

The Five-Times Rule: 

A finite area Lambertian emitter should be modeled as a point source only when the distance to the 

receiving surface is greater than five times the maximum projected width of the emitter. 

We should keep in mind that this does not limit the applicability of our simplified approach. If the Five-

Times Rule is violated for any two patches, we can always subdivide the emitting patch until the rule is 

satisfied for each subdivided area. Of course, this fails for the two adjoining patches shown in Figure 5.3–

we would be subdividing forever as we approach their common edge. We need a heuristic rule that stops 

subdividing when the patches become too small to be significant in any rendered image of the 

environment. These, however, are details for Chapter Seven. 
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5.6 Nusselt’s Analogy 

We can take yet another approach to solving Equation 5.4. Imagine  being centered on the base of 

an imaginary hemisphere with unit radius (Fig. 5.7). Tracing geometric rays from  to , we can 

project the outline of  onto the surface of the hemisphere. We can then trace rays from this projection 

directly down onto the base of the hemisphere to outline the area A. From this, the form factor  is given 

by: 

idE

idE jE

jE

ijF

π
AF EjdEi =−   (5.7) 

This entirely geometric solution is known as Nusselt’s analogy (Nusselt [1928]). While it strictly 

applies only when  is a differential area, it serves as a useful approximation for any two finite patches 

 and  where  is much smaller than either  or the distance between them (i.e., the Five-Times 

Rule applies). 

idE

iEiE jE jE
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Figure 5.7 - Nusselt’s analogy 

Nusselt’s analogy works as follows. Suppose  is a differential patch, . Recalling once again the 

discussion of solid angles and projected areas from Chapter One, we can see that the solid angle 

jE jdE

ωd  

subtended by  as seen from  (Fig. 5.8) is: jdE idE

2cos rdAd jjθω =  (5.8) 
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where dA  is the differential area of . (This is in part the discussion presented in Section 2.5, but it 

bears repeating here.) 
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Figure 5.8 - Differential area form factor geometry (from Fig. 2.6) 

The solid angle ωd  is equal to the area of the projection of  onto the unit hemisphere’s surface; 

this accounts for the factor 

jdE

2cos rjθ  in Equation 5.4. The iθcos  term comes from the second projection 

onto the base. Thus: 

2coscoscos rdAddA jjii θθωθ ==  (5.9) 

where dA is the (now differential) projected area on the hemisphere base. Finally, the denominator of π 

comes from the base’s area (a unit circle). We obtain the finite projected area A by integrating Equation 5.9 

over the finite area of . jE

Unlike our previous contour integration approach, Nusselt’s analogy applies to any finite area patch 

, regardless of its outline. Unfortunately, it leaves us with the problem of projecting the polygon’s 

outline onto the hemisphere’s surface and thence onto its base.  

jE

In the past, illumination engineers have relied on mechanical and photographic contrivances (e.g., 

Cherry et al. [1939] and O’Brien [1963]) to perform these projections and measure form factors for real-

life objects such as windows and building skylights. More usefully, Bian [1992] and Bian et al. [1992] 

show how to project n-sided polygons onto the surface of a hemisphere and analytically calculate their 

form factors. Once again, however, we need an accompanying area subdivision algorithm to solve the 

hidden surface elimination problem for partially occluded polygons. 
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To summarize, analytic solutions require complicated hidden surface elimination algorithms to 

determine form factors in complex environments. Rather than pursue this issue any further, we should 

instead investigate numerical integration techniques. 

5.7 The Hemi-cube Algorithm 

In considering Nusselt’s Analogy, Cohen and Greenberg [1985] realized that patches that have the 

same projected area on a hemisphere will occupy the same solid angle as seen from the emitting patch (Fig. 

5.9). In other words, both patches have the same form factor. This is perfectly sensible, since both patches 

will receive the same emitted flux if either one has an unobstructed view of the emitter. 

Ek

Ej

dEi
 

Figure 5.9 - Patches Ej and Ek have same form factor from patch dEi 

Suppose then that we replace Nusselt’s hemisphere with a hemi-cube1. As Figure 5.10 shows, we can 

equally well project a patch onto the surface of the hemi-cube. Suppose further that each surface (or face) 

of the hemi-cube is divided into a grid of small cells2. If we can determine their individual form factors 

(called delta form factors, ∆F), we can determine the form factor of the projected patch simply by 

summing the delta form factors of those cells it covers. 

                                                           
1If a hemisphere is half of a sphere, then a hemi-cube is half of a cube. There are two commonly used 
spellings: "hemi-cube" and "hemicube". Cohen and Greenberg [1985] used "hemi-cube" in their original 
paper, but Cohen and Wallace [1993] later chose "hemicube" for their book. The spelling used here was 
chosen by flipping a coin. 
 
 
2The computer graphics literature also confusingly refers to hemi-cube cells as “elements”, “pixels” and 
“patches”. The terms “elements” and “patches” are unfortunate, since they are so easily confused with the 
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dEi
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Figure 5.10 - Projecting patch  onto the cells of a hemi-cube jE

That is, we have: 

∑∆≈− coveredEjdEi FF  (5.10) 

where ∆Fcovered refers to the delta form factors of those cells covered by the projection of  onto one 

or more of the hemi-cube faces. 

jE

The accuracy of Equation 5.10 is clearly dependent on the hemi-cube’s grid spacing. This spacing is 

measured in terms of the number of cells on the top face ( 256256 ×  cells, for example), and is referred to 

as the hemi-cube’s resolution. Typical resolutions used by researchers have ranged from 32  to 

 cells (Cohen and Wallace [1993]). 

32×

10241024 ×

The hemi-cube algorithm is a classic example of a numerical integration technique known as numerical 

quadrature, where function f(x) is integrated over some interval a to b as: 

( ) ( )j

n

j
j

b

a

xfwdxxf ∑∫
−

=

≈
1

0
 (5.11) 

and where f(x) (called the kernel of the integral function) is evaluated at a series of n distinct sample points 

, with  being a “weight” determined by the size of the interval between the sample points. { 10 ,, −nxx K }

                                                                                                                                                                            

iw

 
surface elements and patches introduced in Chapter Three. The terms “cells” follows Cohen and Wallace 
[1993]. 
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The approximation clearly improves as the interval between the sample points decreases. (Further details 

are available in any good text on numerical analysis.) Substituting Equation 5.9 into Equation 5.7, we get: 

j
ji

EjdEi A
r

F ∆≈∆ − 2

coscos

π

θθ
 (5.12) 

where  now refers to a hemi-cube cell and  is its area as a finite fraction of the entire face. The 

approximation is due to the substitution of the finite cell area 

jE jA∆

jA∆  for the differential area  in 

Equation 5.9. (See Section 2.5 for an alternate derivation.) The kernel f(x) of Equation 5.11 is composed of 

the two cosine terms, the square of the distance r and the factor π; the weight w

jdA

j is the cell’s area, . jA∆

Cohen and Wallace [1993] examine a number of fascinating mathematical properties relating to form 

factors and numerical integration. Fortunately, these issues are not essential to our understanding of the 

hemi-cube algorithm’s theory. Indeed, all we need to remember is that the hemi-cube is analogous to 

Nusselt’s hemisphere. Given this and an understanding of the reasoning behind Figures 5.9 and 5.10, what 

remains are mostly implementation details. 

5.7.1 Delta Form Factors 

The hemi-cube algorithm will only be useful if we can easily calculate its delta form factors. Happily, 

we can. Consider the hemi-cube cell shown on the top face3 in Figure 5.11. It does not matter what the 

actual dimensions of the hemi-cube are, since we are only interested in the solid angle subtended by each 

cell. If we choose a height of one unit for computational convenience, we can see that: 

122 ++= vur  (5.13) 

and 

rji 1coscos == θθ  (5.14) 

From Equation 5.12 then, we have: 

                                                           
3It should be noted that most discussions of hemi-cubes use a right-handed x-y-z co-ordinate system. 
However, since we are "looking" outwards from the surface of  into the environment, we instead use a 
left-handed u-v-n co-ordinate system to emphasize that we are in the patch's “view space”. Apart from a 
change of axis labels, the equations remain the same. The origin, however, is located at  rather than the 
hemi-cube face (see Section 5.11). 

idE

idE
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where ∆  is the hemi-cube cell area as a fraction of the top face area of four square units. topA
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Figure 5.11 - Top face hemi-cube cell form factor 

For side face cells where v  (Fig. 5.12), we have: = ±1

r u n= + +
2 2

1  (5.16) 

and 
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Thus: 
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 (5.18) 

and similarly for side face cells where u = ±1 by substituting v for u. The hemi-cube cell area  is 

once again a fraction of the full side face area of four square units, including the bottom half hidden below 

the hemi-cube base plane. 

sideA∆
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Figure 5.12 - Side face hemi-cube cell form factor (v = −1) 

Figures 5.11 and 5.12 show that the hemi-cube’s n-axis is always aligned with the plane normal of 

. By the same token, the orientation of u and v with respect to the world co-ordinate system is entirely 

arbitrary. That is, we can arbitrarily rotate the hemi-cube about its n-axis when positioning it over a patch 

in the environment. Having chosen an orientation, we can substitute the world co-ordinates of u, v and n 

axes into Equations 4.8 and 4.9 to derive a view space transformation matrix for the hemi-cube. This 

allows us to transform the world co-ordinates of any other patch  into the hemi-cube’s “view space”. 

idE

jE

One of the advantages of the hemi-cube algorithm is that the delta form factors can be precalculated 

and stored in a lookup table (Cohen and Greenberg [1985]). Even better, the hemi-cube top has an eight-

fold symmetry, while each side has two-fold symmetry. That is, the delta form factors in each octant of the 

hemi-cube top face are identical, and similarly for each vertical half of the four side faces. If we add these 

up and consider a hemi-cube resolution of n n×  cells, we can see that we need to store only 3  floating 

point values. 

8
2

n

The hemi-cube algorithm is probably the most widely used and popular method of form factor 

determination among radiosity researchers. This is not to say, however, that it is the most efficient or even 

the most elegant algorithm available. In keeping with our promise of “a careful choice of algorithms”, we 

should investigate at least one alternative in depth. Besides providing further insights into the hemi-cube 

algorithm, implementing both algorithms will give us a valuable sanity check. While the two algorithms 
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will not provide identical form factor estimates, their answers should at least be comparable within some 

reasonable error limit for any given pair of polygons. 

5.8 The Cubic Tetrahedral Algorithm 

Compared to Nusselt’s hemisphere, Cohen and Greenberg’s hemi-cube provides a very simple 

geometry for polygon projection and form factor determination. However, there is one nagging asymmetry: 

the top face and the four side faces have different geometries and delta form factor equations. This means 

that we have to project every polygon onto five separate faces, a considerable nuisance for a complex 

environment with thousands of polygons. It also means that we will probably need different sets of 

functions for the top and side faces. 

Can we remedy this situation? Yes! There is nothing sacrosanct about the hemi-cube. All we need is a 

simple geometrical object with planar surfaces to project our polygons onto. The simplest possible three-

dimensional object is a triangular pyramid, otherwise known as a tetrahedron. 

Beran-Koehn and Pavicic [1991] observed that we can think of the hemi-cube as a cube that has been 

bisected by the polygon it rests on (Fig. 5.13). Suppose we rotate this cube and its view space co-ordinate 

system such that the polygon intersects three of its vertices (Fig. 5.14). This results in a geometrical object 

known as a cubic tetrahedron). 

N 

U 

V 

Polygon

 

Figure 5.13 - The hemi-cube as a bisected cube 

Again, we are only interested in the solid angle subtended by each cell, and so the size of the cube is 

immaterial. It will be convenient to use a cube measuring 3 units across each face. This places the cubic 
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tetrahedron’s base vertices ,  and v  at 0v 1v 2 { }2,1,1 − , { }1,2,1 −  and { }1,1,2−  respectively. Its 

apex vertex A is exactly one unit directly above the cubic tetrahedron center at { }1,1,1 . (Note that the 

origin–the polygon center–is not at the center of the cube.) 

N 

U 

V 

v2 

v0 

v1 

v0 = { 1, 1, -2 }  

v1 = { 1, -2, 1 }  

v2 = { -2, 1, 1 } 

A 

Polygon 

 

Figure 5.14 - Rotating the cube creates a cubic tetrahedron 

We now have three identical but triangular faces to project our polygons onto. More importantly, this 

was accomplished without unduly complicating the underlying theory of the hemi-cube algorithm. All else 

being equal, this should substantially increase the performance of our form factor determination code. 

How much of an increase we can expect is an open question that depends in part on how carefully we 

craft our C++ code. While we could quantify the maximum possible improvement on theoretical grounds, 

it will be easier to perform experimental timing measurements on our completed implementations. Before 

then, we need to examine a few details, beginning with delta form factor calculations for cubic 

tetrahedrons. 

5.8.1 Delta Form Factors Revisited 

The geometry of a cubic tetrahedron cell is shown in Figure 5.15, where  is the differential patch 

located at the center of the cubic tetrahedron (that is, the polygon’s view space origin) and  is the cell 

whose form factor we are interested in. Recalling Equation 5.12, we have: 

idE

jE

j
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EjdEi A
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π

θθ
 (5.19) 

where ∆  is the area of . jA jE
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Figure 5.15 - Cubic tetrahedron cell geometry 

Following the development presented in Beran-Koehn and Pavicic [1992], the term iθcos  is given by: 

r
ii

i
nS

S
nS ⋅

=
⋅

=θcos  (5.20) 

where S is the bound vector from the origin to the cell center and r is its length. Expressed in terms of the 

cubic tetrahedron’s view space co-ordinate system, the polygon normal  is described by the vector in






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

3
1,

3
1,

3
1 . This means that: 

3
cos

r
sss nvu
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=θ  (5.21) 

For cells on the cubic tetrahedron face perpendicular to the v-axis, the term cos  is given by: jθ

r
jj

j
nS

S
nS ⋅−

=
⋅−

=θcos  (5.22) 

where the cell normal  is described by the vector jn { }0,1,0 − . Also, the face lies on the plane v . Thus: 1=

rr
sv

j
1cos ==θ  (5.23) 

The same result can be derived for the other two faces. Thus, for any cubic tetrahedron cell , we 

have: 

jE

j
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EjdEi A
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34π
 (5.24) 
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However, , and for each face, one of ,  or  will always be one. Thus: 2222
nvu sssr ++= us vs ns

( ) jEjdEi A
yx

yxF ∆
++

++
=∆ −

31

1
222π

 (5.25) 

where x and y range from 1 to -2 (Fig. 5.14). (Note that these co-ordinates do not refer to the world x-y-z 

co-ordinate system.) 

Equation 5.25 describes the delta form factors for square cubic tetrahedron cells. It does not consider 

the triangular cells at the base of each face (Fig. 5.16). Beran-Koehn and Pavicic [1992] noted that we have 

two choices. If our resolution is sufficiently high, we can simply ignore these cells –their contribution to 

the summed form factor will be minuscule. Otherwise, we must include them, but recognize that their areas 

(∆A in Equation 5.25) are half that of the other cells. 

 

Figure 5.16 - Polygon projection onto a cubic tetrahedron face 

The symmetry of the cubic tetrahedron is such that we only need to store delta form factors for one half 

of one face. For a resolution of  cells on one full face of the underlying cube, we need to store nn × 42n  

floating point values. This is less than the 82n3  values required for a hemi-cube with the same resolution. 

Moreover, the cubic tetrahedron has 23 2n  cells; the equivalent hemi-cube has  cells. 23n

But are they equivalent? Beran-Koehn and Pavicic [1992] noted that a hemi-cube samples its 

environment with twice the number of cells as a cubic tetrahedron with the same resolution. It can be 

shown that the average delta form factor is the same for both geometries when they have the same number 
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of cells. Thus, a cubic tetrahedron must have a resolution of nn ∗×∗ 22  cells in order to be equivalent 

to a hemi-cube with a resolution of  cells. nn ×

Details aside, the cubic tetrahedron is an uncomplicated variant of the hemi-cube. Except where noted, 

the following discussions referring to hemi-cubes and the hemi-cube algorithm also apply to cubic 

tetrahedrons.  

5.9 Numerical Integration Errors 

Before eulogizing either the hemi-cube or cubic tetrahedral algorithm as the solution to form factor 

determination, we should consider their limitations. Most importantly, we must remember that these 

algorithms can only estimate the form factor between any two patches. There will always be some error 

due to the approximate nature of numerical integration. 

A very thorough study of this problem with respect to hemi-cubes (but not cubic tetrahedrons) is 

presented in Max and Troutman [1993]. We will not attempt to review this study or otherwise quantify 

these errors here. Instead, we will examine their causes and effects. This knowledge will later prove useful 

in visually assessing the results of our radiosity renderer. It will also highlight some of the fundamental 

limitations of the hemi-cube and similar numerical quadrature algorithms. 

If we choose a hemi-cube or cubic tetrahedron resolution that is too coarse, we may end up with 

annoyingly visible aliasing artifacts in our images. Consider Figure 5.17, where the surface S is discretized 

into a regular array of patches and projected onto a hemi-cube centered over patch . (A cubic 

tetrahedron could also be used; the following arguments remain the same.) Some of the patches cover two 

cells while the others cover only one each. If the hemi-cube patch is emitting light, these patches may 

“receive” (according to their calculated form factors) approximately twice as much flux as their neighbors. 

iE

This problem is particularly evident when the discretization of a surface into polygons is such that their 

projection onto the hemi-cube nearly matches that of the spacing of the hemi-cube cells. It can be further 

aggravated by moving the hemi-cube to patches adjacent to  and repeating the process. Depending on 

the spacing between these patches relative to S, the erroneous distribution of flux on S may be reinforced. 

Displayed in an image, the surface will appear to have a distinctly plaid-like variation in shading. 

iE
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Figure 5.17 - Hemi-cube aliasing 

A partial solution is to randomly vary the hemi-cube’s orientation about the surface normal as it is 

moved from patch to patch (Wallace et al. [1987]). While this will not solve the aliasing problem for 

individual patches, the likelihood of their shading patterns reinforcing one another will be greatly 

diminished. The sum of these patterns will appear as low contrast, random noise, to which our eyes are 

fairly insensitive. 

A second, more serious problem is that small patches may cover less than one cell, in which case they 

will be missed entirely. This can seriously affect small but highly luminous patches in an environment, 

particularly high intensity light sources. Reversing roles with the patch beneath the hemi-cube as a 

receiver, it may “receive” no flux at all from the emitting patch, even though both are fully visible to one 

another. 

We can of course alleviate this problem by increasing the hemi-cube resolution. However, the hemi-

cube algorithm has a time complexity (Section 2.6) of approximately O(n2), where n is the hemi-cube 

resolution (e.g., Vilaplana and Pueyo [1992]). In other words, doubling the hemi-cube resolution 

approximately quadruples the algorithm’s execution time. This also applies to the cubic tetrahedral 

algorithm. It is the inevitable tradeoff in radiosity rendering between image quality and rendering time. 

5.10 Form Factors and Radiosity 

Before proceeding any further, we should consider the role of form factors in solving the radiosity 

equation. Figure 5.18 shows one surface (labeled “source”) illuminating another (labeled “receiver”). Both 

surfaces are divided into patches and elements as explained in Section 3.7. So far, it appears as if we must 

 



292 Form Factor Determination 
________________________________________________________________________ 

determine the form factors between each pair of elements. For an environment with 50,000 elements, this 

means 2,500 million form factors! 

Φ ij 

Source Receiver 

Patch 
Element

 

Figure 5.18 - Radiant flux transfer between surfaces 

The surfaces in an environment should be discretized into patches and elements such that Gouraud 

shading each element does not result in objectionable aliasing artifacts. The elements must be closely 

spaced in order to capture the fine shading details across surfaces in a rendered image, particularly at 

shadow boundaries. (This will be discussed in detail in Chapter Seven). We will eventually have to 

calculate the radiant exitance of each of these elements. 

However, this is primarily a visual criterion. In terms of calculating the flux transfer between two 

surfaces, we need to apply the Five-Times Rule (Section 5.5). Suppose the receiving surface in Figure 5.18 

is discretized into patches and elements such that each patch of the emitting surface satisfies the Five-

Times Rule. If so, then we can safely model each patch as a point source. This means that we only need to 

determine the form factor from the source patch to the receiving element. There is no point in considering 

element-to-element form factors; the calculated flux transfer between the elements of a source patch and a 

receiving element will be (approximately) the same as that calculated between the patch itself and the 

receiving element (Cohen et al. [1986]). 

This explains why we created a two-level hierarchy of patches and elements in Section 3.7. If we have 

an environment consisting of m patches and n elements, we only need to determine  form factors 

between patches and elements. As an example, an environment with 5,000 patches and 50,000 elements 

requires “only” 250 million form factors. 

nm ×
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Fortunately, this is not as bad as it looks: the hemi-cube algorithm calculates form factors from a patch 

to all elements in the environment in parallel. An environment with 5,000 patches therefore requires only 

one hemi-cube calculation per patch. Furthermore, we will see in the next chapter that we only need to 

store one form factor per element. 

There are other computational advantages to using a two-level hierarchy of patches and elements. 

These will be examined in detail in Chapter Six. Before then, however, we need to implement the hemi-

cube and cubic tetrahedral algorithms. 

5.11 Just Another Viewing System 

The hemi-cube algorithm is much easier to explain than it is to implement in software. Seen in 

isolation, the myriad details tend to overshadow and obscure the underlying algorithm. Like our viewing 

system, it becomes difficult to see the logic for the code. 

Fortunately, we have already seen most of these details before–it’s our viewing system! Consider the 

similarities: 

Hemi-cube algorithm Viewing system 

Differential area emitter  Eye position idE
Hemi-cube face View plane window / screen 
Hemi-cube cell Screen pixel 

The hemi-cube algorithm is essentially a polygon scan conversion process. Suppose we want to 

determine the form factor  from a polygon  to another polygon  in an environment. Each hemi-

cube face defines a view volume whose back clipping plane is at plus infinity and whose front clipping 

plane is (almost) at the hemi-cube’s center (Fig. 5.19a). In other words, it defines an essentially infinite 

four-sided pyramid. (The cubic tetrahedron’s view volume shown Figure 5.19b is similar, except that it 

defines a three-sided pyramid.) 

ijF iE jE

If we position the hemi-cube over , we can perform a perspective projection of  onto each of its 

faces. Filling the projected polygon on each face allows us to determine which hemi-cube cells are covered 

by the projection. Once this is done, the approximate form factor  is given by Equation 5.10. 

iE jE

ijF
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Figure 5.19a - Hemi-cube face view volumes 

 

Figure 5.19b - Cubic tetrahedron view volumes 

One difference is that the viewing system described in Chapter Four has its origin centered on the view 

plane window, while the hemi-cube’s u-v-n co-ordinate system is centered on the eye position (Fig 5.20). 

A moment’s reflection, however, will reveal that the two systems are essentially equivalent; the only 

difference is that the hemi-cube’s origin has been translated a distance of one unit along the n-axis with 

respect to our viewing system’s origin. Allowing for this, we can treat the hemi-cube face no differently 

from a view plane window. In particular, we can reuse much of our viewing system code from Chapter 

Four to implement the hemi-cube algorithm. 
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Figure 5.20 - Hemi-cube face co-ordinate system 

Unlike our previous attempts at form factor determination, the hemi-cube algorithm trivially solves the 

polygon occlusion problem by using a variation of the Z-buffer algorithm presented in Section 4.14. 

Instead of storing the closest polygon color for each screen pixel in a frame buffer, we can store an 

identifier for the closest polygon in an equivalent item buffer, with one entry for each hemi-cube cell. A 

depth array entry is similarly assigned to each cell. 

Suppose we assign a unique identifier to each polygon in the environment, after which we initialize the 

depth array to INFINITY and set the item buffer entries to NONE. As we project each visible polygon in the 

environment onto the hemi-cube, we compare its depth at each covered hemi-cube cell with the current 

depth array entry. If it is closer than the current depth, we update the entry and assign the polygon 

identifier to the item buffer entry. When all of the polygons in the environment have been considered, we 

scan the item buffer and calculate the form factor for each polygon using Equation 5.10. 

Thus, given a polygon , the hemi-cube algorithm calculates the form factors  from  to all other 

polygons  in the environment. We can express this algorithm in the following pseudocode (from 

Rushmeier et al. [1991]): 

iE ijF iE

jE

FOR each hemi-cube cell k  // Precalculate delta form factors 
  Calculate delta form factor  kF∆
ENDFOR 

FOR each hemi-cube face  // Initialize hemi-cube cells 
  FOR each hemi-cube cell k 
    cell_depth(k) = INFINITY 
    polygon_id(k) = NONE 
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  ENDFOR 
ENDFOR 

FOR each polygon jE j  // Initialize polygon form factors 
   0=ijF

ENDFOR 

FOR each hemi-cube face 
  Transform  co-ordinates to  (hemi-cube) view space jE iE
  FOR each polygon jE j  // Scan convert polygon  jE
    IF  is visible jE
      Clip  to hemi-cube face view volume jE
      IF clipped polygon is inside view volume 
        Project polygon onto hemi-cube face 
        FOR each hemi-cube face cell k 
          IF cell k is covered 
            IF depth of   at cell k < cell_depth(k) jE
              cell_depth(k) = depth of   at cell k jE
              polygon_id(k) = j 
            ENDIF 
          ENDIF 
        ENDFOR 
      ENDIF 
    ENDIF 
  ENDFOR 

  FOR each hemi-cube face cell k // Sum delta form factors 
    m = polygon_id(k) 
     kimim FFF ∆+=
  ENDFOR 
ENDFOR 

Figure 5.21 - Hemi-cube algorithm 

The pseudocode for cubic tetrahedral algorithm is essentially identical. All we have to do is substitute 

the words “cubic tetrahedron” where “hemi-cube” appears. This similarity will be reflected in our C++ 

implementation, where the common features will be encapsulated in an abstract “form factor” class. 

5.12 Delta Form Factor Calculations 

Our first requirement is to precalculate the delta form factors and store the results in a lookup table. For 

a resolution of  cells, we need to store a minimum of nn × 83 2n  floating point values for hemi-cubes. 

The equivalent cubic tetrahedron has a resolution of mm ×  cells, where nm ∗= 2 . It therefore requires 

24 22 nm =  values. Assuming  and four-byte float data type as an example, this translates to 15 

Kbytes and 20 Kbytes of memory respectively. 

100=n
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These are minimum values, however. For the hemi-cube, we need a square array of 42n  cells to store 

the delta form factors for the side faces. Unfortunately, the 82n  delta form factors for the top face of the 

hemi-cube form a triangular array. We will want to access this array using an cell’s integer u-v co-ordinates 

as quickly as possible. Rather than perform a complex mapping between these co-ordinates and offsets into 

some sort of compacted array, it is usually better to allocate memory for two quadrants of delta form 

factors (one for the top face and another for the side faces). This requires n  floating point values, or 20 

Kbytes for the above example. This is a fairly insignificant amount of memory, at least for a radiosity 

rendering program. We can allocate a static array in memory and initialize it at program startup. 

2
2

The cubic tetrahedron is more problematic. We only need to store delta form factors for one half of one 

face, but this again leads to a triangular array. Storing these values in a static array implies that we must 

allocate 40 Kbytes for the above example. If we increased the resolution to 400=n  (that is, 566  

cells), we would be wasting 313 Kbytes of memory. (In fact, we need to store slightly more than 

566×

42m  

values. Figure 5.22 demonstrates that for 8=m , we need to allocate space for 202 =+ m42m  unique 

values. The array remains triangular with 2m  rows of varying size.) 

x 

y 

 

Figure 5.22 - Unique delta form factor values for a cubic tetrahedron face 

Fortunately, one of the more subtle features of the C++ programming language comes to our rescue. 

We can easily allocate a static (or, if we prefer, dynamic) triangular array with no wasted memory and 

relatively little overhead. All we have to do is to allocate a one-dimensional array for each row and an 
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array of pointers to the rows. C++ (and its progenitor, C) allow us to access this construct exactly as if it 

were a two-dimensional array. The details are described in a text file on the accompanying diskette. 

For now, we have our first C++ code: 

// FF_DELTA.H- Delta Form Factors 
 
#ifndef _FF_DELTA_H 
#define _FF_DELTA_H 
 
// Delta form factor resolution (must be an even number) 
#if defined(_CUBIC_TETRA) 
static const int FF_ArrayRes = 142; 
#else 
static const int FF_ArrayRes = 100; 
#endif 
 
#endif 

Listing 5.1 - FF_DELTA.H 

A resolution of 100  cells for hemi-cubes provides a reasonable tradeoff between execution speed 

and minimization of aliasing artifacts. (A resolution of 142

100×

142×  cells is required for an equivalent cubic 

tetrahedron.) You can experiment with different resolutions (such as 50 50×  or  cells) by 

redefining FF_ArrayRes and recompiling. The only restriction is that FF_ArrayRes must be an even 

number. (A further restriction applies to MS-Windows 3.1 in that the allocated array size cannot exceed 64 

Kbytes unless the arrays are declared as _huge–something that should only be done as a last resort.) 

200200 ×

5.12.1 Hemi-cube Form Factor Calculations 

FF_DELTA.H simply specifies the delta form factor resolution. We can use the following C++ class to 

precalculate and store the delta form factors for our hemi-cube: 

// HC_DELTA.H - Hemi-cube Delta Form Factor Class 
 
#ifndef _HC_DELTA_H 
#define _HC_DELTA_H 
 
#include "general.h" 
#include "ff_delta.h" 
 
static const int HC_ArrayDim = FF_ArrayRes / 2; 
 
class HemiDelta         // Hemi-cube delta form factors 
{ 
  private: 
    static float side_array[HC_ArrayDim][HC_ArrayDim]; 
    static float top_array[HC_ArrayDim][HC_ArrayDim]; 
 
  public: 
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    HemiDelta(); 
 
    // Get top face cell form factor 
    float GetTopFactor( int row, int col ) 
    { 
      if (row >= HC_ArrayDim) 
        row -= HC_ArrayDim; 
      else 
        row = HC_ArrayDim - row - 1; 
 
      if (col >= HC_ArrayDim) 
        col -= HC_ArrayDim; 
      else 
        col = HC_ArrayDim - col - 1; 
 
      return top_array[row][col]; 
    } 
 
    // Get side face cell form factor 
    float GetSideFactor( int row, int col ) 
    { 
      if (col >= HC_ArrayDim) 
        col -= HC_ArrayDim; 
      else 
        col = HC_ArrayDim - col - 1; 
 
      return side_array[row - HC_ArrayDim][col]; 
    } 
}; 
 
#endif 

Listing 5.2 - HC_DELTA.H 

GetTopFactor and GetSideFactor map a cell’s integer co-ordinates to indices for the static delta form 

factor arrays before returning the appropriate value. The arrays are initialized at program startup by: 

// HC_DELTA.CPP - Hemi-cube Delta Form Factor Class 
 
#include "hc_delta.h" 
 
// Static delta form factor arrays 
float HemiDelta::side_array[HC_ArrayDim][HC_ArrayDim]; 
float HemiDelta::top_array[HC_ArrayDim][HC_ArrayDim]; 
 
HemiDelta::HemiDelta()  // Class constructor 
{ 
  int i, j;             // Loop indices 
  double da;            // Cell area 
  double dx, dy, dz;    // Cell dimensions 
  double r, x, y, z;    // Cell co-ordinates 
 
  // Initialize cell dimensions and area 
  dx = dy = dz = 2.0 / (float) FF_ArrayRes; 
  da = 4.0 / ((float) FF_ArrayRes * (float) FF_ArrayRes); 
 
  // Calculate top face delta form factors 
  x = dx / 2.0; 
  for (i = 0; i < HC_ArrayDim; i++) 
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  { 
    y = dy / 2.0; 
    for (j = 0; j < HC_ArrayDim; j++) 
    { 
      r = x * x + y * y + 1.0; 
      top_array[j][i] = (float) (da / (PI * r * r)); 
      y += dy; 
    } 
    x += dx; 
  } 
 
  // Calculate side face delta form factors 
  x = dx / 2.0; 
  for (i = 0; i < HC_ArrayDim; i++) 
  { 
    z = dz / 2.0; 
    for (j = 0; j < HC_ArrayDim; j++) 
    { 
      r = x * x + z * z + 1.0; 
      side_array[j][i] = (float) (z * da / (PI * r * r)); 
      z += dy; 
    } 
    x += dx; 
  } 
} 

Listing 5.3- HC_DELTA.CPP 

Only one global instance of HemiDelta is required in a radiosity rendering program. If you want to 

experiment with different hemi-cube resolutions without recompiling, HemiDelta should be modified such 

that it dynamically allocates and initializes its delta form factor arrays. 

5.12.2 Cubic Tetrahedron Form Factor Calculations 

Our C++ code for precalculating and later accessing delta form factor values for cubic tetrahedrons is 

based on a C implementation presented in Beran-Koehn and Pavicic [1992]. Translated into C++, it 

becomes: 

// CT_DELTA.H- Cubic Tetrahedron Delta Form Factor Class 
 
#ifndef _CT_DELTA_H 
#define _CT_DELTA_H 
 
#include "general.h" 
#include "ff_delta.h" 
 
// Delta form factor array size 
static const CT_DeltaDim = FF_ArrayRes / 2; 
static const int CT_FormDim = CT_DeltaDim * CT_DeltaDim + 
    CT_DeltaDim; 
 
// Cubic tetrahedron face co-ordinate limits 
static const double CT_MinCoord = -2.0; 
static const double CT_MaxCoord = 1.0; 
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class CubicDelta    // Cubic tetrahedron delta form factors 
{ 
  private: 
    // Delta form factor row pointer array 
    static float *delta_array[CT_DeltaDim]; 
 
    // Delta form factor array 
    static float ff_array[CT_FormDim]; 
 
  public: 
    CubicDelta(); 
 
    // Get delta form factor 
    float GetFactor( int row, int col ) 
    { 
      int temp;         // Temporary variable 
 
      if (row > col) 
      { 
        temp = row; 
        row = col; 
        col = temp; 
      } 
 
      return delta_array[row][col - row]; 
    } 
}; 
 
#endif 

Listing 5.4- CT_DELTA.H 

and: 

// CT_DELTA.CPP- Cubic Tetrahedron Delta Form Factor Class 
 
#include "ct_delta.h" 
 
// Static delta form factor row pointer array 
float *CubicDelta::delta_array[CT_DeltaDim]; 
 
// Static delta form factor array 
float CubicDelta::ff_array[CT_FormDim]; 
 
CubicDelta::CubicDelta()        // Class constructor 
{ 
  int i = 0;                    // Form factor array index 
  int left, right, top, bottom; // Index boundaries 
  int row, col;                 // Current indices 
  double delta;                 // Cell width 
  double diag_delta;            // Diagonal cell width 
  double area;                  // Cell area 
  double diag_area;             // Diagonal cell area 
  double y, z;                  // Cell center 
  double diag_y, diag_z;        // Diagonal cell center 
  double r2;                    // Cell distance squared 
 
  // Initialize index boundaries 
  left = top = 0; 
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  right = FF_ArrayRes - 1; 
  bottom = FF_ArrayRes / 2; 
 
  // Initialize cell values 
  delta = (CT_MaxCoord - CT_MinCoord) / FF_ArrayRes; 
  diag_delta = delta / 2.0; 
  area  = delta * delta; 
  diag_area  = area / 2.0; 
  y = z = CT_MaxCoord - diag_delta; 
 
  // Calculate delta form factors 
  for (row = top; row < bottom; row++) 
  { 
    // Save delta form factor array row pointer 
    delta_array[row] = &(ff_array[i]); 
 
    for (col = left; col < right; col++) 
    { 
      // Calculate square of cell distance 
      r2 = y * y + z * z + 1; 
 
      // Calculate cell delta form factor 
      ff_array[i++] = (float) (area * (y + z + 1) / (PI * r2 
          * r2 * sqrt(3.0))); 
 
      y -= delta; 
    } 
 
    // Calculate square of diagonal cell distance 
    diag_y = y + diag_delta; 
    diag_z = z + diag_delta; 
    r2 = diag_y * diag_y + diag_z * diag_z + 1; 
 
    // Calculate diagonal cell delta form factor 
    ff_array[i++] = (float) (diag_area * (diag_y + diag_z + 
        1) / (PI * r2 * r2 * sqrt(3.0))); 
 
    left++; 
    right--; 
    y = z -= delta; 
  } 
} 

Listing 5.5- CT_DELTA.CPP 

Unlike HemiDelta, CubicDelta dynamically allocates a two-dimensional triangular array for its delta 

form factor values. The details of this technique are discussed in a text file on the accompanying diskette. 

A similar discussion is presented in Ashdown [1988]. 

Like our previous HemiDelta class, only one global instance of CubicDelta is required in a radiosity 

rendering program. Moreover, we should choose between the two at some point, since only one is required 

for form factor determination. Right now, we have some more work to do. 
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5.13 A Polygon Vertex Array Class 

In an ideal world with truly intelligent optimizing compilers, we could simply derive an implementation 

of the hemi-cube algorithm from our previous implementation of the Sutherland-Hodgman algorithm in 

PolyClip4 (Section 4.8.6). The C++ compiler would then rewrite our code to remove the extraneous 

components, reorder our mathematical calculations for improved efficiency, and so forth. In more realistic 

terms, the two applications are sufficiently different that we are better off rewriting PolyClip4 expressly for 

clipping polygons against hemi-cubes and cubic tetrahedrons. 

Following the development of PolyClip4, we first need a polygon vertex array class that is very similar 

to our OutPolygon class in Listing 4.5. This becomes: 

// FF_POLY.H - Form Factor Polygon Class 
 
#ifndef _FF_POLY_H 
#define _FF_POLY_H 
 
#include "patch3.h" 
#include "vector4.h" 
 
// Maximum number of output vertices 
static const int MaxVert = 10; 
 
class FormPoly          // Form factor polygon 
{ 
  private: 
    Point3 posn[MaxVert];       // Output vertex array 
    int num_vert;               // Number of vertices 
    WORD ident;                 // Polygon identifier 
 
    void AddVertex( Vector4 &v ) 
    { v.Perspective(&(posn[num_vert++])); } 
 
    void Reset( WORD id ) 
    { 
      num_vert = 0; 
      ident = id; 
    } 
 
    friend class FormClipEdge; 
    friend class FormClip; 
 
  public: 
    FormPoly() 
    { 
      num_vert = 0; 
      ident = 0; 
    } 
 
    int GetNumVert() { return num_vert; } 
    Point3 &GetVertex( int i ) 
    { return posn[i]; } 
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    WORD GetPolyId() { return ident; } 
}; 
 
#endif 

Listing 5.6 - FF_POLY.H 

The ident member holds the identifier of the polygon currently being projected onto the hemi-cube. 

Unlike our OutPolygon class, we only need to store the position for each polygon vertex. This considerably 

simplifies the class’s internal details. 

We will need five instances of FormPoly, one for each hemi-cube face. Thus: 

// HC_POLY.H - Hemi-cube Polygon Class 
 
#ifndef _HC_POLY_H 
#define _HC_POLY_H 
 
#include "ff_poly.h" 
 
// Hemi-cube face identifiers 
enum HC_Face 
{ 
  HC_TopFace = 0,   // n = +1.0 
  HC_FrontFace = 1, // v = +1.0 
  HC_RightFace = 2, // u = +1.0 
  HC_BackFace = 3,  // v = -1.0 
  HC_LeftFace = 4   // u = -1.0 
}; 
 
#endif 

Listing 5.7 - HC_POLY.H 

HC_POLY.H defines the enumerated HC_Face data type. Its values are used to arbitrarily but 

consistently label the hemi-cube faces according to their orientation with respect to the hemi-cube’s view 

space co-ordinate system, as shown in Figure 5.23. 
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Figure 5.23 - Hemi-cube face naming conventions 
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We will similarly need three instances of FormPoly for our cubic tetrahedron. This becomes: 

// CT_POLY.H - Cubic Tetrahedron Polygon Class 
 
#ifndef _CT_POLY_H 
#define _CT_POLY_H 
 
#include "ff_poly.h" 
 
// Cubic tetrahedron face identifiers 
enum CT_Face 
{ 
  CT_TopFace = 0,   // n = +1.0 
  CT_RightFace = 1, // u = +1.0 
  CT_LeftFace = 2   // v = +1.0 
}; 
 
#endif 

Listing 5.8 - CT_POLY.H 

where the cubic tetrahedron faces are labeled according to the conventions shown in Figure 5.24. 
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Figure 5.24 - Cubic tetrahedron face naming conventions 

5.14 Hemi-cube Orientation 

We saw in Section 5.9 that the hemi-cube should be randomly oriented (or jittered) about its n-axis 

when it is placed over the center of a polygon in order to minimize aliasing artifacts. We can do this by 

first generating a random vector r using C++’s rand function for each co-ordinate. From this, we derive a 

random u-axis vector  with: HCu

rnu ×= PHC  (5.26) 
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where n  is the polygon normal. (We may have to generate another random vector and repeat this 

calculation if the length of u  is zero.) After normalizing u , the v-axis vector  is calculated 

from: 

HCP n=

HC HC HCv

HCHCHC nuv ×=  (5.27) 

This gives us the hemi-cube’s view space in world co-ordinates. We will need to reorient this system to 

align it with each face before we can project polygons against them. Fortunately, the hemi-cube’s 

symmetry makes this particularly easy to do. Following a suggestion by Vilaplana and Pueyo [1992], we 

can simply swap co-ordinates and change signs as required for our viewing axes; no other floating point 

operations are necessary. Given a hemi-cube’s view space axes u ,  and  expressed in world 

co-ordinates (Fig. 5.23), the hemi-cube face view spaces can be determined from: 

HC HCv HCn

Top: HCTHCTHCT nnvvuu === ,,  
Front: HCFHCFHCF vnnvuu ==−= ,,  
Right: HCRHCRHCR unnvvu === ,,  (5.28) 
Back: HCBHCBHCB vnnvuu −=== ,,  
Left: HCLHCLHCL unnvvu −==−= ,,  

Positioning and orienting the cubic tetrahedron’s viewing system is a more involved procedure than it 

is for the hemi-cube. We can use Equations 5.26 and 5.27 to generate a randomly oriented viewing system 

whose normal is collinear with the polygon normal and whose origin coincides with the polygon center. 

We can think of this as the polygon’s view space, with its axes expressed in world co-ordinates as the unit 

vectors ,  and n . Pu Pv P

From here, we need to align the cubic tetrahedron’s view space such that the polygon normal has the 

view space co-ordinates 

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1 . In terms of the polygon’s view space, the tetrahedron’s view 
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Expressed in world co-ordinates, these become: 

PPPCT cba nvuu ∗−∗+∗=  

PPPCT cab nvuv ∗−∗+∗=  (5.30) 

PPPCT ccc nvun ∗−∗+∗=  

where the constants a, b and c are: 

2
1

32
1

+=a  

2
1

32
1

−=b  (5.31) 

3
1−

=c  

This gives us the cubic tetrahedron’s view space in world co-ordinates. Looking out from the polygon 

center through each face, we see a triangular view plane window (Fig. 5.25a). It will be convenient when 

we later come to polygon scan conversion to have this window oriented as shown in Figure 5.25b. This can 

be done by negating the u-axis and v-axis co-ordinate values.  

v v 

u u 

n n 

{0,0,1} {0,0,1} 

{1,-2,1} 

{-2,1,1} {1,1,1} 

{2,-1,1} 

{-1,2,1} 

{-1,-1,1} 

 

Figure 5.25a - Top view window Figure 5.25b - Rotated top view window 

Combining this with our earlier approach for hemi-cubes, we can reorient the cubic tetrahedron’s view 

space to that of each face with the following: 

Top: CTTCTTCTT nnvvuu =−=−= ,,  
Left: CTLCTLCTL vnnvuu =−=−= ,,  (5.32) 
Right: CTRCTRCTR unnvvu =−=−= ,,  
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5.15 View Space Transformations 

We now have a hemi-cube or cubic tetrahedron face view space expressed as vectors u, v and n in 

world co-ordinates. With these, we can use Equations 4.8 and 4.9 to determine the view transformation 

matrix M needed to transform a polygon vertex’s world co-ordinates to this view space. To repeat those 

equations here: 



















=

1000
zzyx

yzyx

xzyx

tnnn
tvvv
tuuu

M  (5.33) 

where: 
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∗−∗−∗−=

 (5.34) 

and where the bound vector o (expressed in world co-ordinates) represents the view space origin (i.e., the 

polygon center). 

Recalling that the origin lies at the eye position (Fig. 5.20), we need to translate the view space one unit 

along the n-axis to place the origin in the center of the face. From Equation 4.4, the necessary translation 

matrix is: 
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We also need to perform the usual perspective and normalization transformations. The perspective 

transformation matrix is given by Equation 4.14. Since the view distance is exactly minus one, we have: 
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The normalization matrix is given by Equations 4.16 and 4.17. However, we have to be careful here, 

since the hemi-cube and cubic tetrahedron faces will require different normalization transformations. 
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Consider the hemi-cube faces: our view plane window is a square, even for the side faces–we are 

simply choosing to ignore the bottom half of the view from these windows. Therefore, the aspect ratio is 

unity, and so 21== vu ss . This gives us:  
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where  and  are determined by our choices for the front and back clipping planes distances F and B. ns nr

Unlike our viewing system in Chapter Four, there is no reason to clip against a front and back plane. If 

we set the back clipping plane distance to plus infinity (represented in our code as MAX_VALUE), we can 

dispense with a back plane clipping operation altogether. 

The front clipping plane distance is more problematic. Ideally, we should locate it as close to the eye 

position as possible in order to include in the view volume everything above the polygon surface. This 

suggests a value of  to ensure that we will not have a divide-by-zero error for a point 

exactly on or behind the polygon surface. Recalling Section 4.3, however, we are reminded that 

perspective projection distorts the n-axis values. In particular, placing the front plane distance too close to 

the eye position degrades the Z-buffer pseudodepth resolution (Section 4.14). A more reasonable value is -

0.99 units, assuming that no two polygons in our environment will be closer together than this. (This is 

generally a reasonable assumption, at least for form factor calculations.) 

1_ −VALUEMIN

These arguments for the front and back clipping planes also apply to the cubic tetrahedron faces. 

However, Equation 4.16 no longer applies. We instead have: 
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where  and  are as given before (Eqn. 4.17). Referring to Figure 5.25b, this transformation translates 

the view plane window one unit along the u-axis and v-axis and scales it in these directions by one-third. 

The view volume is scaled along the n-axis as before, resulting in the canonical parallel view volume 

shown in Figure 5.26. 

ns nr
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Figure 5.26 - Canonical parallel view volume for cubic tetrahedrons 

We can concatenate these transformation matrices to obtain the 3-D projective transformation matrix 

for our hemi-cube or cubic tetrahedron faces. That is, similar to Equation 4.19, we have: 
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where { }zyx ppp ,,  are the world co-ordinates of a polygon vertex p. This provides us with the 4-D 

homogeneous co-ordinates we need for polygon clipping. All we need now is a framework in which to 

implement these equations. 

5.16 Polygon Clipping Revisited 

It is clear that we shall need separate polygon clipping strategies for our hemi-cube and cubic 

tetrahedron view volumes, if only because of their different clipping planes. At the same time, these 

strategies will have much in common. It makes sense then to develop an abstract polygon clipper class and 

derive our two polygon clippers from it. 

Much of the following code is an adaptation of PolyClip4, with the addition of components from our 

ViewSys class (Listings 4.1 and 4.2). Thus: 

// FF_CLIP.H - Form Factor Polygon Clipper Class 
 
#ifndef _FF_CLIP_H 
#define _FF_CLIP_H 
 
#include "ff_poly.h" 
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// View normalization parameters 
static const double FPD = -0.99; 
static const double BPD = MAX_VALUE; 
static const double EYE = -1.0; 
static const double SN = (EYE - BPD) * (EYE - FPD) / (EYE * 
    EYE * (BPD - FPD)); 
static const double RN = FPD * (EYE - BPD) / (EYE * (FPD - 
    BPD)); 
 
class FormClipEdge      // Edge-plane clipper 
{ 
  private: 
    FormClipEdge *pnext;        // Next clipper pointer 
    Vector4 normal;             // Plane normal 
    Vector4 first;              // First vertex 
    Vector4 start;              // Start vertex 
    BOOL first_inside;          // First vertex inside flag 
    BOOL start_inside;          // Start vertex inside flag 
    BOOL first_flag;            // First vertex seen flag 
 
    BOOL IsInside( Vector4 &v ) 
    { return (Dot(normal, v) >= 0.0); } 
    Vector4 Intersect( Vector4 &, Vector4 & ); 
    void Output( Vector4 &, FormPoly & ); 
 
  public: 
    FormClipEdge() { first_flag = FALSE; } 
 
    void Add( FormClipEdge *pc ) { pnext = pc; } 
    void Clip( Vector4 &, FormPoly & ); 
    void Close( FormPoly & ); 
    void SetNormal( Vector4 &n ) { normal = n; } 
}; 
 
class FormClip  // Form factor polygon clipper 
{ 
  protected: 
    int num_vert;               // # of polygon vertices 
    Vector3 u, v, n;            // View system co-ordinates 
    double vtm[4][4];           // Transformation matrix 
    FormClipEdge clipper[5];    // Clipper array 
    FormClipEdge *pclip;        // Clipper list head pointer 
    Point3 center;              // Polygon center 
 
    Vector3 RandomVector()      // Generate random vector 
    { 
      Vector3 temp;     // Temporary vector 
 
      temp.SetX(GetNormRand() * 2.0 - 1.0); 
      temp.SetY(GetNormRand() * 2.0 - 1.0); 
      temp.SetZ(GetNormRand() * 2.0 - 1.0); 
 
      return temp; 
    } 
 
  public: 
    BOOL BackFaceCull( Patch3 *ppatch ) 
    { 
      Vector3 view;     // View vector 
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      // Calculate view vector 
      view = Vector3(ppatch->GetVertexPtr(0)->GetPosn(), 
          center); 
           
      // Indicate whether patch is backface 
      return (Dot(ppatch->GetNormal(), view) < MIN_VALUE) ? 
          TRUE : FALSE; 
    } 
 
    int Clip( Element3 *, FormPoly &, WORD ); 
}; 
 
#endif 

Listing 5.9 - FF_CLIP.H 

FF_CLIP.H is very similar to P_CLIP4.H (Listing 4.6). The only major changes are in the derivation of 

FormClipEdge from the ClipEdge class. These are: 

• the polygon center (center), the view system axis co-ordinates (u, v and n) and a view transformation 

matrix (vtm) have been added to assist in reorienting the view system for each hemi-cube or cubic 

tetrahedron face. 

• backface culling of patches to be projected onto a face is provided by BackFaceCull, which is an 

adaptation of ViewSys::BackFaceCull from Listing 4.2. (If a planar surface patch faces away from the 

eye position, then logically all of its elements will do the same.) 

• random vectors are generated by RandomVector. 

Since the view distance, front and back clipping planes distances are now constant, EYE, FPD and BPD 

are provided to compute SN and RN in accordance with Equation 4.17. These constants will be used later to 

implement the normalization transformations (Eqn. 5.37 and 5.38). 

The remainder of our abstract polygon clipper class is adapted from P_CLIP4.CPP (Listing 4.7): 

// FF_CLIP.CPP - Form Factor Polygon Clipper Class 
 
#include "ff_clip.h" 
 
// Clip element 
int FormClip::Clip( Element3 *pelem, FormPoly &out, WORD 
    poly_id ) 
{ 
  int i;            // Loop index 
  int num_vert;     // Number of vertices 
  Vertex3 *pvert;   // 3-D world space vertex pointer 
  Vector4 hv;       // 4-D homogeneous co-ord vertex 
 
  out.Reset(poly_id);   // Reset output polygon 
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  num_vert = pelem->GetNumVert(); 
  for (i = 0; i < num_vert; i++) 
  { 
    // Get world space vertex position pointer 
    pvert = pelem->GetVertexPtr(i); 
 
    // Set homogeneous co-ordinates vertex 
    hv.ProjTransform(pvert->GetPosn(), vtm); 
 
    pclip->Clip(hv, out);       // Clip polygon edge 
  } 
 
  pclip->Close(out);    // Close polygon 
       
  return out.GetNumVert(); 
} 
 
// Output view space vertex 
void FormClipEdge::Output( Vector4 &v, FormPoly &out ) 
{ 
  if (pnext != NULL)    // More planes ? 
    pnext->Clip(v, out); 
  else 
    out.AddVertex(v); 
} 
 
// Calculate intersection vertex 
Vector4 FormClipEdge::Intersect( Vector4 &s, Vector4 &e ) 
{ 
  double d, t;  // Temporary variables 
  Vector4 r;    // Temporary vector 
 
  // Calculate parameter 
  r = (e - s); 
  d = Dot(normal, r); 
 
  if (fabs(d) > MIN_VALUE) 
    t = -Dot(normal, s) / d; 
  else 
    t = 1.0; 
 
  // Calculate intersection vertex co-ordinates 
  r *= t; 
 
  return (s + r); 
} 
 
// Clip polygon edge 
void FormClipEdge::Clip( Vector4 &current, FormPoly &out ) 
{ 
  BOOL curr_inside;     // Current point inside flag 
  Vector4 isect;        // Intersection vertex 
 
  // Determine vertex visibility 
  curr_inside = IsInside(current); 
 
  if (first_flag == FALSE)      // First vertex seen ? 
  { 
    first = current; 
    first_inside = curr_inside; 
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    first_flag = TRUE; 
  } 
  else 
  { 
    // Does edge intersect plane ? 
    if (start_inside ^ curr_inside) 
    { 
      isect = Intersect(start, current); 
      Output(isect, out); 
    } 
  } 
 
  if (curr_inside == TRUE) 
    Output(current, out); 
 
  start = current; 
  start_inside = curr_inside; 
} 
 
// Close polygon 
void FormClipEdge::Close( FormPoly &out ) 
{ 
  Vector4 isect;        // Intersection vertex 
 
  if (first_flag == TRUE) 
  { 
    // Does edge intersect plane ? 
    if (start_inside ^ first_inside) 
    { 
      isect = Intersect(start, first); 
      Output(isect, out); 
    } 
 
    if (pnext != NULL)  // More planes ? 
      pnext->Close(out); 
 
    // Reset first vertex seen flag 
    first_flag = FALSE; 
  } 
} 

Listing 5.10 - FF_CLIP.CPP 

The changes here are relatively minor. The class constructor PolyClip4::PolyClip4 has been removed, 

since it depends on the number and orientation of the clipping planes. Also, FormClip::Intersect has been 

simplified by removing the vertex color interpolation that was performed by PolyClip4::Intersect. 

5.16.1 A Polygon Clipping Class for Hemi-cubes 

We can now derive a polygon clipping class expressly for hemi-cubes from FormClip as follows: 

// HC_CLIP.H - Hemi-cube Polygon Clipper Class 
 
#ifndef _HC_CLIP_H 
#define _HC_CLIP_H 
 
#include "hc_poly.h" 
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#include "ff_clip.h" 
 
// Clipping plane identifiers 
enum HC_Plane 
{ HC_Front, HC_Left, HC_Right, HC_Top, HC_Bottom }; 
 
// Hemi-cube polygon clipper 
class HemiClip : public FormClip 
{ 
  private: 
    void BuildTransform( Vector3 &, Vector3 &, Vector3 & ); 
 
  public: 
    HemiClip(); 
 
    void SetView( Patch3 * ); 
    void UpdateView( int ); 
}; 
 
#endif 

Listing 5.11 - HC_CLIP.H 

and: 

// HC_CLIP.CPP - Hemi-cube Polygon Clipper Class 
 
#include "hc_clip.h" 
 
HemiClip::HemiClip()    // HemiClip class constructor 
{ 
  Vector4 temp;     // Temporary vector 
 
  // Link edge-plane clippers 
  pclip = &(clipper[HC_Front]); 
  clipper[HC_Front].Add(&(clipper[HC_Left])); 
  clipper[HC_Left].Add(&(clipper[HC_Right])); 
  clipper[HC_Right].Add(&(clipper[HC_Top])); 
  clipper[HC_Top].Add(&(clipper[HC_Bottom])); 
  clipper[HC_Bottom].Add(NULL); 
 
  // Set clipper plane normals 
 
  temp = Vector4(0.0, 0.0, 1.0, 0.0); 
  clipper[HC_Front].SetNormal(temp.Norm()); 
 
  temp = Vector4(1.0, 0.0, 0.0, 0.0); 
  clipper[HC_Left].SetNormal(temp.Norm()); 
 
  temp = Vector4(-1.0, 0.0, 0.0, 1.0); 
  clipper[HC_Right].SetNormal(temp.Norm()); 
 
  temp = Vector4(0.0, -1.0, 0.0, 1.0); 
  clipper[HC_Top].SetNormal(temp.Norm()); 
 
  temp = Vector4(0.0, 1.0, 0.0, 0.0); 
  clipper[HC_Bottom].SetNormal(temp.Norm()); 
} 
 
// Choose random hemi-cube orientation 
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void HemiClip::SetView( Patch3 *ppatch ) 
{ 
  Vector3 rv;   // Random vector 
 
  // Get eye position (hemi-cube center) 
  center = ppatch->GetCenter(); 
 
  n = ppatch->GetNormal();      // Get patch normal 
 
  do   // Get valid u-axis vector 
  { 
    // Select random vector for hemi-cube orientation 
    rv = RandomVector(); 
 
    u = Cross(n, rv); 
  } 
  while (u.Length() < MIN_VALUE); 
 
  u.Norm();             // Normalize u-axis 
  v = Cross(u, n);      // Determine v-axis 
} 
 
void HemiClip::BuildTransform( Vector3 &nu, Vector3 &nv, 
    Vector3 &nn) 
{ 
  Vector3 origin;       // View space origin 
 
  origin = Vector3(center); 
 
  // Set view transformation matrix 
  vtm[0][0] = nu.GetX(); 
  vtm[0][1] = nu.GetY(); 
  vtm[0][2] = nu.GetZ(); 
  vtm[0][3] = -(Dot(origin, nu)); 
 
  vtm[1][0] = nv.GetX(); 
  vtm[1][1] = nv.GetY(); 
  vtm[1][2] = nv.GetZ(); 
  vtm[1][3] = -(Dot(origin, nv)); 
 
  vtm[2][0] = nn.GetX(); 
  vtm[2][1] = nn.GetY(); 
  vtm[2][2] = nn.GetZ(); 
  vtm[2][3] = -(Dot(origin, nn)); 
 
  vtm[3][0] = 0.0; 
  vtm[3][1] = 0.0; 
  vtm[3][2] = 0.0; 
  vtm[3][3] = 1.0; 
 
  // Premultiply by translation matrix 
  vtm[2][3] -= 1.0; 
 
  // Premultiply by perspective transformation matrix 
  vtm[3][0] += vtm[2][0]; 
  vtm[3][1] += vtm[2][1]; 
  vtm[3][2] += vtm[2][2]; 
  vtm[3][3] += vtm[2][3]; 
 
  // Premultiply by normalization matrix 
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  vtm[0][0] = 0.5 * (vtm[0][0] + vtm[3][0]); 
  vtm[0][1] = 0.5 * (vtm[0][1] + vtm[3][1]); 
  vtm[0][2] = 0.5 * (vtm[0][2] + vtm[3][2]); 
  vtm[0][3] = 0.5 * (vtm[0][3] + vtm[3][3]); 
 
  vtm[1][0] = 0.5 * (vtm[1][0] + vtm[3][0]); 
  vtm[1][1] = 0.5 * (vtm[1][1] + vtm[3][1]); 
  vtm[1][2] = 0.5 * (vtm[1][2] + vtm[3][2]); 
  vtm[1][3] = 0.5 * (vtm[1][3] + vtm[3][3]); 
 
  vtm[2][0] = SN * vtm[2][0] + RN * vtm[3][0]; 
  vtm[2][1] = SN * vtm[2][1] + RN * vtm[3][1]; 
  vtm[2][2] = SN * vtm[2][2] + RN * vtm[3][2]; 
  vtm[2][3] = SN * vtm[2][3] + RN * vtm[3][3]; 
} 
 
// Update hemi-cube view transformation matrix 
void HemiClip::UpdateView( int face_id ) 
{ 
  Vector3 nu, nv, nn;   // View space co-ordinates 
 
  switch (face_id )     // Exchange co-ordinates 
  { 
    case HC_TopFace: 
      nu = u; nv = v; nn = n; 
      break; 
    case HC_FrontFace: 
      nu = -u; nv = n; nn = v; 
      break; 
    case HC_RightFace: 
      nu = v; nv = n; nn = u; 
      break; 
    case HC_BackFace: 
      nu = u; nv = n; nn = -v; 
      break; 
    case HC_LeftFace: 
      nu = -v; nv = n; nn = -u; 
      break; 
    default: 
      break; 
  } 
   
  // Build new view transformation matrix 
  BuildTransform(nu, nv, nn); 
} 

Listing 5.12 - HC_CLIP.CPP 

The derivation of HemiClip from our abstract FormClip class completes the adaptation of PolyClip4. 

The class constructor is identical to PolyClip4::PolyClip4, except that the back clipping plane has been 

removed. 

In addition to the functionality provided by its progenitor, HemiClip provides several functions specific 

to hemi-cubes. SetView positions the hemi-cube over the polygon center and chooses a random orientation 
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about the polygon normal, then stores the hemi-cube view system axis world co-ordinates in the protected 

members u, v and n. UpdateView reorients these axes to the current face before calling BuildTransform, 

which initializes the view transformation matrix. 

BuildTransform is an adaptation of ViewSys::BuildTransform. (Listing 4.2). The only changes are the 

addition of a translation transformation (Eqn. 5.35) to shift the origin from the polygon center to the hemi-

cube face and the replacement of the front and back clipping plane distance variables with the constants SN 

and RN. 

In terms of production-quality code, BuildTransform should really be rewritten to concatenate the view, 

translation, perspective and normalization transformations into one matrix. On the other hand, the function 

is not called all that often, and its present form is more amenable to debugging. 

5.16.2 A Polygon Clipping Class for Cubic Tetrahedrons 

Our polygon clipping class for cubic tetrahedrons will be almost–but not quite–like HemiClip. The 

most notable difference is the canonical view volume shown in Figure 5.26. We need to know the normal 

co-ordinates of the diagonal clipping plane, but what does it look like in four homogeneous dimensions? 

The answer comes from realizing that this plane is parallel to the n-axis. This means that the third co-

ordinate of the plane normal must be zero. It also means that we can plot the plane in three dimensions as 

shown in Figure 5.27. It has the plane equation u wv =+ , and we can see by inspection that the plane 

normal in 4-D homogeneous co-ordinates must be { }31,0,31,31 −− . 

w 

v 

u 0 1 

1 

1 
u + v = w

 

Figure 5.27 - Diagonal clipping plane for cubic tetrahedron face 
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With this, our polygon clipping class becomes: 

// CT_CLIP.H - Cubic Tetrahedron Polygon Clipper Class 
 
#ifndef _CT_CLIP_H 
#define _CT_CLIP_H 
 
#include "ct_poly.h" 
#include "ff_clip.h" 
 
// Clipping plane identifiers 
enum CT_Plane { CT_Front, CT_Left, CT_Bottom, CT_Diag }; 
 
// Cubic tetrahedron polygon clipper 
class CubicClip : public FormClip 
{ 
  private: 
    void BuildTransform( Vector3 &, Vector3 &, Vector3 & ); 
 
  public: 
    CubicClip(); 
 
    void SetView( Patch3 * ); 
    void UpdateView( int ); 
}; 
 
#endif 

Listing 5.13 - CT_CLIP.H 

and: 

// CT_CLIP.CPP - Cubic Tetrahedron Polygon Clipper Class 
 
#include "ct_clip.h" 
 
CubicClip::CubicClip()  // CubicClip class constructor 
{ 
  Vector4 temp;     // Temporary vector 
 
  // Link edge-plane clippers 
  pclip = &(clipper[CT_Front]); 
  clipper[CT_Front].Add(&(clipper[CT_Left])); 
  clipper[CT_Left].Add(&(clipper[CT_Bottom])); 
  clipper[CT_Bottom].Add(&(clipper[CT_Diag])); 
  clipper[CT_Diag].Add(NULL); 
 
  // Set clipper plane normals 
 
  temp = Vector4(0.0, 0.0, 1.0, 0.0); 
  clipper[CT_Front].SetNormal(temp.Norm()); 
 
  temp = Vector4(1.0, 0.0, 0.0, 0.0); 
  clipper[CT_Left].SetNormal(temp.Norm()); 
 
  temp = Vector4(0.0, 1.0, 0.0, 0.0); 
  clipper[CT_Bottom].SetNormal(temp.Norm()); 
 
  temp = Vector4(-1.0, -1.0, 0.0, 1.0); 
  clipper[CT_Diag].SetNormal(temp.Norm()); 
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} 
 
// Choose random cubic tetrahedron orientation 
void CubicClip::SetView( Patch3 *ppatch ) 
{ 
  double a, b, c;   // Temporary variables 
  Vector3 rv;       // Random vector 
  Vector3 patch_u;  // Patch view space u-axis vector 
  Vector3 patch_v;  // Patch view space v-axis vector 
  Vector3 patch_n;  // Patch view space n-axis vector 
 
  // Get eye position (cubic tetrahedron center) 
  center = ppatch->GetCenter(); 
 
  patch_n = ppatch->GetNormal();    // Get patch normal 
 
  do   // Get valid u-axis vector 
  { 
    // Select random vector for patch view space orientation 
    rv = RandomVector(); 
 
    patch_u = Cross(patch_n, rv); 
  } 
  while (patch_u.Length() < MIN_VALUE); 
 
  patch_u.Norm();                       // Normalize u-axis 
  patch_v = Cross(patch_u, patch_n);    // Determine v-axis 
 
  // Rotate cubic tetrahedron view space co-ordinate system 
  // to align it with respect to patch view space such 
  // that: 
  // 
  //   u = a * patch_u + b * patch_v - c * patch_n 
  //   v = b * patch_u + a * patch_v - c * patch_n 
  //   n = c * patch_u + c * patch_v - c * patch_n 
  // 
  // where: 
  // 
  //   a = 1 / (2 * sqrt(3)) + 1 / 2 
  //   b = 1 / (2 * sqrt(3)) - 1 / 2 
  //   c = -1 / sqrt(3) 
 
  c = -1.0 / sqrt(3.0); 
  a = (c * -0.5) + 0.5; 
  b = (c * -0.5) - 0.5; 
 
  u = a * patch_u + b * patch_v - c * patch_n; 
  v = b * patch_u + a * patch_v - c * patch_n; 
  n = c * patch_u + c * patch_v - c * patch_n; 
} 
 
void CubicClip::BuildTransform( Vector3 &nu, Vector3 &nv, 
    Vector3 &nn) 
{ 
  Vector3 origin;       // View space origin 
 
  origin = Vector3(center); 
 
  // Set view transformation matrix 
  vtm[0][0] = nu.GetX(); 
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  vtm[0][1] = nu.GetY(); 
  vtm[0][2] = nu.GetZ(); 
  vtm[0][3] = -(Dot(origin, nu)); 
 
  vtm[1][0] = nv.GetX(); 
  vtm[1][1] = nv.GetY(); 
  vtm[1][2] = nv.GetZ(); 
  vtm[1][3] = -(Dot(origin, nv)); 
 
  vtm[2][0] = nn.GetX(); 
  vtm[2][1] = nn.GetY(); 
  vtm[2][2] = nn.GetZ(); 
  vtm[2][3] = -(Dot(origin, nn)); 
 
  vtm[3][0] = 0.0; 
  vtm[3][1] = 0.0; 
  vtm[3][2] = 0.0; 
  vtm[3][3] = 1.0; 
 
  // Premultiply by translation matrix 
  vtm[2][3] -= 1.0; 
 
  // Premultiply by perspective transformation matrix 
  vtm[3][0] += vtm[2][0]; 
  vtm[3][1] += vtm[2][1]; 
  vtm[3][2] += vtm[2][2]; 
  vtm[3][3] += vtm[2][3]; 
 
  // Premultiply by normalization matrix 
 
  vtm[0][0] = (vtm[0][0] + vtm[3][0]) / 3.0; 
  vtm[0][1] = (vtm[0][1] + vtm[3][1]) / 3.0; 
  vtm[0][2] = (vtm[0][2] + vtm[3][2]) / 3.0; 
  vtm[0][3] = (vtm[0][3] + vtm[3][3]) / 3.0; 
 
  vtm[1][0] = (vtm[1][0] + vtm[3][0]) / 3.0; 
  vtm[1][1] = (vtm[1][1] + vtm[3][1]) / 3.0; 
  vtm[1][2] = (vtm[1][2] + vtm[3][2]) / 3.0; 
  vtm[1][3] = (vtm[1][3] + vtm[3][3]) / 3.0; 
 
  vtm[2][0] = SN * vtm[2][0] + RN * vtm[3][0]; 
  vtm[2][1] = SN * vtm[2][1] + RN * vtm[3][1]; 
  vtm[2][2] = SN * vtm[2][2] + RN * vtm[3][2]; 
  vtm[2][3] = SN * vtm[2][3] + RN * vtm[3][3]; 
} 
 
// Update cubic tetrahedron view transformation matrix 
void CubicClip::UpdateView( int face_id ) 
{ 
  Vector3 nu, nv, nn;   // View space co-ordinates 
 
  switch (face_id )     // Exchange co-ordinates 
  { 
    case CT_TopFace: 
      nu = -u; nv = -v; nn = n; 
      break; 
    case CT_RightFace: 
      nu = -v; nv = -n; nn = u; 
      break; 
    case CT_LeftFace: 
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      nu = -u; nv = -n; nn = v; 
      break; 
    default: 
      break; 
  } 
   
  // Build new view transformation matrix 
  BuildTransform(nu, nv, nn); 
} 

Listing 5.14 - CT_CLIP.CPP 

CubicClip::SetView differs from its HemiClip equivalent in that it aligns the cubic tetrahedron view 

space with respect to the polygon view space as discussed in Section 5.14 (Equations 5.30 and 5.31). 

Similarly, UpdateView is based on Equation 5.32, and BuildTransform uses Equation 5.38 for its 

normalization transformation. 

Again, CubicClip::BuildTransform is not production-quality code. Like its sibling 

HemiClip::BuildTransform, it should really be rewritten to concatenate the view, translation, perspective 

and normalization transformations into one matrix. Make sure, however, that you understand how it works 

first! 

5.17 Polygon Scan Revisited 

We can derive polygon scan conversion classes for hemi-cubes and cubic tetrahedrons from our 

previous PolyRender class. Unlike PolyClip4 and its associated classes, PolyRender requires relatively few 

modifications. In fact, all we need to do is to combine the pseudodepth and frame buffers into one “cell 

information” buffer that holds the polygon depth and identifier for each hemi-cube face cell, eliminate the 

Gouraud shading functionality, and add a HemiDelta class object. 

We also need to consider triangular frame buffers for our cubic tetrahedron faces. While this is not as 

difficult as it might first appear, it does require an abstract class that we can derive our two polygon scan 

conversion classes from. Starting from P_RENDER.H (Listing 4.12) then, we have: 

// FF_SCAN.H - Form Factor Scan Conversion Class 
 
#ifndef _FF_SCAN_H 
#define _FF_SCAN_H 
 
#include "ff_poly.h" 
 
static const float FF_Infinity = MAX_VALUE; 
static const WORD FF_None = 0; 
 
struct FormCellInfo     // Face cell information 
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{ 
  float depth;          // Polygon cell depth 
  WORD id;              // Polygon identifier 
}; 
 
struct FormVertexInfo   // Vertex information 
{ 
  struct                // Face cell array offsets 
  { 
    int x;              // Width offset 
    int y;              // Height offset 
  } 
  face; 
  Point3 posn;          // Scaled position 
}; 
 
struct FormScanInfo     // Scan line intersection info 
{ 
  double x;             // X-axis co-ordinate 
  double z;             // Pseudodepth 
}; 
 
struct FormEdgeInfo     // Edge information 
{ 
  BOOL first;               // First intersection flag 
  FormScanInfo isect[2];    // Scan line intersection array 
}; 
 
// Form factor polygon scan conversion (abstract class) 
class FormScan 
{ 
  protected: 
    BOOL status;                // Object status 
    int ymin;                   // Minimum y-axis co-ord 
    int ymax;                   // Maximum y-axis co-ord 
    int num_vert;               // Number of vertices 
    FormCellInfo **cell_buffer; // Cell info buffer ptr 
    FormEdgeInfo *edge_list;    // Edge list pointer 
    FormVertexInfo v_info[8];   // Vertex info table 
    WORD poly_id;               // Polygon identifier 
 
    virtual void DrawEdgeList() = 0; 
    void GetVertexInfo( FormPoly & ); 
    void ScanEdges(); 
 
  public: 
    virtual ~FormScan() { }; 
 
    BOOL GetStatus() { return status; } 
    void Scan( FormPoly & ); 
}; 
 
#endif 

Listing 5.15 - FF_SCAN.H 

The cell information buffer pointed to by elem_buffer replaces the Z-buffer and bitmap object pointers 

maintained by PolyRender. The buffer itself will be allocated and initialized by one of the derived classes. 
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Since the buffer size is fixed at compile time by the delta form factor resolution, FormScan dispenses with 

the Open and Close functions required by PolyRender. 

Note that DrawEdgeList has been made a pure virtual function in FormScan. This is what makes 

FormScan an abstract class; there is no function body defined for DrawEdgeList. Instead, it must be 

defined by a derived class. 

One of the problems with virtual functions in C++ is that they are accessed at run-time through a virtual 

function table pointer. While this may require only two to four additional machine instructions per function 

call, these additional instructions may slow an otherwise small and fast function that could otherwise be 

placed inline by the compiler. A second problem is that every object derived from a virtual class has a 

hidden pointer to the virtual function table. As a rule of thumb, virtual functions should be used sparingly 

and only where necessary. 

DrawEdgeList is an example where a virtual function is required. It is called by Scan, which does not 

know what type of frame buffer it should draw to. The code could be rewritten to avoid this situation, but it 

would lose some of its elegance with no significant increase in performance. 

On the other hand, the function is virtual only because we are implementing two separate form factor 

determination algorithms. In its completed form, our radiosity renderer will only use one of these. In terms 

of production-quality code, it would then make sense to merge FormScan with its derived class and 

implement DrawEdgeList as a non-virtual function. 

Incidentally, any base class with virtual functions should have a virtual destructor declared for it. This 

explains the pure virtual class destructor ~FormScan. It ensures that the appropriate destructor will be 

called for any derived class. 

Returning from the intricacies of C++ programming rules, we have: 

// FF_SCAN.CPP - Form Factor Scan Conversion Class 
 
#include "ff_delta.h" 
#include "ff_scan.h" 
 
// Scan convert polygon 
void FormScan::Scan( FormPoly &poly ) 
{ 
  poly_id = poly.GetPolyId();   // Get polygon identifier 
  GetVertexInfo(poly);          // Get vertex information 
  ScanEdges();                  // Scan convert edges 
  DrawEdgeList();               // Draw edge list 
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} 
 
// Get vertex information 
void FormScan::GetVertexInfo( FormPoly &poly ) 
{ 
  int i;                // Loop index 
  FormVertexInfo *pv;   // Vertex info element pointer 
  Point3 posn;          // Normalized vertex position 
 
  // Initialize polygon y-axis limits 
  ymax = 0; 
  ymin = FF_ArrayRes - 1; 
 
  // Get number of vertices 
  num_vert = poly.GetNumVert(); 
 
  for (i = 0; i < num_vert; i++) 
  { 
    pv = &(v_info[i]);  // Get vertex info element pointer 
 
    // Get vertex normalized view space co-ordinates 
    posn = poly.GetVertex(i); 
 
    // Scale view space u-v co-ordinates 
    pv->posn.SetX(posn.GetX() * FF_ArrayRes); 
    pv->posn.SetY(posn.GetY() * FF_ArrayRes); 
    pv->posn.SetZ(posn.GetZ()); 
 
    // Convert to cell array x-y co-ordinates 
    pv->face.x = (int) pv->posn.GetX(); 
    pv->face.y = (int) pv->posn.GetY(); 
 
    // Update polygon y-axis limits 
    if (pv->face.y < ymin) 
      ymin = pv->face.y; 
    if (pv->face.y > ymax) 
      ymax = pv->face.y; 
  } 
} 
 
void FormScan::ScanEdges()      // Scan convert edges 
{ 
  int i, j;             // Loop indices 
  double dx;            // X-axis delta 
  double dz;            // Pseudodepth delta 
  double ix;            // Intersection X-axis co-ordinate 
  double iz;            // Intersection pseudodepth 
  double y_dist;        // Y-axis distance 
  FormEdgeInfo *pedge;  // Edge info pointer 
  FormScanInfo *pscan;  // Scan line info pointer 
  FormVertexInfo *psv;  // Start vertex info pointer 
  FormVertexInfo *pev;  // End vertex info pointer 
  FormVertexInfo *psw;  // Swap vertex info pointer 
 
  // Initialize edge list 
  for (i = ymin; i < ymax; i++) 
    edge_list[i].first = FALSE; 
 
  for (i = 0; i < num_vert; i++) 
  { 

 



326 Form Factor Determination 
________________________________________________________________________ 

    // Get edge vertex pointers 
    psv = &(v_info[i]); 
    pev = &(v_info[(i + 1) % num_vert]); 
     
    if (psv->face.y == pev->face.y) 
    { 
      continue;         // Ignore horizontal edges 
    } 
 
    if (psv->face.y > pev->face.y) 
    { 
      // Swap edge vertex pointers 
      psw = psv; psv = pev; pev = psw; 
    } 
 
    // Get start vertex info 
    ix = psv->posn.GetX(); 
    iz = psv->posn.GetZ(); 
 
    // Determine inverse slopes 
    y_dist = (double) (pev->face.y - psv->face.y); 
 
    dx = (pev->posn.GetX() - ix) / y_dist; 
    dz = (pev->posn.GetZ() - iz) / y_dist; 
 
    // Scan convert edge 
    pedge = &(edge_list[psv->face.y]); 
    for (j = psv->face.y; j < pev->face.y; j++) 
    { 
      // Determine intersection info element 
      if (pedge->first == FALSE) 
      { 
        pscan = &(pedge->isect[0]); 
        pedge->first = TRUE; 
      } 
      else 
        pscan = &(pedge->isect[1]); 
 
      // Insert edge intersection info 
      pscan->x = ix; 
      pscan->z = iz; 
 
      // Update edge intersection info 
      ix += dx; 
      iz += dz; 
 
      pedge++;  // Point to next edge list element 
    } 
  } 
} 

Listing 5.16 - FF_SCAN.CPP 

Once you remove the polygon color components from GetVertexInfo and ScanEdges, there is very little 

difference between these functions and their PolyRender equivalents. 
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5.17.1 Polygon Scan Conversion for Hemi-cubes 

Deriving a polygon scan conversion class for hemi-cubes from FormScan completes our adaptation of 

PolyRender. In addition to implementing the minimal changes required, we need to examine the cell 

information buffer after scan conversion and sum the delta form factors. This results in the following C++ 

class: 

// HC_SCAN.H - Hemi-Cube Scan Conversion Class 
 
#ifndef _HC_SCAN_H 
#define _HC_SCAN_H 
 
#include "ff_scan.h" 
#include "hc_delta.h" 
 
// Hemi-cube polygon scan conversion 
class HemiScan : public FormScan 
{ 
  private: 
    HemiDelta dff;      // Delta form factors 
 
  public: 
    HemiScan(); 
 
    ~HemiScan(); 
 
    void InitBuffer(); 
    void DrawEdgeList(); 
    void SumDeltas( float *, int ); 
}; 
 
#endif 

Listing 5.17 - HC_SCAN.H 

and: 

// HC_SCAN.CPP - Hemi-Cube Scan Conversion Class 
 
#include "hc_poly.h" 
#include "hc_scan.h" 
 
HemiScan::HemiScan()    // Class constructor 
{ 
  int row;      // Loop index 
   
  status = TRUE;        // Initialize object status 
 
  // Allocate edge list 
  if ((edge_list = new FormEdgeInfo[FF_ArrayRes]) != NULL) 
  { 
    // Allocate cell information buffer 
    if ((cell_buffer = new (FormCellInfo (*[FF_ArrayRes]))) 
        != NULL) 
    { 
      for (row = 0; row < FF_ArrayRes; row++) 
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      { 
        if ((cell_buffer[row] = 
            new FormCellInfo[FF_ArrayRes]) == NULL) 
        { 
          // Release partially allocated buffer 
          row--; 
          for ( ; row >= 0; row--) 
            delete [] cell_buffer[row]; 
          delete [] cell_buffer; 
 
          // Release edge list memory  
          delete [] edge_list; 
 
          status = FALSE; 
          break; 
        } 
      } 
    } 
  } 
  else 
  { 
    delete [] edge_list;        // Release edge list memory 
    status = FALSE; 
  } 
} 
 
HemiScan::~HemiScan()   // Class destructor 
{ 
  int row;      // Loop index 
   
  delete [] edge_list;          // Release edge list memory 
 
  // Delete cell information buffer 
  for (row = 0; row < FF_ArrayRes; row++) 
    delete [] cell_buffer[row]; 
  delete [] cell_buffer; 
} 
 
// Initialize cell information buffer 
void HemiScan::InitBuffer() 
{ 
  int row, col;     // Loop indices 
 
  for (row = 0; row < FF_ArrayRes; row++) 
    for (col = 0; col < FF_ArrayRes; col++) 
    { 
      cell_buffer[row][col].depth = FF_Infinity; 
      cell_buffer[row][col].id = FF_None; 
    } 
} 
 
void HemiScan::DrawEdgeList()   // Draw edge list 
{ 
  int x, y;             // Loop indices 
  int sx, ex;           // Scan line x-axis co-ordinates 
  double dz;            // Pseudodepth delta 
  double iz;            // Element pseudodepth 
  double x_dist;        // X-axis distance 
  FormEdgeInfo *pedge;  // Edge info pointer 
  FormScanInfo *pss;    // Scan line start info pointer 
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  FormScanInfo *pse;    // Scan line end info pointer 
  FormScanInfo *psw;    // Swap scan line info pointer 
 
  pedge = &(edge_list[ymin]); 
  for (y = ymin; y < ymax; y++) 
  { 
    // Get scan line info pointers 
    pss = &(pedge->isect[0]); 
    pse = &(pedge->isect[1]); 
 
    if (pss->x > pse->x) 
    { 
      // Swap scan line info pointers 
      psw = pss; pss = pse; pse = psw; 
    } 
 
    // Get scan line x-axis co-ordinates 
    sx = (int) pss->x; 
    ex = (int) pse->x; 
 
    if (sx < ex)        // Ignore zero-length segments 
    { 
      // Determine scan line start info 
      iz = pss->z; 
 
      // Determine inverse slopes 
      x_dist = pse->x - pss->x; 
 
      dz = (pse->z - iz) / x_dist; 
 
      // Enter scan line 
      for (x = sx; x < ex; x++) 
      { 
        // Check element visibility 
        if (iz < (double) cell_buffer[y][x].depth) 
        { 
          // Update Z-buffer 
          cell_buffer[y][x].depth = (float) iz; 
 
          // Set polygon identifier 
          cell_buffer[y][x].id = poly_id; 
        } 
 
        // Update element pseudodepth 
        iz += dz; 
      } 
    } 
    pedge++;    // Point to next edge list element 
  } 
} 
 
// Sum delta form factors 
void HemiScan::SumDeltas( float *ff_array, int face_id ) 
{ 
  WORD poly_id;     // Polygon identifier 
  int row, col;     // Face cell indices 
 
  if (face_id == HC_TopFace) 
  { 
    // Scan entire face buffer 
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    for (row = 0; row < FF_ArrayRes; row++) 
      for (col = 0; col < FF_ArrayRes; col++) 
      { 
        if ((poly_id = cell_buffer[row][col].id) != 
            FF_None) 
          ff_array[poly_id - 1] += 
              dff.GetTopFactor(row, col); 
      } 
  } 
  else 
  { 
    // Scan upper half of face buffer only 
    for (row = HC_ArrayDim; row < FF_ArrayRes; row++) 
      for (col = 0; col < FF_ArrayRes; col++) 
      { 
        if ((poly_id = cell_buffer[row][col].id) != FF_None) 
          ff_array[poly_id - 1] += 
              dff.GetSideFactor(row, col); 
      } 
  } 
} 

Listing 5.18- HC_SCAN.CPP 

The cell information buffer is the equivalent of the Z-buffer and bitmap (frame buffer) used by 

PolyRender. PolyRender::Open is responsible for allocating and initializing a Z-buffer whose dimensions 

are determined by the bitmap being written to. The size of the cell information buffer, on the other hand, is 

determined by the hemi-cube resolution. This being a constant, we can allocate the buffer once at program 

startup through the class constructor. This replaces PolyRender::Open; the class destructor replaces 

PolyRender::Close. 

HemiScan::HemiScan uses two arrays to allocate the cell information buffer one row at a time. This 

allows us to minimize the possibility of running out of memory due to memory fragmentation. It also 

allows us to specify hemi-cube resolutions in excess of 128 128×  cells under MS-Windows 3.1. If there is 

insufficient memory available, the object status flag is set to FALSE. 

InitBuffer is responsible for initializing the cell information buffer. It must be called before each 

polygon scan conversion. 

DrawEdgeList is nearly identical to PolyRender::DrawEdgeList. The only significant difference is that 

the vertex color has been replaced with the polygon identifier. 

Finally, SumDeltas does precisely what its name suggests. It scans the cell information buffer looking 

for covered face cells. When it finds one, it looks up the associated delta form factor and increments the 



Form Factor Determination 331 
________________________________________________________________________ 
 
indicated polygon’s form factor by that amount. It must be called after each pass through the environment, 

since the cell information buffer is reused for the five hemi-cube faces. 

5.17.2 Polygon Scan Conversion for Cubic Tetrahedrons 

Deriving a polygon scan conversion class for cubic tetrahedrons from FormScan results in code that is 

a near clone of HemiScan. The only difference is that we now have to allocate and access a triangular cell 

information buffer. Fortunately, the changes are quite minor: 

// CT_SCAN.H - Cubic Tetrahedron Scan Conversion Class 
 
#ifndef _CT_SCAN_H 
#define _CT_SCAN_H 
 
#include "ff_scan.h" 
#include "ct_delta.h" 
 
// Cubic tetrahedron polygon scan conversion 
class CubicScan : public FormScan 
{ 
  private: 
    CubicDelta dff;     // Delta form factors 
 
  public: 
    CubicScan(); 
 
    ~CubicScan(); 
 
    void InitBuffer(); 
    void DrawEdgeList(); 
    void SumDeltas( float * ); 
}; 
 
#endif 

Listing 5.19- CT_SCAN.H 

and: 

// CT_SCAN.CPP - Cubic Tetrahedron Scan Conversion Class 
 
#include "ff_delta.h" 
#include "ff_scan.h" 
#include "ct_scan.h" 
 
CubicScan::CubicScan()  // Class constructor 
{ 
  int row;      // Loop index 
  int width;    // Scan line width 
   
  status = TRUE;        // Initialize object status 
 
  // Allocate edge list 
  if ((edge_list = new FormEdgeInfo[FF_ArrayRes]) != NULL) 
  { 
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    // Allocate cell information buffer 
    if ((cell_buffer = 
        new (FormCellInfo (*[FF_ArrayRes]))) != NULL) 
    { 
      width = FF_ArrayRes; 
      for (row = 0; row < FF_ArrayRes; row++) 
      { 
        if ((cell_buffer[row] = new FormCellInfo[width]) 
            == NULL) 
        { 
          // Release partially allocated buffer 
          row--; 
          for ( ; row >= 0; row--) 
            delete [] cell_buffer[row]; 
          delete [] cell_buffer; 
 
          // Release edge list memory  
          delete [] edge_list; 
 
          status = FALSE; 
          break; 
        } 
        width--;        // Decrement scan line width 
      } 
    } 
  } 
  else 
  { 
    delete [] edge_list;        // Release edge list memory 
    status = FALSE; 
  } 
} 
 
CubicScan::~CubicScan()         // Class destructor 
{ 
  int row;      // Loop index 
   
  delete [] edge_list;          // Release edge list memory 
 
  // Delete cell information buffer 
  for (row = 0; row < FF_ArrayRes; row++) 
    delete [] cell_buffer[row]; 
  delete [] cell_buffer; 
} 
 
// Initialize cell information buffer 
void CubicScan::InitBuffer() 
{ 
  int row, col;     // Loop indices 
  int width;        // Scan line width 
 
  width = FF_ArrayRes; 
  for (row = 0; row < FF_ArrayRes; row++) 
  { 
    for (col = 0; col < width; col++) 
    { 
      cell_buffer[row][col].depth = FF_Infinity; 
      cell_buffer[row][col].id = FF_None; 
    } 
    width--;    // Decrement scan line width 
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  } 
} 
 
void CubicScan::DrawEdgeList()  // Draw edge list 
{ 
  int x, y;             // Loop indices 
  int sx, ex;           // Scan line x-axis co-ordinates 
  double dz;            // Pseudodepth delta 
  double iz;            // Element pseudodepth 
  double x_dist;        // X-axis distance 
  FormEdgeInfo *pedge;  // Edge info pointer 
  FormScanInfo *pss;    // Scan line start info pointer 
  FormScanInfo *pse;    // Scan line end info pointer 
  FormScanInfo *psw;    // Swap scan line info pointer 
 
  pedge = &(edge_list[ymin]); 
  for (y = ymin; y < ymax; y++) 
  { 
    // Get scan line info pointers 
    pss = &(pedge->isect[0]); 
    pse = &(pedge->isect[1]); 
 
    if (pss->x > pse->x) 
    { 
      // Swap scan line info pointers 
      psw = pss; pss = pse; pse = psw; 
    } 
 
    // Get scan line x-axis co-ordinates 
    sx = min((int) pss->x, FF_ArrayRes - y); 
    ex = min((int) pse->x, FF_ArrayRes - y); 
 
    if (sx < ex)        // Ignore zero-length segments 
    { 
      // Determine scan line start info 
      iz = pss->z; 
 
      // Determine inverse slopes 
      x_dist = pse->x - pss->x; 
 
      dz = (pse->z - iz) / x_dist; 
 
      // Enter scan line 
      for (x = sx; x < ex; x++) 
      { 
        // Check element visibility 
        if (iz < (double) cell_buffer[y][x].depth) 
        { 
          // Update Z-buffer 
          cell_buffer[y][x].depth = (float) iz; 
 
          // Set polygon identifier 
          cell_buffer[y][x].id = poly_id; 
        } 
 
        // Update element pseudodepth 
        iz += dz; 
      } 
    } 
    pedge++;    // Point to next edge list element 
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  } 
} 
 
// Sum delta form factors 
void CubicScan::SumDeltas( float *ff_array ) 
{ 
  WORD poly_id;     // Polygon identifier 
  int row, col;     // Face cell indices 
  int width;        // Scan line width 
 
  width = FF_ArrayRes; 
  for (row = 0; row < FF_ArrayRes; row++) 
  { 
    for (col = 0; col < width; col++) 
    { 
      if ((poly_id = cell_buffer[row][col].id) != 
          FF_None) 
        ff_array[poly_id - 1] += dff.GetFactor(row, col); 
    } 
    width--;    // Decrement scan line width 
  } 
} 

Listing 5.20- CT_SCAN.CPP 

You have to look closely to see the differences between CubicScan and HemiScan. The class 

constructor CubicScan::CubicScan allocates the cell information buffer one row at a time as before. 

However, the row length is decremented with each succeeding row to allocate the necessary triangular 

buffer. Similarly, CubicScan::DrawEdgeList uses the row index when calculating the scan line x-axis co-

ordinates. This ensures that there is no possibility of the column index exceeding the current row length. 

The only other difference is CubicScan::SumDeltas, which only needs to access one face type. As such, 

it does not need a face identifier parameter. 

5.18 A Hemi-cube Algorithm Class 

We now have the necessary components to implement the hemi-cube algorithm as a C++ class. 

Following the algorithm pseudocode presented in Figure 5.21, the implementation becomes almost trivial:  

// HEMICUBE.H - Hemi-Cube Class 
 
#ifndef _HEMICUBE_H 
#define _HEMICUBE_H 
 
#include "parse.h" 
#include "hc_clip.h" 
#include "hc_scan.h" 
 
static int HemiFaceNum = 5; 
 
class HemiCube          // Hemi-cube 
{ 
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  private: 
    FormPoly out;       // Output polygon 
    HemiClip clip;      // Polygon clipper 
    HemiScan scan;      // Polygon scan conversion 
 
  public: 
    BOOL GetStatus() { return scan.GetStatus(); } 
    void CalcFormFactors( Patch3 *, Instance *, float *, 
        WORD ); 
}; 
 
typedef HemiCube FormFactor;    // Class alias 
 
#endif 

Listing 5.21 - HEMICUBE.H 

The function GetStatus should be called once to ensure that the HemiScan object was able to obtain 

enough memory for its cell information buffer. Assuming it was successful, CalcFormFactors can then be 

called to determine the form factors from a selected polygon to all other polygons in its environment. This 

function is implemented as: 

// HEMICUBE.CPP - Hemi-Cube Class 
 
#include "hemicube.h" 
 
void HemiCube::CalcFormFactors( Patch3 *pp, Instance *pi, 
    float *ff_array, WORD num_elem ) 
{ 
  int i;                // Loop index 
  BOOL hidden;          // Patch visibility flag 
  BOOL self;            // Self patch flag 
  WORD j;               // Loop index 
  WORD elem_id;         // Element identifier 
  Element3 *pelem;      // Element pointer 
  Instance *pinst;      // Instance pointer 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
 
  // Clear the form factors array 
  for (j = 0; j < num_elem; j++) 
    ff_array[j] = 0.0; 
 
  // Set the hemi-cube view transformation matrix 
  clip.SetView(pp); 
 
  // Project environment onto each hemi-cube face 
  for (i = 0; i < HemiFaceNum; i++) 
  { 
    // Update view transformation matrix 
    clip.UpdateView(i); 
 
    scan.InitBuffer();  // Reinitialize depth buffer 
 
    // Walk the instance list 
    elem_id = 1; 
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    pinst = pi; 
    while (pinst != NULL) 
    { 
      // Walk the surface list 
      psurf = pinst->GetSurfPtr(); 
      while (psurf != NULL) 
      { 
        // Walk the patch list 
        ppatch = psurf->GetPatchPtr(); 
        while (ppatch != NULL) 
        { 
          // Check for self patch 
          self = (ppatch == pp) ? TRUE : FALSE; 
 
          // Determine patch visibility  
          hidden = clip.BackFaceCull(ppatch); 
 
          // Walk the element list 
          pelem = ppatch->GetElementPtr(); 
          while (pelem != NULL) 
          { 
            if (hidden == FALSE && self == FALSE) 
            { 
              // Clip element to face view volume 
              if (clip.Clip(pelem, out, elem_id) > 0) 
              { 
                scan.Scan(out);     // Scan convert polygon 
              } 
            } 
            pelem = pelem->GetNext(); 
            elem_id++; 
          } 
          ppatch = ppatch->GetNext(); 
        } 
        psurf = psurf->GetNext(); 
      } 
      pinst = pinst->GetNext(); 
    } 
 
    // Sum delta form factors 
    scan.SumDeltas(ff_array, i); 
  } 
} 

Listing 5.22 - HEMICUBE.CPP 

5.18.1 A Character-Mode Test Program 

Another 1,200 or so lines of source code for our growing library of C++ classes–it is time for another 

character-mode test program: 

// TEST_2.CPP - Hemi-cube Test Program 
 
// NOTE: _NOT_WIN_APP must be globally defined for this 
//       program to be successfully compiled 
 
#include <stdio.h> 
#include <stdlib.h> 



Form Factor Determination 337 
________________________________________________________________________ 
 
#include <iostream.h> 
#include <time.h> 
#include "error.h" 
#include "parse.h" 
#include "hemicube.h" 
 
// Default entity directory path 
static char NoEntityDir[] = ""; 
 
static HemiCube Hemi;           // Hemi-cube 
static Parse Parser;            // World file parser 
static Environ Environment;     // Environment 
 
double Calculate( float *, WORD, BOOL ); 
 
int main( int argc, char **argv ) 
{ 
  char *pentdir;        // Entity directory path 
  float *ff_array;      // Form factor array 
  WORD num_elem;        // Number of elements 
 
  // Check hemi-cube status 
  if (Hemi.GetStatus() != TRUE) 
  { 
    OutOfMemory(); 
    return 1; 
  } 
 
  // Get entity directory path (if any) 
  if (argc > 2) 
    pentdir = argv[2]; 
  else 
    pentdir = NoEntityDir; 
 
  // Parse the environment file 
  if (Parser.ParseFile(argv[1], pentdir, &Environment) == 
      FALSE) 
    return 1; 
 
  // Allocate form factor array 
  num_elem = Environment.GetNumElem(); 
  if ((ff_array = new float[num_elem]) == NULL) 
  { 
    OutOfMemory(); 
    return 1; 
  } 
 
  // Seed the random number generator 
  srand((unsigned) time(NULL)); 
 
  // Calculate and display form factors 
  (void) Calculate(ff_array, num_elem, TRUE); 
 
  // Recalculate form factors and display execution time 
  cout << endl << "Resolution = " << FF_ArrayRes << " x " 
      << FF_ArrayRes << " cells" << endl; 
  cout << "Execution time = "<< Calculate(ff_array, 
      num_elem, FALSE) << " seconds"; 
 
  delete [] ff_array;   // Delete form factor array 

 



338 Form Factor Determination 
________________________________________________________________________ 

 
  return 0; 
} 
 
// Calculate form factors 
double Calculate( float *ff_array, WORD num_elem, BOOL 
    ff_flag ) 
{ 
  clock_t start, end;   // Execution time variables 
  Instance *penv;       // Environment pointer 
  Instance *pinst;      // Instance pointer 
  Surface3 *psurf;      // Surface pointer 
  Patch3 *ppatch;       // Patch pointer 
  WORD src_id = 1;      // Source polygon identifier 
  WORD rcv_id;          // Receiving polygon identifier 
 
  // Get environment pointer 
  pinst = penv = Environment.GetInstPtr(); 
 
  if (ff_flag == FALSE) 
  { 
    start = clock();    // Start the program timer 
  } 
 
  // Walk the instance list 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Calculate patch to element form factors 
        Hemi.CalcFormFactors(ppatch, penv, ff_array, 
            num_elem); 
 
        if (ff_flag == TRUE) 
        { 
          // Report form factors 
          cout << "Patch " << src_id << endl; 
          for (rcv_id = 0; rcv_id < num_elem; rcv_id++) 
            cout << " FF(" << src_id << "," << (rcv_id + 1) 
                << ") = " << ff_array[rcv_id] << endl; 
        } 
 
        src_id++; 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  if (ff_flag == FALSE) 
  { 
    end = clock();      // Stop the program timer 
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    // Return form factor calculation time 
    return (double) (end - start) / CLOCKS_PER_SEC; 
  } 
  else 
    return 0.0; 
} 

Listing 5.23 - TEST_2.CPP 

Like TEST_1, this program is a character-mode application that sends its output to the user console. 

Once again, _NOT_WIN_APP must be globally defined in order to correctly compile ERROR.CPP 

(Listings 3.21 and 3.22). 

TEST_2 will accept any valid environment file as its input. For example, you could enter: 

TEST_2 COL_CUBE.WLD 

to calculate the form factors between the faces of the two cubes in the COL_CUBE.WLD environment 

(Listing 3.17). A more useful approach, however, is to develop a simple test environment (Fig. 5.28) for 

which the form factors can be solved analytically as a comparison. From Siegel and Howell [1992], the 

form factor from  to  is given by: idE jE
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Figure 5.28 - Test environment 
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Suppose we choose W . Substituting these values into the above equations, we find the 

analytic form factor  to be approximately 0.2395. We can compare this with the estimated form 

factor values calculated by HemiCube by first specifying a unit area polygon, as in SQUARE.ENT (Listing 

5.24). 

0.1== d

EjdEi−F

ENTITY unit square 
VERTEX 
< 0.5 -0.5 0.0 > 
< 0.5 0.5 0.0 > 
< -0.5 0.5 0.0 > 
< -0.5 -0.5 0.0 > 
END_VERT 
SURFACE 
[ 1.0 0.0 0.0 ] [ 0.0 0.0 0.0 ] 
END_SURF 
PATCH 
0 { 0 1 2 3 } 
END_PATCH 
ELEMENT 
0 { 0 1 2 3 } 
END_ELEM 
END_ENTITY 

Listing 5.24 - SQUARE.ENT 

With this, we can arrange two instances of the square to be parallel to and face one another at a distance 

of one unit, as in SQUARE.WLD (Listing 5.25). 

WORLD opposing squares 
COMMENT first square 
square.ent 
< 1.0 1.0 1.0 > 
< 0.0 0.0 0.0 > 
< 0.0 0.0 -0.5 > 
COMMENT second square 
square.ent 
< 1.0 1.0 1.0 > 
< 180.0 0.0 0.0 > 
< 0.0 0.0 0.5 > 
END_FILE 

Listing 5.25 - SQUARE.WLD 

HemiCube::CalcFormFactors will calculate the form factor from the center of each of these polygons 

to the opposing polygon (It will also calculate the form factor to itself, which of course is always zero.) If 

you enter: 

TEST_2 SQUARE.WLD 

when both SQUARE.ENT and SQUARE.WLD are in the current directory, your output should look 

something like this: 
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Polygon 1 
 FF(1,1) = 0 
 FF(1,2) = 0.239623 
Polygon 2 
 FF(2,1) = 0.240574 
 FF(2,2) = 0 
 
Resolution = 100 x 100 cells 
Execution time = 0.27 seconds 

Why the different values? Remember that HemiClip::SetView randomly orients the hemi-cube about 

the polygon normal. The projection of the opposing polygon onto the hemi-cube depends on this 

orientation. Thus, your particular output may also vary from that shown, depending on the random 

numbers produced by your program’s rand function and its seed value. 

(Your timing results will also depend on how busy your machine is. The above results were obtained 

using an Intel ‘486 66 MHz machine running MS-DOS. If you run TEST_2 in a multitasking environment 

(which includes MS-Windows 3.1), the results will indicate in part what percentage of the CPU’s time your 

process has been allotted.)  

5.19 A Cubic Tetrahedral Algorithm Class 

Our cubic tetrahedral algorithm can be implemented as a simple variant of HemiCube: 

// CUBIC_T.H - Cubic Tetrahedron Class 
 
#ifndef _CUBIC_T_H 
#define _CUBIC_T_H 
 
#include "parse.h" 
#include "ct_clip.h" 
#include "ct_scan.h" 
 
static int CubicFaceNum = 3; 
 
class CubicTetra        // Cubic tetrahedron 
{ 
  private: 
    FormPoly out;       // Output polygon 
    CubicClip clip;     // Polygon clipper 
    CubicScan scan;     // Polygon scan conversion 
 
  public: 
    BOOL GetStatus() { return scan.GetStatus(); } 
    void CalcFormFactors( Patch3 *, Instance *, float *, 
        WORD ); 
}; 
 
typedef CubicTetra FormFactor;  // Class alias 
 
#endif 
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Listing 5.26 - CUBIC_T.H 

and: 

// CUBIC_T.CPP - Cubic Tetrahedron Class 
 
#include "cubic_t.h" 
 
void CubicTetra::CalcFormFactors( Patch3 *pp, Instance 
    *pi, float *ff_array, WORD num_elem ) 
{ 
  int i;                // Loop index 
  BOOL hidden;          // Patch visibility flag 
  BOOL self;            // Self patch flag 
  WORD j;               // Loop index 
  WORD elem_id;         // Element identifier 
  Element3 *pelem;      // Element pointer 
  Instance *pinst;      // Instance pointer 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
 
  // Clear the form factors array 
  for (j = 0; j < num_elem; j++) 
    ff_array[j] = 0.0; 
 
  // Set the cubic tetrahedron view transformation matrix 
  clip.SetView(pp); 
 
  // Project environment onto each cubic tetrahedron face 
  for (i = 0; i < CubicFaceNum; i++) 
  { 
    // Update view transformation matrix 
    clip.UpdateView(i); 
 
    scan.InitBuffer();  // Reinitialize depth buffer 
 
    // Walk the instance list 
    elem_id = 1; 
    pinst = pi; 
    while (pinst != NULL) 
    { 
      // Walk the surface list 
      psurf = pinst->GetSurfPtr(); 
      while (psurf != NULL) 
      { 
        // Walk the patch list 
        ppatch = psurf->GetPatchPtr(); 
        while (ppatch != NULL) 
        { 
          // Check for self patch 
          self = (ppatch == pp) ? TRUE : FALSE; 
 
          // Determine patch visibility  
          hidden = clip.BackFaceCull(ppatch); 
 
          // Walk the element list 
          pelem = ppatch->GetElementPtr(); 
          while (pelem != NULL) 
          { 
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            if (hidden == FALSE && self == FALSE) 
            { 
              // Clip element to face view volume 
              if (clip.Clip(pelem, out, elem_id) > 0) 
              { 
                scan.Scan(out);     // Scan convert polygon 
              } 
            } 
            pelem = pelem->GetNext(); 
            elem_id++; 
          } 
          ppatch = ppatch->GetNext(); 
        } 
        psurf = psurf->GetNext(); 
      } 
      pinst = pinst->GetNext(); 
    } 
 
    // Sum delta form factors 
    scan.SumDeltas(ff_array); 
  } 
} 

Listing 5.27 - CUBIC_T.CPP 

Apart from their polygon clipping and scan conversion classes, CubicTetra and HemiCube are 

essentially identical. 

5.19.1 Another Character-Mode Test Program 

We can test our cubic tetrahedral algorithm code with the following test program. More importantly, we 

can compare its form factor estimates with those produced by our hemi-cube implementation in TEST_2. 

// TEST_3.CPP - Cubic Tetrahedron Test Program 
 
// NOTE: _NOT_WIN_APP must be globally defined for this 
//       program to be successfully compiled 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream.h> 
#include <time.h> 
#include "error.h" 
#include "parse.h" 
#include "cubic_t.h" 
 
// Default entity directory path 
static char NoEntityDir[] = ""; 
 
static CubicTetra Cubic;        // Cubic tetrahedron 
static Parse Parser;            // World file parser 
static Environ Environment;     // Environment 
 
double Calculate( float *, WORD, BOOL ); 
 
int main( int argc, char **argv ) 
{ 
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  char *pentdir;        // Entity directory path 
  float *ff_array;      // Form factor array 
  WORD num_elem;        // Number of elements 
 
  // Check cubic tetrahedron status 
  if (Cubic.GetStatus() != TRUE) 
  { 
    OutOfMemory(); 
    return 1; 
  } 
 
  // Get entity directory path (if any) 
  if (argc > 2) 
    pentdir = argv[2]; 
  else 
    pentdir = NoEntityDir; 
 
  // Parse the environment file 
  if (Parser.ParseFile(argv[1], pentdir, &Environment) == 
      FALSE) 
    return 1; 
 
  // Allocate form factor array 
  num_elem = Environment.GetNumElem(); 
  if ((ff_array = new float[num_elem]) == NULL) 
  { 
    OutOfMemory(); 
    return 1; 
  } 
 
  // Seed the random number generator 
  srand((unsigned) time(NULL)); 
 
  // Calculate and display form factors 
  (void) Calculate(ff_array, num_elem, TRUE); 
 
  // Recalculate form factors and display execution time 
  cout << endl << "Resolution = " << FF_ArrayRes << " x " 
      << FF_ArrayRes << " cells" << endl; 
  cout << "Execution time = "<< Calculate(ff_array, 
      num_elem, FALSE) << " seconds"; 
 
  delete [] ff_array;   // Delete form factor array 
 
  return 0; 
} 
 
// Calculate form factors 
double Calculate( float *ff_array, WORD num_elem, BOOL 
    ff_flag ) 
{ 
  clock_t start, end;   // Execution time variables 
  Instance *penv;       // Environment pointer 
  Instance *pinst;      // Instance pointer 
  Surface3 *psurf;      // Surface pointer 
  Patch3 *ppatch;       // Patch pointer 
  WORD src_id = 1;      // Source polygon identifier 
  WORD rcv_id;          // Receiving polygon identifier 
 
  // Get environment pointer 
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  pinst = penv = Environment.GetInstPtr(); 
 
  if (ff_flag == FALSE) 
  { 
    start = clock();    // Start the program timer 
  } 
 
  // Walk the instance list 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Calculate patch to element form factors 
        Cubic.CalcFormFactors(ppatch, penv, ff_array, 
            num_elem); 
 
        if (ff_flag == TRUE) 
        { 
          // Report form factors 
          cout << "Patch " << src_id << endl; 
          for (rcv_id = 0; rcv_id < num_elem; rcv_id++) 
            cout << " FF(" << src_id << "," << (rcv_id + 1) 
                << ") = " << ff_array[rcv_id] << endl; 
        } 
 
        src_id++; 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  if (ff_flag == FALSE) 
  { 
    end = clock();      // Stop the program timer 
 
    // Return form factor calculation time 
    return (double) (end - start) / CLOCKS_PER_SEC; 
  } 
  else 
    return 0.0; 
} 

Listing 5.28 - TEST_3.CPP 

Again, TEST_3.CPP is a clone of TEST_2.CPP. If you enter: 

TEST_3 SQUARE.WLD 

when both SQUARE.ENT and SQUARE.WLD are in the current directory, your output should look 

something like: 
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Polygon 1 
 FF(1,1) = 0 
 FF(1,2) = 0.23486 
Polygon 2 
 FF(2,1) = 0.23518 
 FF(2,2) = 0 
 
Resolution = 142 x 142 cells 
Execution time = 0.22 seconds 

There are two points of interest here. First, the estimated form factors are slightly less than those 

produced by our HemiCube class. The HemiCube estimates were off by an average 0.33 percent; these are 

off by 1.04 percent. Remember, however, that these are random values. Also, the accuracy of both 

algorithms will vary depending on the specific polygon-to-polygon geometry and hemi-cube resolution. 

The more important issue is the variance in their estimates for many thousands of polygons in a complex 

environment. 

The second point is that CubicTetra appears to be faster than HemiCube in determining form factors. It 

was–for this particular geometry and resolution. The question is whether this will remain true when the to 

algorithms are applied to a large variety of complex environments. 

The cubic tetrahedral algorithm should in theory be the faster of the two. Pavicic [1994] noted that it 

needs to perform an average of 2.75 clipping operations for small polygons, while the hemi-cube algorithm 

must perform 3.83 such operations on average. However, there are various programming tricks that can 

skew the results markedly. Suppose for example that we tag a polygon when we clip it against a face and 

find that it is a) entirely within the view volume, b) backface culled or c) behind the “eye position” defined 

by the view space origin and the receiving polygon’s normal. (The flags member of Element3 (Listing 

3.11) has some spare bits that can be used for this purpose.) We could then trivially reject the polygon 

when clipping it against subsequent faces. 

Another possibility is to tag the faces themselves if a polygon is clipped against the boundary of an 

adjoining face. In this case, we then know that the polygon should be clipped against the tagged face as 

well. These tricks may provide marked increases in execution time for complex environments, perhaps as 

much as 100 percent or more. Which algorithm is then the better one? That depends on your programming 

ingenuity. 



Form Factor Determination 347 
________________________________________________________________________ 
 

This, however, misses the point. We examined the cubic tetrahedral algorithm as an interesting 

alternative to the hemi-cube. Certainly, we can profile their performances and implement various speed-up 

techniques. However, our primary objective is to explore the radiosity approach. Implementing both 

algorithms is an ideal way of doing so. Besides, we now have two form factor determination classes to play 

with. 

5.20 A Hardware Alternative for Hemi-cubes 

While the cubic tetrahedral algorithm may be faster, the hemi-cube offers an advantage for those with 

computer graphics workstations: hardware acceleration. Many of these high-end machines implement 3-D 

graphics primitives using specialized hardware graphics accelerators. Supported operations usually include 

backface culling, 3-D polygon clipping, scan conversion, Z-buffering and Gouraud shading. A library of 

callable low-level graphics functions enables users to directly access this hardware. 

Rushmeier et al. [1991] discussed several techniques for accelerating the hemi-cube algorithm. For 

graphics workstations they proposed the following: first, allocate a screen window to represent a hemi-

cube face and initialize the view transformation matrix. The vertices of each polygon in the environment 

are then sent to the graphics coprocessor for display, with the polygon identifier representing its “color”. 

Once the environment has been processed, the color is read for each pixel in the window and a polygon 

form factor array updated accordingly. Expressed in pseudocode, this becomes: 

Allocate graphics screen window for hemi-cube face 
FOR each polygon  iE
  FOR each hemi-cube face 
    FOR each polygon  jE
       0=ijF

    ENDFOR 
  ENDFOR 
  FOR each hemi-cube face 
    FOR each polygon  jE
       0=ijF

      color = j 
      Send polygon vertex list to graphics coprocessor 
    ENDFOR 
  ENDFOR 
  Copy window frame buffer to item buffer 
  FOR each hemi-cube face cell k 
     kikik FFF ∆+=
  ENDFOR 
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ENDFOR 

Figure 5.29 - Hardware-assisted hemi-cube algorithm 

Comparing this to our software implementation, it is clear that we have done it the hard way! 

Hardware-assisted hemi-cube algorithms have been implemented by Cohen et al. [1988], Baum et al. 

[1989] and others. Rushmeier et al. [1991] reported that execution times for backface culling, polygon 

clipping and Z-buffering were improved by a factor of 100 or more. On the other hand, the remaining 

operations of issuing vertex lists to the graphics processor and summing the delta form factors still has to 

be implemented in software. As a result, the overall acceleration of the hemi-cube algorithm over an 

equivalent software implementation ranged from 160 percent for a resolution of 5050 ×  cells to 350 

percent for a resolution of  cells. 300300 ×

Special purpose graphics processors dedicated solely to form factor determination have been developed 

(e.g., Bu and Deprettere [1987a,b] and Bu and Deprettere [1989]). However, these are so far experimental 

devices. Until we have commercially available graphics coprocessors designed specifically for radiosity 

rendering (or at least ones that can be microprogrammed to implement the necessary algorithms), we shall 

have to rely upon our programming skills to maximize the performance of our algorithms. 

5.21 The Single Plane Algorithm 

We can simplify the hemi-cube algorithm even further by replacing the hemi-cube with a single 

projection plane placed directly above and parallel to the differential polygon element dEi (Fig. 5.30). At 

first, this appears to offer at least one advantage: there is only one plane to clip against. It is definitely 

faster–Recker et al. [1990] reported a speedup of approximately 100 percent over the hemi-cube algorithm. 

However, there are hidden costs to this approach that diminish its usefulness. 

dEi

2S

2S 

H 

 

Figure 5.30 - Single plane algorithm 
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The first problem is that the plane does not cover the entire hemisphere above the element. This means 

that polygons in the environment near the horizon will be missed. In physical terms, this means that we 

may underestimate the radiant flux that is either received or emitted by  when we perform our radiosity 

calculations. However, this may not be significant in practice. Sources near the horizon typically contribute 

very little to the overall flux received by a surface due to the cosine factor. Similarly, Sillion and Puech 

[1989] demonstrated that if  is a Lambertian emitter, the amount of flux “escaping” from beneath the 

plane is approximately 

idE

idE

( 2S )2 H . If we are willing to accept an error of one percent, then an HS  ratio of 

14:1 is appropriate. 

The second problem is that the delta form factors now vary widely. If we are to avoid objectionable 

aliasing artifacts, the largest delta form factors should be comparable to those of the hemi-cube. These 

occur for cells directly over , and so the cell sizes should be comparable. Unfortunately, this means 

that the single plane, with its area of  square units (for a 

idE

7844 2 =S HS  ratio of 14:1) versus the hemi-

cube’s 12 square units, will have approximately 65 times as many cells as the hemi-cube! 

Sillion and Puech [1989] solved this problem by using variable-size cells (which they called “proxels”). 

They subdivided the plane such that each cell would have approximately the same form factor. 

Unfortunately, this precludes the use of the Z-buffering algorithm for scan conversion, which requires 

equal-size cells. Sillion and Puech used Warnock’s Algorithm (e.g., Sutherland et al. [1974]) to subdivide 

the projected polygons until each one was either fully visible or fully hidden. While this is a more 

complicated approach than the Z-buffer algorithm, it does have the advantage of having a time complexity 

that is linear with the number of polygons in the scene being viewed. Sillion and Puech compared the 

execution times of their single plane algorithm versus the hemi-cube algorithm for an environment of 1,152 

polygons. They found both algorithms to be competitive up to a hemi-cube resolution of approximately 

 cells, whereafter their approach offered better performance. 400400 ×

Recker et al. [1990] proposed an alternative solution that does not require an area subdivision 

algorithm. First, a second plane with a higher cell resolution is centered within the first plane (Fig. 5.31). A 

polygon is then transformed and clipped to the view volume of the outer plane, with the clipped polygon 

vertices being saved for later use. The polygon is scan converted over the outer plane, ignoring the region 
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occupied by the inner plane, and then summed the delta form factors for the covered cells. The saved 

polygon vertices are then clipped again to the inner plane’s view volume and scan converted. The delta 

form factors are summed and added to those summed during the first pass. 

The lower resolution of the outer plane speeds the scan conversion process, but this is mostly negated 

by having to clip and scan the polygon twice. In practice, this modified single plane algorithm reduces the 

number of cells and delta form factors required by some 80 percent while offering approximately the same 

execution time as the single plane algorithm. 

dEi

2S

2S 

H 

 

Figure 5.31 - Modified single plane algorithm (Recker et al. [1990]) 

The third problem is not so easily overcome. The single plane’s field of view is much larger than the 

hemi-cube’s top face, and so the view distance is much closer to the view plane window. Recalling 

Equation 4.13, we can see that this will severely affect our pseudodepth scale for Z-buffering. That is, our 

3-D projective transformation scales the depth  of a vertex from view plane according to np

( )dppp nnn −= 1' , where d is the view distance and  is the pseudodepth. Given, for example, two 

points with true depths 10 and 11 units from the view plane, decreasing the view distance by a factor of 14 

will decrease the pseudodepth distance between them by a factor of 166.  

'np

All we can do to counteract this problem is to increase the precision of our Z-buffer. In C++, this means 

going from a float to a double, doubling the size of the buffer. On the other hand, this may not be 

necessary. The changes to the pseudodepth scale may not pose a problem for typical environments of 

interest. 

Interested readers might consider implementing the modified single plane algorithm for themselves, if 

only to compare its performance with the hemi-cube and cubic tetrahedral algorithms. It should be possible 
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to derive a single plane class from FormClip and FormScan with relatively little effort, using HemiClip and 

HemiScan as prototypes. 

5.22 Stochastic Ray Casting Techniques 

Ray casting techniques offer yet another approach to form factor determination. Maxwell et al. [1986] 

and Malley [1988] used stochastic (Monte Carlo) techniques to shoot randomly distributed rays into the 

environment from the surface of a polygon. Malley’s approach was to reverse Nusselt’s Analogy (Fig. 

5.32). A hemisphere is placed over the center of a polygon, following which random points on the base are 

chosen and rays shot straight up. When they intersect the surface of the hemisphere, they are redirected 

along the surface normal at that point (i.e., radially from the hemisphere’s center). Each ray is then tested 

for intersections with other polygons in the environment using conventional ray tracing techniques. A 

polygon’s form factor is given by the number of rays it intercepts divided by the total number of rays shot. 

 

Figure 5.32 - Monte Carlo form factor determination 

This is a valuable technique in that it can be applied to both planar and curved surfaces. It can also 

accommodate transparent objects and non-diffuse surfaces. The random distribution of points ensures that 

aliasing artifacts are minimized, and no 3-D projective transformation, polygon clipping or scan conversion 

operations are required. Moreover, there are many ray tracing techniques (e.g., Glassner [1990]) that can be 

used to accelerate the ray-polygon intersection calculations. The only disadvantage is that a large number 

of rays must be shot in order to approach the accuracy provided by the hemi-cube algorithm and its 

variants. 
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5.23 Vertex-to-Source Form Factor Determination 

Many of the problems associated with the hemi-cube and cubic tetrahedral algorithms can be avoided 

by taking a different appraoch to form factor determination. Wallace et al. [1989] proposed that we instead 

model the emitting polygon as a finite area source and determine its form factor as seen from each 

receiving polygon’s vertex in the environment (Fig. 5.33). The source is subdivided such that its size is 

much smaller than the distance to the vertex. The delta form factor is then calculated for each one; the 

vertex-to-source form factor is their sum. 

Source

Receiver 
 

Figure 5.33 - Receiver vertex-to-source form factors 

We could use contour integration (Eqn. 5.6) to solve the individual delta form factors. However, this 

can be very time consuming, and it does not address the polygon occlusion problem. Wallace et a. [1989] 

instead proposed approximating each small polygon as an arbitrarily oriented disk (Fig. 5.34). 

dEj 

Ei

r 
θ 

θ 

j 

i a 

 

Figure 5.34 - Form factor geometry between differential area  and finite disk  jdE iE



Form Factor Determination 353 
________________________________________________________________________ 
 

From Siegel and Howell [1992], the analytic form factor from a differential area  parallel to and at 

a distance r from a finite disk  with radius a is: 

jdE

iE

( )222 araF EidEj +=−  (5.42) 

This is the geometry shown in Figure 5.34, where . Using the reciprocity relation from Section 

2.5 (that is, ), we have: 

0== ji θθ

jijiji FAFA =

( )ijdEjEi ArdAF +=−
2π  (5.43) 

where dA  is the area of a differential element  surrounding the vertex and  is the area of the 

approximated source polygon . 

j jdE iA

iE

We can generalize this result by including the cosines of the angles between the surface normals and 

the direction between  and . This is an approximation, but it is useful nevertheless: jdE iE

( )iijjdEjEi ArdAF +≈−
2coscos πθθ  (5.44) 

If we divide the source polygon finely enough, we can model each  as a differential area and shoot a 

single ray from the receiver vertex . If the ray intersects any intervening polygons, then that portion of 

the source is hidden from the vertex. Assuming that the source polygon is planar and has been evenly 

subdivided, its total form factor as seen from the vertex is: 
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 (5.45) 

where n is the number of subdivided source polygons and  is one if the kth source polygon is visible 

to the vertex; otherwise it is zero. 

kHID

We will later be interested in the reciprocal form factor . Using the reciprocity relation, this is: jiF
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One comment before we continue. Equation 5.44 assumes that the source polygon can be modeled as a 

circular disk. This approximation holds true for equilateral triangles and square quadrilaterals. However, it 
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does not accurately model long, thin polygons. This is not a serious problem. As we shall see in Chapter 

Seven, the polygonal elements in our environment should not be long and thin to begin with. 

5.23.1 Ray-Polygon Intersections 

The efficiency of the ray casting approach depends on how quickly we can perform ray-polygon 

intersection calculations for possibly occluding polygons. Fortunately, there is a particularly elegant 

algorithm for convex polygons due to Badouel [1990] that is fast and efficient. 

The first step is to define the ray (Fig. 5.35). Its origin is the receiver vertex S, while its direction is the 

vector r from the receiver vertex to a point E on the source polygon, or SE −=r . 

S 

E 

n 

P 
r 

 

Figure 5.35 - Ray-polygon intersection geometry 

Expressed as a parametric equation (Section 4.8.2), this becomes: 

( ) r∗+= tStp  (5.47) 

where t . That is, for any positive value of t, 0≥ ( )tp  describes a point in the direction of r. Furthermore, a 

value of 0  describes a point along the ray between S and E. 1≤t≤

Now, given an arbitrary polygon, we need to determine whether it intersects the ray between S and E. 

The polygon vertices define a plane, so we can first ask whether the ray intersects this plane. This problem 

is equivalent to that discussed in Section 4.8.2, where the line between S and E represented a polygon edge. 

Repeating Equation 4.30, we have: 

rn
Sn

⋅
⋅−

=
dt  (5.48) 

where n is the polygon normal, S is the bound vector from the world space origin to the receiver vertex S 

and d is the distance from the world space origin to the nearest point on the plane. From Equation 4.27, this 

is: 

pn ⋅=d  (5.49) 



Form Factor Determination 355 
________________________________________________________________________ 
 
where p is the bound vector from the world space origin to any point on the plane. For convenience, this 

can be taken as the first vertex describing the polygon. 

The denominator of Equation 5.48 should be evaluated first to avoid a division-by-zero error. If it is 

equal to zero, then the ray is parallel to the polygon and so does not intersect the polygon. 

Equation 5.48 is then evaluated to find t. If it is less than zero, then the plane is behind the receiver 

vertex S. If it is greater than one, then the plane is behind the source point E. In either case, the ray does not 

intersect the polygon between S and E, and so we are done. Otherwise, we now have to determine whether 

the ray intersects the polygon itself and not just its plane. This is where it gets interesting. 

Assume that the polygon is a triangle with vertices ,  and , and that Q represents the ray-

polygon intersection point (Fig. 5.36). If we define Q as the bound vector from  to Q,  as the bound 

vector from  to  and  as the bound vector from  to , vector addition shows us that: 

0p

p

1p 2p

0p 1v

0p 1p 2v 0 2p

21 vvQ ∗+∗= βα  (5.50) 

where α and β are constants. The intersection point Q will be inside the polygon if and only if 0≥α , 

0≥β  and 1≤+ βα . 
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Figure 5.36 - Vector representation of ray-triangle intersection point Q 

Separating Equation 5.50 into its world space axis components, we have: 
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 (5.51) 
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We want to solve for α and β. Suppose we project the triangle and vectors shown in Figure 5.36 onto the 

x-y, x-z or y-z plane. That is, we only consider two of the three equations in the above equation. We must 

ensure that the polygon is not perpendicular to the plane; otherwise, the projection will be a straight line. 

We therefore need to find the dominant axis of the polygon normal (i.e., the component with the largest 

magnitude) and choose the plane perpendicular to it. Given the polygon normal { }zyx nnn ,,=n , we 

choose an axis q such that: 

( )
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=

=

=

=
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 (5.52) 

We then project onto the plane perpendicular to this axis. If we define its axes as s and t, then we have: 
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Substituting these into Equation 5.51, we have: 
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or, expressed in matrix form: 
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 (5.55) 

Using Cramer’s Rule (see any text on elementary matrix theory), the solutions to this equation are: 
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and: 
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Solving for α and β allows to us to determine whether a given ray intersects a triangular polygon. We 

can clearly extend this result to any convex polygon by dividing it into triangles. 

Badouel’s algorithm is one of several possible approaches to determining ray-polygon intersections. 

Two other algorithms of interest are presented by Haines [1991] and Voorhies and Kirk [1991]. Also, Woo 

[1990] offers an acceleration technique using bounding boxes to quickly cull non-occluding polygons 

before performing detailed ray-polygon intersection calculations. 

One simple acceleration technique we can employ is called shadow caching (Haines and Greenberg 

[1986]). The likelihood is that if a ray shot from the vertex to the source is occluded by a given polygon, 

then other rays shot to the source will also be occluded by the same polygon. When a shot ray is occluded 

then, a pointer to the occluding polygon is cached. When the next ray from the vertex is shot, this polygon 

is tested first. If it occludes the ray, then there is no need to step through the rest of the environment. 

5.23.2 Source Point Distribution 

The accuracy of the ray casting approach depends on the number of rays we shoot from a vertex to the 

source. The question is, how should we choose points on the source such that we adequately sample the 

environment for occluding polygons? 

One approach is to use the element vertices that define the source patch. Depending on the distance of 

the source from the receiver, this may or may not provide adequate sampling resolution. In either case, the 

uniform spacing of the element vertices may cause form factor aliasing problems. Wallace et al. [1989] 

show that any aliasing artifacts will be particularly noticeable at shadow edges. What should be soft-edged 

shadows will have a jagged staircase appearance. The effect is similar to that of hemi-cube aliasing, except 

that it can be more noticeable. 

A second approach is to calculate the vertex radiant exitances and then average each one according to 

its nearest neighbors. Our Vertex3 class allows us to do this, since each vertex has a pointer to a linked list 

of shared polygons. 

The best approach, however, is to choose a set of uniformly random points on the source polygon. The 

more rays we shoot from the receiver, the better the form factor estimate will be. The resultant random ray 
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directions will tend to minimize any form factor aliasing, much as jittering the orientation did for the hemi-

cube algorithm. 

This requires yet another algorithm. Turk [1990] describes a simple technique for triangles and convex 

polygons. Given a triangle with vertices ,  and  (Fig. 5.37) and two random numbers s and t 

between 0 and 1, a random point Q inside the triangle is given by: 

0p 1p 2p

IF  1>+ ts
   ss −= 1
  t  t−=1
ENDIF 

tsa −−= 1  
sb =  
tc =  

210 pppQ ∗+∗+∗= cba  

where the vertices p and the intersection point Q are expressed as bound vectors from vertex . 0p
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s + t > 1  

Figure 5.37 - Generating a random point inside a triangle 
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We can extend this algorithm to convex polygons by dividing them into triangles and using a third 

random number to choose which triangle should be considered. To maintain a uniform distribution, the 

probability of choosing a given triangle should be determined by its area relative to that of the polygon. 

There is one final consideration: what is an appropriate number of rays to shoot? With each successive 

ray, the form factor estimate determined by Equation 5.46 becomes more accurate. We could continue to 

shoot rays until the difference between successive estimates is less than some predetermined criterion. 

(This being a random process, several more rays should be shot to ensure that the difference is not a 

statistical fluke.) Since the total number of rays appears in Equation 5.46, it would have to be recalculated 

with each new ray shot. 

The problem with this approach is that it becomes increasingly inefficient as the distance between the 

source and the receiver vertex decreases. When they are very close and the true form factor approaches 

unity, rays shot towards the horizon of the receiver vertex’s hemispherical field of view will have very 

little effect. 

Wallace et al. [1989] solved this problem by adaptively subdividing the source polygon such that each 

subdivided area had approximately the same analytic form factor when seen from the receiver vertex. In 

this sense, it is similar to Sillion and Puech’s single plane algorithm (Sillion and Puech [1989]), except that 

the plane is overlaid on the source polygon. Wallace et al. then shot a ray to the center of each subdivided 

polygon. Excellent results were obtained using as few as sixteen rays per receiver vertex. Unfortunately, 

there is a considerable amount of overhead involved in subdividing arbitrary polygons in this manner. 

Wallace et al. used uniform subdivision for the more complex images in their paper. 

Another possible solution is to estimate the unoccluded form factor of the source patch and scale the 

number of rays to be shot according to this estimate. A small or distant source patch will require relatively 

few rays, say a minimum of four. A large or very close patch will require a large number of rays, perhaps 

as many as several thousand for a patch that nearly fills the hemispherical field of view of the receiver 

vertex. 

Suppose we enclose the source patch in a bounding sphere that is centered on the patch’s center and 

whose radius r is equal to the distance to the furthest vertex (Fig. 5.38). 

 



360 Form Factor Determination 
________________________________________________________________________ 

Receiver vertex 

Source patch

Bounding sphere 

θ 

ω 

n φ 

r 

d 

 

Figure 5.38 - Unoccluded form factor estimate geometry 

Knowing the distance d of the patch center from the receiver vertex, we can calculate the half-angle φ 

subtended by the sphere as: 

( drarctan= )φ  (5.58) 

and the corresponding solid angle ω as: 

( )φπω cos12 −=  (5.59) 

(e.g., Hall [1989]). From this, the form factor of the bounding sphere is approximated by (Cohen and 

Wallace [1993]): 

ω
π

θcos
≈−sourcevertexF  (5.60) 

We should be careful when implementing this solution. Solving the radiosity equation involves more 

than simply obtaining reasonable form factor estimates. A small but highly luminous light source located 

near the vertex’s horizon may provide most of the incident flux at the vertex. In this case, we shall want to 

determine whether another patch occludes even a small portion of the source patch. We need to shoot some 

minimum number of rays–say four–in order to ensure accurate form factor estimates for all sources, 

regardless of their position and orientation relative to the receiver vertex. 

A second consideration is that we will likely be subdividing our surfaces into patches and elements 

such that the Five-Times Rule (Section 5.5) is satisfied. There will be occasions where this assumption 

must fail–surfaces that join at right angles, for example–but then there will likely be no intervening 

patches. Given this, it is reasonable to use a constant number of rays that adequately sample source patches 



Form Factor Determination 361 
________________________________________________________________________ 
 
with a maximum half-angle φ of 0.1 radians (5.7 degrees). Again, four rays will usually provide adequate 

results. 

5.23.3 Ray Casting Advantages and Disadvantages 

Before implementing a C++ class for our ray casting algorithm, we should review the advantages 

offered by the ray casting approach. First and foremost, it efficiently samples the environment. Rays are 

cast only in the precise direction of the source for each vertex. 

Second, ray casting mostly avoids the aliasing problems caused by a uniform sampling of the 

environment. In particular, the plaid-like shading artifacts that are sometimes evident when the hemi-cube 

algorithm is used are no longer a concern. 

Third, the ray casting approach ensures that all sources are considered, regardless of their size. Unlike 

the hemi-cube algorithm and its derivatives, there is no possibility that a small and distant light source will 

be missed. This allows the user to include point light sources in the description of the environment. 

Related to this advantage is the ability to include physically realistic light sources in the environment 

description. Most light sources have non-Lambertian flux distributions (e.g., Warn [1983], Verbeck and 

Greenberg [1984], Ashdown [1993]). A theater spotlight is an extreme but still common example–its flux 

is emitted primarily in one direction. Most light fixture manufacturers provide goniophotometric diagrams 

that represent the fixture as a point source and show or tabulate its luminous intensity for various vertical 

and horizontal angles (e.g., IESNA [1993]). 

Ray casting allows us to readily incorporate these sources in our radiosity solutions. This includes not 

only theoretical point sources (Warn [1983], but also physically accurate area sources (Verbeck and 

Greenberg [1984]) and complex volume sources (Ashdown [1993]). All that is required is a C++ object for 

the light source that encapsulates its three-dimensional flux distribution and returns the luminance of a ray 

leaving the source in a given direction. 

Fourth, we need to know the vertex exitances in order to perform Gouraud shading of the visible 

elements in a scene. We shall see in the next chapter that the hemi-cube algorithm only provides exitances 

for the element centers; the vertex exitances must be obtained through interpolation. In contrast, the ray 

casting algorithm provides the vertex exitances directly. 

 



362 Form Factor Determination 
________________________________________________________________________ 

A fifth advantage comes from our ability to model complex surfaces as a mesh of polygon patches and 

elements. Wallace et al. [1991] used a quadratic spline to model a complex curved surface. This was then 

represented by a mesh of 1176 elements for radiosity and rendering purposes. However, the ray occlusion 

tests were performed using the implicit quadratic spline equation for the surface. Rather than testing for 

occlusion against each element for each vertex and each ray (five rays per vertex were used), the test 

function only had to solve a fairly simple equation. 

A final advantage is that ray casting determines one form factor at a time. Unlike the hemi-cube 

algorithm, there is no need to provide storage for the form factors of every element in the environment. 

Compared to these advantages, the two disadvantages of ray casting are minor but still noteworthy. 

First, the hemi-cube algorithm processes each element in the environment once for each patch. Given m 

patches and n elements, this results in an algorithmic time complexity of ( )mnO . (See Section 2.6 for an 

overview of the meaning of time complexity.) A naive implementation of the ray casting algorithm, on the 

other hand, processes each patch in the environment once for each vertex for the ray occlusion tests. 

However, it must also process every element in the environment for each source patch to test for possible 

occlusion. This gives a time complexity of O . Thus, ray casting becomes increasingly more 

expensive relative to the hemi-cube approach as the complexity of the environment grows. Fortunately, this 

situation improves dramatically when ray tracing acceleration techniques (e.g., Arvo and Kirk [1989]) or 

implicit surface equations (e.g., Wallace [1989]) are used. 

)( 2mn

The second disadvantage is that the ray casting algorithm requires the vertex normal for its ray 

occlusion test calculations. This adds an additional 12 bytes to every Vertex3 object. Without it (and the 

hemi-cube algorithm does not need it), the size of Vertex3 could be reduced by over 25 percent. This can 

be a significant amount of memory for complex environments. 

Vilaplana and Pueyo [1992] noted a corollary to these disadvantages. An extremely complex 

environment can in theory be stored in virtual memory. However, we shall see in the next chapter that both 

the hemi-cube and ray casting algorithms continually cycle through the entire environment as the radiosity 

equation is being solved. This means that portions of the environment will be repeatedly paged from virtual 

memory. In practical terms, this means a nearly continuous stream of data will occur to and from the hard 
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This is where the inner loop of the ray occlusion test becomes important. Accessing every patch for 

every vertex may greatly increase the amount of virtual memory paging. In situations where virtual 

memory usage is unavoidable, ray casting may not be the algorithm of choice. 

disk or network server. The polite term for this behavior is “thrashing”; network system administrators and 

other frustrated users often use more colorful terminology. 

5.24 A Ray Casting Algorithm Class 

We can assemble the above algorithms into a class that, stated in pseudocode, performs the following: 

Select source patch s 
Select vertex v 
Form factor estimate  0=vsF
IF source patch is not backface 
  FOR number of rays 
    Select random point on source patch 
    IF point visible from vertex 
      Shoot ray from vertex to source point 
      FOR all other patches in environment 
        Check for ray occlusion 
      ENDFOR 
      IF ray not occluded 
        Update form factor estimate  vsF
      ENDIF 
    ENDIF 
  ENDFOR 
ENDIF 

Figure 5.39 - Ray casting algorithm pseudocode 

Given a source patch s, this algorithm is repeated for every vertex in the environment. Unlike the hemi-

cube algorithm, it returns a single form factor estimate. 

Expanding the pseudocode into C++, we have: 

// RAY_CAST.H - Ray Cast Form Factor Class 
 
#ifndef _RAY_CAST_H 
#define _RAY_CAST_H 
 
#include "parse.h" 
 
// Maximum number of rays to be cast 
static const int RC_NumRays = 4; 
 
class RayCast   // Ray cast form factor determination 
{ 
  private: 
    double ray_area;            // Intersection area 
    double src_area;            // Source patch area 
    double selector;            // Triangle selector 
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    Patch3 *psrc;               // Source patch pointer 
    Patch3 *pcache;             // Last occluding patch 
    Vector3 end;                // Intersection vector 
    Vector3 ray_dir;            // Ray direction 
    Vector3 src_center;         // Source patch center 
    Vector3 src_norm;           // Source patch normal 
    Vector3 start;              // Receiver vertex vector 
    Vector3 v0, v1, v2, v3;     // Vertex vectors 
 
    void Select( Vector3 * ); 
    BOOL CheckOcclusion( Instance * ); 
    BOOL TestPatch( Patch3 * ); 
 
  public: 
    void Init( Patch3 * ); 
    double CalcFormFactor( Vertex3 *, Instance * ); 
}; 
 
#endif 

Listing 5.29 - RAY_CAST.H 

Init is called once for each source patch to initialize the RayCast private members with several of its 

attributes. The environment is then processed one vertex at a time. Recalling that each Instance3 object has 

a pointer to its linked list of vertices, we can access each vertex exactly once. CalcFormFactor is then 

called to estimate the vertex-to-source form factor. 

Note that RC_NumRays is set to 4. This will produce satisfactory results for most environments. 

However, it should be increased for environments where the vertex-to-source distance is expected to be 

small in comparison to the source patch width. 

The remainder of the class consists of: 

// RAY_CAST.CPP - Ray Cast Form Factor Class 
 
#include "ray_cast.h" 
 
double RayCast::CalcFormFactor( Vertex3 *pvertex, Instance 
    *penv ) 
{ 
  int i;            // Loop index 
  double ff;        // Vertex-source form factor 
  double ray_len;   // Ray length 
  Vector3 nv;       // Vertex normal 
  Vector3 n_ray;    // Normalized ray direction 
  Vector3 r_ray;    // Reverse normalized ray direction 
  Vector3 view;     // Source patch view vector 
 
  start = Vector3(pvertex->GetPosn()); 
  nv = pvertex->GetNormal(); 
  view = start - src_center; 
 
  // Determine whether source patch is backface 
  if (Dot(src_norm, view) < MIN_VALUE) 
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    return 0.0; 
 
  ff = 0.0; 
  for (i = 0; i < RC_NumRays; i++) 
  { 
    // Select random point on source patch 
    Select(&end); 
 
    // Generate ray to shoot from vertex to source 
    ray_dir = end - start; 
 
    // Check for source point behind vertex 
    if (Dot(nv, ray_dir) < MIN_VALUE) 
      continue; 
 
    // Test for ray-element intersection 
    if (CheckOcclusion(penv) == FALSE) 
    { 
      // Calculate ray length 
      ray_len = ray_dir.Length(); 
 
      // Calculate normalized ray direction 
      n_ray = ray_dir; 
      n_ray.Norm(); 
 
      // Determine reverse normalized ray direction 
      r_ray = -n_ray; 
 
      // Update form factor estimation 
      ff += Dot(n_ray, nv) * Dot(r_ray, src_norm) / ((PI * 
          ray_len * ray_len) + ray_area); 
    } 
  } 
 
  // Multiply by ray-source patch intersection area 
  ff *= ray_area; 
 
  return ff; 
} 
 
// Initialize parameters for source patch 
void RayCast::Init( Patch3 *ppatch ) 
{ 
  double a1, a2;        // Triangle areas 
  Vector3 temp;         // Temporary 3-D vector 
  Vector3 e0, e1, e2;   // Edge vectors 
 
  psrc = ppatch; 
  pcache = NULL; 
  src_area = psrc->GetArea(); 
  src_norm = psrc->GetNormal(); 
  src_center = Vector3(psrc->GetCenter()); 
  ray_area = src_area / RC_NumRays; 
 
  // Get patch vertex vectors 
  v0 = Vector3(ppatch->GetVertexPtr(0)->GetPosn()); 
  v1 = Vector3(ppatch->GetVertexPtr(1)->GetPosn()); 
  v2 = Vector3(ppatch->GetVertexPtr(2)->GetPosn()); 
  v3 = Vector3(ppatch->GetVertexPtr(3)->GetPosn()); 
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  // Calculate patch edge vectors 
  e0 = Vector3(v1 - v0); 
  e1 = Vector3(v2 - v0); 
 
  // Calculate first triangle area 
  temp = Cross(e0, e1); 
  a1 = temp.Length() / 2.0; 
 
  if (ppatch->IsQuad() == TRUE) 
  { 
    // Calculate patch edge vector 
    e2 = Vector3(v3 - v0); 
 
    // Calculate second triangle area 
    temp = Cross(e1, e2); 
    a2 = temp.Length() / 2.0; 
  } 
  else 
    a2 = 0.0; 
 
  // Calculate fractional area of first triangle 
  selector = a1 / (a1 + a2); 
} 
 
// Select random point within source patch area 
void RayCast::Select( Vector3 *ppoint ) 
{ 
  double s, t;      // Random point parameters 
 
  // Get random point parameters 
  s = GetNormRand(); 
  t = GetNormRand(); 
 
  // Ensure random point is inside triangle 
  if (s + t > 1.0) 
  { 
    s = 1.0 - s; 
    t = 1.0 - t; 
  } 
 
  // Calculate random point co-ordinates 
  if (GetNormRand() <= selector) 
  { 
    // Locate point in first triangle 
    *ppoint = (1.0 - s - t) * v0 + s * v1 + t * v2; 
  } 
  else 
  { 
    // Locate point in second triangle 
    *ppoint = (1.0 - s - t) * v0 + s * v2 + t * v3; 
  } 
} 
 
// Check for ray occlusion 
BOOL RayCast::CheckOcclusion( Instance *pinst ) 
{ 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
 
  // Test cached patch for ray-patch intersection 
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  if (TestPatch(pcache) == TRUE) 
    return TRUE; 
 
  // Walk the instance list 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        if (ppatch != psrc)     // Ignore source patch 
        { 
          // Test for ray-patch intersection 
          if (TestPatch(ppatch) == TRUE) 
          { 
            // Cache occluding patch 
            pcache = ppatch; 
 
            return TRUE; 
          } 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  return FALSE; 
} 
 
// Check for ray-patch intersection (Badouel's Algorithm) 
BOOL RayCast::TestPatch( Patch3 *ppatch ) 
{ 
  BOOL i_flag;          // Intersection flag 
  int i;                // Loop index 
  int i0, i1, i2;       // Projection plane axis indices 
  double alpha;         // Scaling parameter 
  double beta;          // Scaling parameter 
  double dist;          // Patch plane distance 
  double d, t;          // Temporary variables 
  double isect[3];      // Ray-patch intersection 
  double n_mag[3];      // Patch normal axis magnitudes 
  double vert[4][3];    // Patch vertices 
  double s0, s1, s2;    // Projected vector co-ordinates 
  double t0, t1, t2;    // Projected vector co-ordinates 
  Point3 *pvp;          // Vertex position pointer 
  Vector3 normal;       // Patch normal 
  Vector3 temp;         // Temporary 3-D vector 
 
  // Check for valid patch 
  if (ppatch == NULL) 
    return FALSE; 
 
  // Get patch normal 
  normal = ppatch->GetNormal(); 
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  // Calculate divisor 
  d = Dot(normal, ray_dir); 
 
  // Determine whether ray is parallel to patch 
  if (fabs(d) < MIN_VALUE) 
    return FALSE; 
 
  // Calculate patch plane distance 
  temp = Vector3(ppatch->GetVertexPtr(0)->GetPosn()); 
  dist = Dot(normal, temp); 
       
  // Calculate ray hit time parameter 
  t = (dist - Dot(normal, start)) / d; 
 
  // Check whether patch plane is behind receiver vertex or 
  // source patch point 
  // 
  // NOTE: MIN_VALUE offsets are required to prevent 
  //       interpretation of adjoining surface vertices as 
  //       occlusions 
  if (t < MIN_VALUE || t > (1.0 - MIN_VALUE)) 
    return FALSE; 
 
  // Calculate ray-patch plane intersection 
  temp = start + (ray_dir * t); 
 
  // Get intersection axes 
  isect[0] = temp.GetX(); 
  isect[1] = temp.GetY(); 
  isect[2] = temp.GetZ(); 
 
  // Get patch normal axis magnitudes 
  n_mag[0] = fabs(normal.GetX()); 
  n_mag[1] = fabs(normal.GetY()); 
  n_mag[2] = fabs(normal.GetZ()); 
 
  // Get patch vertex axes 
  for (i = 0; i < ppatch->GetNumVert(); i++) 
  { 
    pvp = ppatch->GetVertexPtr(i)->GetPosnPtr(); 
    vert[i][0] = pvp->GetX(); 
    vert[i][1] = pvp->GetY(); 
    vert[i][2] = pvp->GetZ(); 
  } 
 
  // Find patch normal dominant axis 
  if ((n_mag[0] >= n_mag[1]) && (n_mag[0] >= n_mag[2])) 
  { 
    i0 = 0; i1 = 1; i2 = 2;     // X-axis dominant 
  } 
  else if ((n_mag[1] >= n_mag[0]) && (n_mag[1] >= n_mag[2])) 
  { 
    i0 = 1; i1 = 0; i2 = 2;     // Y-axis dominant 
  } 
  else 
  { 
    i0 = 2; i1 = 0; i2 = 1;     // Z-axis dominant 
  } 
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  // Calculate projected vertex #0 co-ordinates 
  s0 = isect[i1] - vert[0][i1]; 
  t0 = isect[i2] - vert[0][i2]; 
 
  // Check for intersection (consider quadrilateral as two 
  // adjacent triangles 
  i = 2; 
  i_flag = FALSE; 
  do 
  { 
    // Calculate projected vertex co-ordinates 
    s1 = vert[i - 1][i1] - vert[0][i1]; 
    t1 = vert[i - 1][i2] - vert[0][i2]; 
 
    s2 = vert[i][i1] - vert[0][i1]; 
    t2 = vert[i][i2] - vert[0][i2]; 
 
    // Determine vector scaling parameters 
    if (fabs(s1) < MIN_VALUE)   // Is s1 == 0 ? 
    { 
      beta = s0 / s2; 
      if ((beta >= 0.0) && (beta <= 1.0)) 
      { 
        alpha = (t0 - beta * t2) / t1; 
        i_flag = ((alpha >= 0.0) && ((alpha + beta) <= 
            1.0)); 
      } 
    } 
    else 
    { 
      beta = (s1 * t0 - s0 * t1) / (s1 * t2 - s2 * t1); 
      if ((beta >= 0.0) && (beta <= 1.0)) 
      { 
        alpha = (s0 - beta * s2) / s1; 
 
        // Test for intersection 
        i_flag = ((alpha >= 0.0) && ((alpha + beta) <= 
            1.0)); 
      } 
    } 
    i++;    // Advance to next triangle (if any) 
  } 
  while (i_flag == FALSE && i < ppatch->GetNumVert()); 
 
  return i_flag; 
} 

Listing 5.30 - RAY_CAST.CPP 

While somewhat lengthy, the above code is mostly a straightforward rendition of the preceding 

algorithms. You might compare it against the total amount of C++ code needed to implement the hemi-

cube and cubic tetrahedral algorithms. 

The only implementation issue of note is TestPatch, where a small value (MIN_VALUE) is added to the 

tests that determine whether the patch intersects the ray between the receiver vertex and the source. 
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Remember that adjoining surfaces do not share vertices, since they will likely have different Spectra 

exitance values. The offsets are necessary to prevent these vertices from being seen as occluding the ray. 

Note also that RayCast does not implement the bounding sphere heuristic. Instead, it always shoot 

RC_NumRays rays (defined in RAY_CAST.H above). Implementation of Equations 5.58 through 5.60 is 

left as an exercise for the reader. 

5.24.1 Yet Another Character-Mode Test Program 

We can test RayCast with the following test program: 

// TEST_4.CPP - Ray Casting Test Program 
 
// NOTE: _NOT_WIN_APP must be globally defined for this 
//       program to be successfully compiled 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream.h> 
#include <time.h> 
#include "error.h" 
#include "parse.h" 
#include "ray_cast.h" 
 
// Default entity directory path 
static char NoEntityDir[] = ""; 
 
static RayCast Ray;             // Ray casting 
static Parse Parser;            // World file parser 
static Environ Environment;     // Environment 
 
int main( int argc, char **argv ) 
{ 
  char *pentdir;        // Entity directory path 
  Instance *penv;       // Environment pointer 
  Instance *pinst_1;    // Instance pointer 
  Instance *pinst_2;    // Instance pointer 
  Surface3 *psurf;      // Surface pointer 
  Patch3 *ppatch;       // Patch pointer 
  Vertex3 *pvert;       // Vertex pointer 
  WORD src_id = 1;      // Source patch identifier 
  WORD rcv_id;          // Receiving vertex identifier 
 
  // Get entity directory path (if any) 
  if (argc > 2) 
    pentdir = argv[2]; 
  else 
    pentdir = NoEntityDir; 
 
  // Parse the environment file 
  if (Parser.ParseFile(argv[1], pentdir, &Environment) == 
      FALSE) 
    return 1; 
 
  // Seed the random number generator 
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  srand((unsigned) time(NULL)); 
 
  // Get environment pointer 
  pinst_1 = penv = Environment.GetInstPtr(); 
 
  // Walk the instance list 
  while (pinst_1 != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst_1->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Initialize the ray casting object 
        Ray.Init(ppatch); 
        cout << "Patch " << src_id << endl; 
 
        // Walk the instance list 
        rcv_id = 1; 
        pinst_2 = penv; 
        while (pinst_2 != NULL) 
        { 
          // Walk the vertex list 
          pvert = pinst_2->GetVertPtr(); 
          while (pvert != NULL) 
          { 
            cout << "  FF(" << rcv_id++ << "," << src_id << 
                ") = " << Ray.CalcFormFactor(pvert, penv) 
                << endl; 
            pvert = pvert->GetNext(); 
          } 
          pinst_2 = pinst_2->GetNext(); 
        } 
        src_id++; 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst_1 = pinst_1->GetNext(); 
  } 
 
  cout << endl << "Number of rays = " << RC_NumRays; 
 
  return 0; 
} 

Listing 5.31 - TEST_4.CPP 

TEST_4 can be used with any environment (*.WLD) file. To verify the results, however, we can use: 

WORLD opposing squares 
COMMENT first square 
square.ent 
< 0.0001 0.0001 1.0 > 
< 0.0 0.0 0.0 > 
< 0.0 0.0 -0.5 > 
COMMENT second square 

 



372 Form Factor Determination 
________________________________________________________________________ 

square.ent 
< 1.0 1.0 1.0 > 
< 180.0 0.0 0.0 > 
< 0.0 0.0 0.5 > 
END_FILE 

Listing 5.32 - RAY_TEST.WLD 

This is essentially the same geometric arrangement as that shown in Figure 5.28, where W . The 

differential element is approximated by a square measuring 0.0001 units across. From Equations 5.40 and 

5.41, the analytic form factor is approximately 0.2395. 

1== d

Since the vertices are relatively close to the source patch (more so than they would likely be in a typical 

environment, RC_NumRays (Listing 5.29) should be defined as 16 for the purposes of this test program. A 

sample run of TEST_4 will then produce something like: 

Patch 1 
  FF(1,1) = 0 
  FF(2,1) = 0 
  FF(3,1) = 0 
  FF(4,1) = 0 
  FF(5,1) = 0.243623 
  FF(6,1) = 0.232016 
  FF(7,1) = 0.230337 
  FF(8,1) = 0.222784 
Patch 2 
  FF(1,2) = 1.4147e-009 
  FF(2,2) = 1.41473e-009 
  FF(3,2) = 1.4147e-009 
  FF(4,2) = 1.41466e-009 
  FF(5,2) = 0 
  FF(6,2) = 0 
  FF(7,2) = 0 
  FF(8,2) = 0 
 
Number of rays = 16 

Again, remember that these values were produced by a random process. This explains why the four 

largest form factors differ slightly. On the other hand, note that the form factors to the differential patch #2 

are calculated. If you run TEST_2 and TEST_3 on RAY_TEST.WLD, you will see that the hemi-cube and 

cubic tetrahedral algorithms miss these values entirely. 

5.25 Visibility Preprocessing 

We have so far used backface culling to eliminate those polygons that face away from the source patch 

(hemi-cube algorithm) or receiver vertex (ray casting algorithm). This still leaves us with the task of 

examining each and every polygon in the environment for each source patch or receiver vertex. Since the 
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underlying patch effectively divides the environment into two half-spaces, we should consider possible 

techniques for eliminating those polygons (and portions thereof for boundary cases) in the half-space we 

cannot “see” from the hemi-cube or vertex as quickly and efficiently as possible. 

We need not look far; the ray tracing literature is replete with visibility preprocessing algorithms. The 

basic principle is to divide the environment into a hierarchy of nested subspaces. One example is octree 

encoding, where the volume of space enclosing the environment is recursively divided into eight subspaces 

called octants (Fig 5.39). A data structure such as: 

struct OctreeNode 
{ 
  Element3 *pelem;          // Element pointer 
  OctreeNode *pchild[8];    // Child node pointers 
}; 

is then used to link these subspaces into a octree. Each leaf node of the tree points to exactly one patch 

element; the subspace representing the node forms a spatial bounding box around the element. Traversing 

the tree from root to leaf allows us to determine the position of element to within the limits of the bounding 

box. It also allows us to cull large portions of the tree without having to examine each element. 

 

Figure 5.39 - Subdividing a 3-D space into octants 

A more efficient technique for representing the hierarchy of octants is binary space partitioning. The 

environment is recursively divided into half-spaces by planes, where three perpendicular planes form eight 

octants. Each node requires less memory, and the depth of the tree is typically smaller than the octree. 

Wang and Davis [1990] present a visibility preprocessing algorithm based on a binary space 

partitioning (BSP) tree that specifically addresses hemi-cube requirements. They used a priority list 
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structure to order the partitioning planes in front to back order as seen from the hemi-cube center. By 

traversing this list, they managed to avoid having to perform Z-buffering for the elements. 

BSP trees are also very useful for ray casting vertex-to-source form factors. Sung and Shirley [1992] 

examined a variety of spatial subdivision algorithms and concluded that the BSP offers the best 

performance for ray tracing applications. Included with their presentation is an extensive and well 

documented implementation written in C. 

Finally, Ng and Slater [1993] provide a wealth of information on BSP trees and bounding boxes 

relating to their study of a multiprocessor-based radiosity renderer. By enclosing the source and receiver 

patches in an axis-aligned bounding box (Fig. 5.40), they were able to cull most non-occluding polygons 

by checking whether any of their vertices were inside the box. Constructing the box for each pair of 

polygons and checking vertices against it can proceed very quickly, since the bounding planes of the box 

are parallel to the world space axes. 

x 

z 

y 

 

Figure 5.40 - Bounding box approach to culling non-occluding polygons 

The advantage of the bounding box approach is that it eliminates the need to build, store and 

manipulate a BSP tree or other auxiliary data structure. Ng and Slater [1993] found that using bounding 

boxes alone resulted in execution speeds nearly twice that of implementations based on BSP trees for small 

environments of less than 500 polygons. 

More information on bounding boxes and related techniques can be found in Marks et al. [1990], 

Haines and Wallace [1991] and Zhang [1991]. In addition, an excellent source of ray tracing acceleration 

techniques is Arvo and Kirk [1989]. 
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5.26 Conclusions 

Form factor determination is a major component of any radiosity rendering program, and so it is 

entirely appropriate that we have devoted so much space to the topic. It is also frustrating not to have the 

space to address the topic in even greater depth. Interested readers are strongly encouraged to investigate 

the following references: Baum et al. [1989], Cohen and Wallace [1993], Max and Troutman [1993], Max 

and Allison [1992], Pietrek [1993], Recker et al. [1990], Rushmeier et al. [1991], Sbert [1993], Sillion and 

Puech [1989], Spencer [1992], Sun et al. [1993], Tampieri [1992], Vilaplana and Pueyo [1992], Wallace 

[1989], Wang et al. [1992], Wang and Davis [1990], Emery et al. [1991] and Zhou and Peng [1992]. 

A visibility preprocessing algorithm should be included in any production quality radiosity renderer. 

The bounding box approach is almost trivial to implement. Readers interested in the BSP tree approach 

will find a excellent example and implementation in Sung and Shirley [1992] that can adapted with 

relatively little effort to vertex-to-source ray casting. It can also be used for the hemi-cube algorithm, 

although this will require more work and some ingenuity. 

It should also be noted that the code presented in this chapter was written with the reader, not execution 

time, in mind. Despite our concern for a “carefully crafted C++ implementation”, no attempt has been 

made to optimize this code. 

Optimizing compilers will improve matters to some extent by assigning register variables, unrolling 

loops, inlining functions and so forth. However, obtaining the best performance often requires hand 

optimization and even assembly language programming for the most time-critical functions. This comes at 

a considerable cost: highly optimized code is difficult to document clearly and even more difficult to 

understand. 

Nevertheless, the performance-minded reader is encouraged to consider hand optimization of the source 

code. Following standard software engineering practices, you should: a) fully understand the underlying 

algorithms before you begin, b) perform a careful analysis with a source code profiler to pinpoint execution 

bottlenecks, c) clearly document all changes for later reference. 

 



376 Form Factor Determination 
________________________________________________________________________ 

This, however, should be a project for the future. We have no less than three form factor determination 

methods in hand, and a fourth that can be implemented with a few hours of work. Still to come is the final 

component of our radiosity renderer: solving the radiosity equation. 
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Chapter 6 
Solving the Radiosity Equation 

6.0 Introduction 

We have one last major … and surprisingly easy … task before us: solving the radiosity equation. Once 

we have the tools to accomplish this, we will finally be able to render photorealistic images of our 

environments. 

1.  Build the environment 

2.  Determine the form factors 

3.  Solve the radiosity equation 

4.  Render the environment 
 

Figure 6.1 - Radiosity-based rendering program outline 

This is the central component of the radiosity approach. Having suffered through photometric and 

radiometric theory, radiosity theory, 3-D projective transformations, polygon clipping in four dimensions, 

polygon scan conversion and form factor determination mathematics as a prelude, you might expect this to 

be the most difficult chapter in the book. If so, you will be pleased to learn that it is exactly the opposite. 

Again and again: do not let the mathematics deter you! The following two sections are dense reading, 

but none of the equations require more than a basic understanding of matrix theory and high school 

algebra. Moreover, you can ignore the details if you so choose. The equations are necessary only to lay a 

firm mathematical foundation for what follows. 
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6.1 Full Radiosity 

We saw in Chapter Two that the radiosity equation is a system of n linear equations of the form: 
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 (6.1) 

where n is the number of elements in the environment. We know the initial exitance vector; its entries  

will be mostly zeroes. The only non-zero entries are for those elements representing light sources. We also 

know the reflectivity 

oiM

iρ  of each element, and we can estimate the form factor  between any two 

elements i and j. All we have to do to obtain the final exitances  is to solve these equations. 

ijF

iM

Most environments result in linear systems that are far too large to solve using direct methods such as 

Gaussian elimination. The classic alternative is to use iterative techniques such as the Gauss-Seidel 

method. This was the original approach taken by Goral et al. [1984], Cohen and Greenberg [1985] and 

Cohen et al. [1986]. Baum et al. [1989] referred to it as the full radiosity algorithm. 

We also saw in Chapter Two, however, that this gives us a radiosity algorithm with O  time and 

space complexity. A large and complicated environment with 50,000 elements can easily consume one to 

ten gigabytes of memory for its form factors and take days of CPU time to compute a single image. We 

clearly need a better approach. 

)( 2n

What we really want is an algorithm that consumes a minimal amount of memory and that generates a 

reasonable approximation of the final image almost immediately. More generally, we need to maintain a 

careful balance between the requirement for photorealistic images and the demands of interactive 

computing. Waiting a day or more to see whether we chose the right balance of light sources for an image 

is not exactly interactive! 

In a perfect world, our algorithm would generate a reasonable first approximation and then 

progressively and gracefully refine the image until it reaches its final form. This essentially describes how 

iterative techniques work, except that we need a much more effective algorithm than the Gauss-Seidel 

method. 
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The great surprise is that such an algorithm actually exists. Before examining it, however, we should 

review the basic principles of iterative techniques. 

6.2 Iterative Techniques 

Expanding on Equation 2.25, we can express Equation 6.1 more succinctly in matrix notation as: 

( )MTIM −=o  (6.2) 

where I is the identity matrix and T is: 
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where R is the (diagonal) reflectance matrix and F is the form factor matrix. 

If we consider  as an  matrix–call it K for convenience–we have a linear system of the 

form: 

( TI − ) nn ×

KMM =o  (6.4) 

which can be solved using any one of several iterative techniques.  

A quick review of iterative techniques for solving linear systems may be in order. Suppose we are 

given a system of linear equations such as: 

Axb =  

where x is the unknown  vector, A is a square 1×n nn ×  matrix and b is a known  vector. Most 1×n

iterative techniques convert this system into an equivalent system with the form: 

cQxx +=  

where the  matrix Q and the n  vector c are derived from A and b. The details of the derivation nn × 1×

depend on the particular iterative technique. 
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To solve for x, we start with an initial 1×n  vector ( )0x  that hopefully approximates the final solution. 

At worst, it can have entirely random values for its elements. With it, we can generate a sequence of 

vectors by repeatedly computing: ( )kx

( ) ( ) K,1,1 =+= − kkk cQxx  

This is the iterative component of the technique. The sequence of vectors ( )kx  will be such that the 

elements of the vector either converge to those of the unknown vector x, or else diverge into some random 

vector, as k increases. 

While it is unlikely that  will exactly equal x for any finite value of k, the error between them will ( )kx

tend to grow progressively smaller as k increases (and if the sequence converges). This means that we can 

stop when: 

( ) ( )

( ) nithreshold
k

i

k
i

k
i

,,1,
1

1

K=≤
−

−

−

x

xx
 

for some “threshold” value. At this point, the approximate solution vector ( )kx  is such that the fractional 

error between it and the unknown vector x is guaranteed to be equal to or less than this value for each of its 

elements. The iterative method is then said to have converged to an acceptable solution. 

Of critical importance to the user is the convergence rate. That is, what value of k is needed in order to 

attain an acceptable solution? This is determined by the characteristics of the chosen iterative method, the 

choice of , and the particular problem being solved. ( )0x

There are two issues of concern here. First, there are linear systems where the solution vector diverges 

rather than converges to a solution. Fortunately, the radiosity equation is guaranteed to converge to a 

solution using either the Jacobi or Gauss-Seidel iterative methods. 

(For those familiar with advanced matrix mathematics: the sum of any row of form factors is equal to or 

less than unity by virtue of the summation relation (Eqn. 2.18), and each form factor is multiplied by a 

reflectance value ρ that is less than unity. Also, the main diagonal term of K in Equation 6.4 is always 



Solving the Radiosity Equation 387 
________________________________________________________________________ 

unity, since  for all planar or convex elements. Thus, K is strictly diagonally dominant, which 

guarantees convergence for any choice of 

0=iiF

( )  using either Jacobi or Gauss-Seidel iteration.) 0M

Second, we need to consider what our choice of ( )0M  should be. The closer it is to the unknown final 

exitance vector M, the more quickly our chosen iterative method will converge. Of course, the only a 

priori information we have concerns the initial exitances of the elements representing light sources. In 

other words, our best choice is to assign the initial exitance vector M  to o
( )0M . Interestingly enough, this 

choice has some physical significance. 

6.2.1 Follow the Bouncing … Light 

Returning to Equation 6.2, suppose we rearrange it slightly to solve for M. We then have: 

( ) oMTIM 1−−=  (6.5) 

Again, we cannot solve this equation directly, since calculating the inverse of a matrix is rarely an easy 

task. However, we can approximate it with a MacLaurin power series expansion. It can be shown that: 

( ) K++++==
− ∑

∞

=

32

0
1

1
1 xxxx

x n

n  (6.6) 

which converges for . There is a similar series expansion for matrices (e.g., Golub and Van Loan 

[1983]): 

11 <<− x

( ) K++++=− − 321 TTTITI  (6.7) 

which gives us: 

K++++= oooo MTMTTMMM 32  (6.8) 

that converges if the spectral radius of T (i.e., the absolute value of its largest eigenvalue) is less than one. 

Fortunately, this condition is true for any physically possible radiosity equation (e.g., Heckbert [1991]). 

This means that we can safely ignore the somewhat abstruse mathematics behind the spectral radius and 

eigenvalues of a matrix. 

There is an important physical significance to Equation 6.8 (e.g., Kajiya [1986]). Each successive term 

 represents the kth bounce of the initially emitted light. The term  represents the initial flux (i.e., 

the direct illumination), TM  represents the first bounce component,  the second bounce and so 

MT k
oM

MT2
o o
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on. We can intuitively see this by observing that the element reflectances ρ are multiplied with each 

successive bounce. This represents the accumulating light losses due to absorption. 

We can express Equation 6.8 in its iterative form as: 

( ) ( ) 0,1 >+= − ko
kk MTMM  (6.9) 

In other words, the behavior of light flowing through an environment is itself an iterative method! 

Moreover, the initial exitance vector  serves as its initial “guess” to the final exitance vector M. oM

Comparing Equation 6.9 to iterative techniques for solving linear systems, it becomes clear why the 

radiosity equation always converges to a solution when we apply these techniques. To do otherwise–that is, 

for the approximate solution vector ( )kM  to diverge with increasing values of k–would require the total 

quantity of light in an environment to increase with each successive bounce. This would in turn contravene 

the energy balance discussed in Section 2.6.1. 

There is in fact only one iterative technique that faithfully models the physical reality of light’s 

behavior as expressed by Equation 6.9. It is the Jacobi iterative method, the simplest iterative technique for 

solving systems of linear equations. While it may not be necessary for our development of a practical 

algorithm for solving the radiosity equation, we should ask how the Jacobi method works for two reasons.. 

First, it will provide us with a better understanding of how and why iterative techniques work. More 

importantly, however, the Jacobi method offers an fascinating and instructive insight into the physical 

reality of the radiosity equation. 

6.2.2 Jacobi Iteration 

The Jacobi method splits (or decomposes) an nn ×  matrix A into a diagonal matrix D, a strictly lower 

diagonal matrix  and a strictly upper diagonal matrix L− U− . Written in matrix form, this becomes: 
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From this, we get: 

( ) bxULDAx =−−=  (6.11) 

which becomes: 

( ) bxULDx ++=  (6.12) 

and so: 

( )
D
bx

D
ULx +

+
=  (6.13) 

The Jacobi iterative method is thus: 

( ) ( ) ( )
D
bx

D
ULx +

+
= −1kk  (6.14) 

or, expressed in its more familiar form: 

( )

( )( )
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x
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jij
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−

 (6.15) 

In plain English, this equation states that we can solve each element ( )k
ix  of our approximate solution 

vector  by using the values of all the other elements ( )kx ( )1−k
jx  of our previously calculated solution vector. 

6.2.3 Modeling Light 

The Jacobi iterative method models the flow of light in an environment. We can confirm this by 

deriving Equation 6.9 in terms of the Jacobi iteration. Following the development of the Jacobi method 

above, we start with Equation 6.2 and decompose T into a diagonal matrix , a strictly lower diagonal 

matrix  and a strictly upper diagonal matrix 

DT

LT− UT−  to get: 

( ) ULD TTTITI ++−=−  (6.16) 

and thus: 

( MTTTIM ULD ++−=0 )  (6.17) 

This becomes: 

( ) ( ) oULD MMTTMTI ++−=−  (6.18) 

and: 
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( )
( ) ( )D

o

D

UL

TI
M

M
TI

TT
M

−
+

−
+−

=  (6.19) 

This is equivalent to the Jacobi iterative method presented in Equation 6.14. However, the form factor 

 for planar or convex patches is always zero, which means each diagonal element of T equals zero and 

so . Also, . Thus: 

iiF

( ) ITI =− D ( )UL TTT +−=

( ) ooUL MTMMMTTM +=++−=  (6.20) 

which results in the Jacobi iterative method: 

( ) ( ) 0,1 >+= − ko
kk MTMM  (6.21) 

for solving the radiosity equation. This is identical to Equation 6.9. Referring to Equation 6.3, this 

becomes: 

( ) ( )1−+= k
o

k RFMMM  (6.22) 

which, expressed in the form of Equation 6.15, is: 

( ) ( ) niMFMM k
j

n

j
ijioi

k
i ,,1,1

1
K=+= −

=
∑ρ  (6.23) 

This is the radiosity equation that we saw in Chapter Two (Eqn. 2.21), expressed as an iterative 

method. 

6.2.4 Gauss-Seidel Iteration 

The problem with Jacobi iteration is that it is often slow to converge to a solution. The Gauss-Seidel 

iterative method takes a simple but effective approach to improving this situation. We saw in Equation 6.15 

that the Jacobi method calculates the value of each element ( )  in sequence by using the values of the 

other elements from 

k
ix

( )1−kx . Since the elements ( )k
jx  (where ij < ) have already been calculated and are 

presumably closer approximations to the final solution vector elements than their ( )1−k
jx  counterparts, why 

not use these values instead when calculating ( )k
ix ? 

This is exactly what the Gauss-Seidel method does. Its iterative equation is: 
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−
+

−
= − kkk
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bx
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Ux  (6.24) 



Solving the Radiosity Equation 391 
________________________________________________________________________ 

or, expressed in its more familiar form: 
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A derivation of Equation 6.24 can be found in most elementary linear algebra and numerical analysis texts 

(e.g., Burden and Faires[ 1985]). 

The Jacobi method can be seen in terms of modeling light bouncing from surface to surface in an 

environment. This is not the case for the Gauss-Seidel method. In a sense, it tries to anticipate the light 

each surface will receive from the next iteration of reflections. There is no physical analogue to this 

process, but it does work in that the Gauss-Seidel method usually converges more quickly than the Jacobi 

method does. Cohen and Greenberg [1985] found that the Gauss-Seidel method solved the radiosity 

equation for typical environments in six to eight iterations. 

6.2.5 Full Radiosity Disadvantages 

When it was first presented by Goral et al. [1984] and Nishita and Nakamae [1985], radiosity rendering 

was for the most part viewed as an interesting mathematical curiosity. The Jacobi and Gauss-Seidel 

methods have a time complexity of O  for each iteration. That is, doubling the number of elements in 

an environment quadruples the CPU time required to solve its particular radiosity equation. Given the 

available computer technology at the time, this made the full radiosity algorithm an impractical rendering 

technique for all but the simplest of environments. 

)( 2n

Another disadvantage of full radiosity is that it requires storage for 22n  form factors. This means that 

the memory space complexity of the full radiosity algorithm is  as well. We could possibly avoid 

this requirement by recomputing form factors “on the fly” for each element during each iteration. However, 

the high cost of form factor determination means that we would have to wait much longer between each 

iteration. This is exactly what we are trying to avoid. We need to obtain an initial image as quickly as 

possible. 

)( 2nO
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We can gain some relief by substructuring the environment into patches and elements (Cohen et al. 

[1986]). This brings both the time and space complexities down to ( )nmO  for n patches and m elements. 

Substructuring is a useful technique, but we can do better. 

6.3 Shooting Versus Gathering 

There is an interesting and instructive physical interpretation of the Jacobi and Gauss-Seidel methods. 

We can think of each execution of Equation 6.15 (Jacobi) or 6.25 (Gauss-Seidel) as being one step; it takes 

n steps to complete one iteration of the method. At each step, we are updating the estimated exitance of 

one element by processing one row of the radiosity equation. For the Jacobi method, this is Equation 6.23, 

repeated here as: 

( ) ( ) niMFMM k
j

n

j
ijioi

k
i ,,1,1

1
K=+= −

=
∑ρ  (6.26) 

We can show this diagramatically as: 
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The physical interpretation of this process is straightforward: we are simply summing the contribution of 

flux from all the other elements in the environment to the exitance of the current element. Looking at 

Figure 6.2 and referring to Equation 6.26, each element  has an exitance  and an area . 

Referring to Equation 6.26, the portion of the flux 

jE jM jA

jΦ  emitted by  that is received by  is: jE iE

jijjij FAM=Φ  (6.28) 

The amount of exitance  of  that is due to this flux subsequently being reflected by  is thus: iM∆ iE iE

ijijjiijiii AFAMAM ρρ =Φ=∆  (6.29) 

However, we can apply the reciprocity relation jijiji FAFA =  (Section 2.5.1) to obtain: 

ijjii FMM ρ=∆  (6.30) 

More colloquially, this can be seen as the current element  gathering exitance from all of the 

elements  in the environment in order to determine its exitance due to these elements. The term  in 

iE

jE oiM
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Equation 6.26 simply accounts for any initial exitance of . This will be non-zero only if  is a light 

source. 

iE

iA

iE

It may be somewhat difficult to visualize exitance being transferred between elements. It becomes 

clearer when we multiply both sides of Equation 6.30 by  to obtain: 

iijjiiii AFMAM ρ=∆=∆Φ  (6.31) 

Again applying the reciprocity relation, we get: 

jjiijjijii FAFM Φ==∆Φ ρρ  (6.32) 

which shows that we are in fact gathering and subsequently reflecting radiant flux. Equation 6.30 is more 

useful in terms of Equation 6.26, however, and so we “gather” exitance to . The difference is solely 

semantic. 

iE

A number of authors have loosely referred to this process as gathering “energy”. However, the physical 

quantity being discussed is radiant exitance (i.e., watts per unit area) times area. This is power, or radiant 

flux. Energy is “gathered” only in the sense that solving the radiosity equation balances the flow of energy 

(which is power) between elements in the environment. 

E i 

Ej

 

Figure 6.2 - Gathering flux from the environment 

The problem with this approach is that it can be excruciatingly slow. Consider a complex environment 

with perhaps 50,000 elements. Using the Jacobi or Gauss-Seidel method, we must perform one complete 

iteration before we have an image of the first bounce of light from the environment. That means we must 

execute Equation 6.26 50,000 times! This clearly does not satisfy our requirement for an “immediate but 

approximate” image. 

This is where the physical interpretation becomes useful. If we think for a moment about how light 

flows in an environment, it becomes evident that we should be interested in those elements that emit or 
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reflect the most light. It logically does not matter in what order we consider the distribution of light from 

element to element, as long as we eventually account for it being completely absorbed. 

This leads to an entirely different paradigm. Given an environment with one or more light sources, we 

can think of them shooting flux to the other elements (Fig. 6.3). These elements then become in effect 

secondary light sources, shooting some of the flux they receive back into the environment. By always 

selecting the element that has the greatest amount of flux to “shoot”, we will drastically improve our 

convergence rate. Again, it makes intuitive sense that the more quickly the light is absorbed, the more 

quickly our as-yet-unspecified iterative method will converge to a solution. 

E i 

Ej

 

Figure 6.3 - Shooting flux into the environment 

It also becomes evident that this idea answers our need for both an immediate image and progressive 

convergence to the final solution. By shooting flux from one element to all other elements in the 

environment, we immediately obtain an initial estimate for all element exitances. This occurs in one step 

rather than a complete iteration. In fact, the concept of an iteration no longer applies, for we may end up 

choosing one element several times before we cycle through the entire set. It all depends on which element 

currently has the greatest amount of flux to shoot. 

Of course, we also obtain improved estimates for all the element exitances at each step. This means that 

the rendered image will continuously and gracefully converge to the final photorealistic image. 

Now, all we have to do is to express this idea in the form of a practical algorithm. 

6.4 Progressive Refinement Radiosity 

What we are looking for is the progressive refinement radiosity algorithm (Cohen et al. [1988]). Based 

on the concept of shooting flux, it offers not only an immediate image with continuous and graceful 

convergence, but also  time and space complexity. Given an environment with n elements, it requires ( )nO
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memory space for only n form factors. Even better, it can generate an initial image almost immediately, and 

can generate if necessary updated images after each step (as opposed to each iteration). 

So how does it work? To shoot flux or exitance back into the environment, we simply reverse the 

subscripts of Equation 6.30. For exitance, this becomes: 

jiij
j

i
ijijj FM

A
A

FMM ρρ ==∆  (6.33) 

Multiplying both sides of this equation by the area of element  gives us the equation for shooting flux. jE

Unlike the full radiosity algorithm (i.e., Equation 6.26), this equation acts on one column of the 

radiosity equation at a time. Shown diagramatically, this is: 
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 for all elements  (6.34) jE

This means we can now display an image of the environment whenever one column of the radiosity 

equation has been processed. This has a time complexity of  as opposed to  for the basic 

radiosity algorithm. 

)(nO )( 2nO

The progressive refinement radiosity algorithm proceeds as follows. First, we assign an “unsent 

exitance” value  to each element in the environment. This is in addition to its final exitance , 

which we are trying to determine. The amount of flux each element has to shoot is  times its area, 

. Initially, only the elements representing light sources will have non-zero values of flux, and so 

 is initialized to . The final exitance values  are also initialized to . 

unsent
iM∆ iM

unsent
iM∆

oiM

iA

M∆ unsent
i oiM iM

Choosing the element  with the greatest amount of flux (not exitance) to shoot, we execute Equation 

6.33 for every other element  in the environment. Each of these elements “receives” a delta exitance 

; this value is added to both its unsent exitance and its final exitance . 

iE

jE

jM∆ unsent
jM∆ jM

After the flux has been shot to every element ,  is reset to zero. This element can only 

shoot again after receiving more flux from other elements during subsequent steps. 

jE unsent
iM∆
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This process continues until the total amount of flux remaining in the environment is less than some 

predetermined fraction ε of the original amount, or: 

ε≤∆∑
=

n

i
i

unsent
i AM

1
 (6.35) 

At this point, the algorithm is considered to have converged to a solution. 

Expressing this in pseudocode, we have: 

FOR each element i 
   oi

unsent
ii MMM =∆=

ENDFOR 

WHILE  ε>∆∑
=

n

i
i

unsent
i AM

1

  Select element i with greatest unsent flux  i
unsent
i AM∆

  Calculate all form factors  ijF

  FOR each element j 

    
j

iunsent
iijj A

A
MFM ∆=∆ ρ  

     MMM unsent
j

unsent
j ∆+∆=∆

     MMM jj ∆+=

  ENDFOR 
   0=∆ unsent

iM
ENDWHILE 

Figure 6.4 - Progressive refinement radiosity algorithm 

Progressive refinement radiosity does not–repeat, does not– require any less time to completely solve 

the radiosity equation to some vanishingly small margin of error. It is an iterative approach that, like full 

radiosity, progressively refines the element exitances as it converges to a solution. However, its 

overwhelming advantage is that usable images can be displayed almost immediately, and that each 

succeeding image takes much less time to calculate. 

We still have the form factors to contend with. However, we only need to calculate the n form factors 

 from the current element  to all other elements  between displaying images. This is exactly what 

our hemi-cubes and cubic tetrahedrons provide when centered over a given element. Yes, we have to 

recompute these form factors on the fly for each step of the progressive radiosity algorithm. However, the 

convergence rate is much faster than it is for full radiosity. Cohen et al. [1988] compared progressive 

refinement and full radiosity algorithms using an environment consisting of 500 patches and 7,000 

ijF iE jE
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elements. The progressive radiosity implementation converged to a visually acceptable image after 

approximately 100 steps. At this point, the full radiosity implementation was only 20 percent of its way 

through its first iteration. 

Incidentally, Gortler and Cohen [1993a] established that the progressive refinement radiosity algorithm 

is a variant of the Southwell iteration method (e.g., Gastinel [1970]). Like the Jacobi and Gauss-Seidel 

methods, Southwell iteration will always converge to a solution for any radiosity equation. 

6.5 Ambient Exitance 

The progressive refinement radiosity algorithm described above has one minor problem. When the flux 

is first shot from the light sources, only those elements visible to them are illuminated. The rest of the 

environment will be in shadow. This will quickly change as the flux bounces from surface to surface 

during subsequent steps. Nevertheless, it may be somewhat disconcerting to have the first few images 

appear relatively dark as the light sources are shot one by one. 

Cohen et al. [1988] resolved this problem by introducing an ambient term that simulates the effect of a 

completely diffuse light source evenly illuminating every surface of the environment. The contribution of 

this term to the exitance of each element is gradually diminished as the radiosity algorithm converges to its 

final solution, thereby maintaining a reasonably constant average exitance for the environment. This term 

is added for display purposes only; it does not participate in solving the radiosity equation. With the term 

added, the visual differences between successive images can become almost unnoticeable. 

To calculate the ambient exitance, we first need to define the average reflectance of the environment. 

This is the area-weighted average of the individual element reflectances, given as: 
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iiavg AA

11
ρρ  (6.36) 

where avgρ  must be calculated for each color band. 

If we think of the environment as being an empty room with no obstructions and whose surfaces have a 

reflectance of , then we can see that the light will bounce back and forth within this room until it is 

completely absorbed. From this, we can derive the following interreflection factor: 

avgρ
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We also need to estimate the area-weighted average amount of unsent exitance. This is simply: 
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Of course, this will decrease whenever flux is shot from an element into the environment. This ensures that 

the ambient term decreases to zero as the radiosity algorithm converges to a solution. 

From this, we can define the ambient exitance as: 

unsent
avgambient RMM =  (6.39) 

For display purposes only, the estimated exitance of an element  is then: iE

ambientiii MMM ρ+=′  (6.40) 

Cohen et al. [1988] demonstrated that the ambient term improves the initial convergence rate as well as 

the visual appearance of the image. Using the area-averaged error metric: 

( ) ( )( ) ∑∑
==

∞ −=
n

i
i

n

i
i

k
iirms AAMMerror

11

2
 (6.41) 

where  is the converged (i.e., final) exitance of each element  after an infinite number of steps and 

k is the number of steps actually performed, they found that adding the ambient term decreases the error 

from 40 to 30 percent after 15 steps for a typical environment of 500 patches and 7,000 elements. After 70 

steps, the ambient term became negligible, leaving the progressive refinement radiosity algorithm to 

converge to a solution on its own after some 100 steps. At the same time, the error for the full radiosity 

algorithm using the Gauss-Seidel method after 100 steps was approximately 98 percent. 

( )∞
iM iE

6.6 A Progressive Refinement Radiosity Algorithm 

We can combine the ambient exitance with our previous progressive refinement radiosity algorithm. At 

the same time, we can take advantage of the hierarchical arrangement of patches and elements in our 

environments. This gives us: 

Calculate initial ambient exitance M  ambient

FOR each patch i 
   oi

unsent
i MM =∆
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ENDFOR 

WHILE  ε>∆∑
=

n

i
i

unsent
i AM

1

  Select patch i with greatest unsent flux  i
unsent
i AM∆

  Calculate all patch-element form factors  ikF
  FOR each patch j   
    FOR each element k of parent patch j 
      // Determine increase in exitance of element k due to patch exitance  unsent

iM∆

      
k

iunsent
iikk A

A
MFM ∆=∆ ρ  

       MMM kk ∆+=
      // Add area-weighted increase in element k exitance to parent patch j 

      
j

kunsent
j

unsent
j A

A
MMM ∆+∆=∆  

    ENDFOR 
  ENDFOR 
   0=∆ unsent

iM
  Recalculate ambient exitance  ambientM
ENDWHILE 
FOR each element k 
  // Add initial and ambient exitance contributions 
  ambientkokkk MMMM ρ++=  
ENDFOR 

Figure 6.5 - Progressive radiosity algorithm with ambient exitance 

6.7 Progressive Refinement Convergence Behavior 

Shao and Badler [1993b] presented a detailed and informative discussion of the convergence behavior 

of the progressive refinement radiosity algorithm. They observed that while the algorithm may quickly 

converge to a visually appealing image, many more steps are often required to capture the nuances of color 

bleeding and soft shadows. They demonstrated that it took 2,000 or more steps to achieve full convergence 

in a complex environment of some 1,000 patches and 25,000 elements. Many of the radiosity-based 

renderings published to date were completed using far fewer steps, implying that their apparent realism 

may be due to part to ambient exitance. 

Much of the problem lies in how progressive refinement works. By always selecting the patch with the 

most flux to shoot, it concentrates first on the light sources. Most of their flux will be shot to what Shao 

and Badler [1993b] called global patches–those patches which are relatively large and can be seen from 

much of the environment. For an architectural interior, these are typically the walls, floor and ceiling of a 
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room. Their elements receive most of the flux from the light sources and consequently shoot it to the other 

global patch elements. 

The local patches are those patches which are small, possibly reflective in only one color band, and are 

usually hidden from much of the environment. Their flux will not be shot until that of the global patches 

has been exhausted. This is undesirable for two reasons. First, their small areas means that they will receive 

relatively little flux in comparison to the global patches. It may take several hundred steps before they 

shoot for the first time. 

The second reason is that when these local patches do shoot, much of their flux often goes no further 

than their immediate neighbors. While this does not affect the global environment to any great extent (and 

so does not appear in the error metric defined in Equation 6.41), it does account for the color bleeding and 

soft shadow effects we are trying to achieve. In this sense, a better error metric is the worst-case difference 

between the estimated and converged element exitances. In their experiments, Shao and Badler [1993b] 

observed that it took twice as many iterations as there were patches (not elements) in the environment. 

One strategy to overcome this problem involves de-emphasizing the contributions due to the global 

patches, ensuring that all patches shoot their flux in a reasonable number of steps. This requires a 

modification of the progressive refinement radiosity algorithm that is described next. 

6.8 Positive Overshooting 

Convergence of the Gauss-Seidel algorithm can often be accelerated by using one of several techniques 

known as successive overrelaxation (e.g., Noble [1969]). Applied to the radiosity equation, these 

techniques can be interpreted as “overshooting” the amount of flux from a patch into the environment. That 

is, the amount of flux shot from the patch is more than the amount of unsent flux the patch actually has. 

The flux shot in subsequent steps by the receiving patches will tend to cancel this overshooting. In the 

meantime, the total amount of unsent flux in the environment is shot and absorbed more quickly. This 

tends to result in faster convergence rates. 

Shao and Badler [1993b] presented a modified version of the progressive refinement radiosity 

algorithm that incorporates positive overshooting to accelerate the convergence rate by a factor of two or 

more. At the same time, it tends to prioritize the ordering of patches being shot such that the local patches 
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are shot sooner, thereby enhancing the rendering of subtle lighting effects such color bleeding and soft 

shadows. 

The modification to the radiosity algorithm (Fig. 6.4), based on an earlier proposal by Feda and 

Purgathofer [1992], is: 

… 
Select element i with greatest positive unsent flux  i

unsent
i AM∆

Estimate overshooting parameter  overshoot
iM∆

Calculate all form factors  ikF
FOR each patch j 
  FOR each element k 
    // Determine increase in exitance of element k due to patch exitance  unsent

iM∆
    // and area-weighted positive overshoot 

    ( )
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A
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    // Add area-weighted increase in element k exitance to parent patch j 
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  ENDFOR 
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unsent
i MM ∆−=∆  

… 

Figure 6.6 - Progressive refinement radiosity algorithm with positive overshooting 

As with ambient exitance, the amount of positive overshooting and its contribution to the shooting 

patch’s unsent exitance must be determined independently for each color band. 

Feda and Purgathofer [1992] based their calculation of the overshooting parameter  on the 

ambient exitance of the environment. However, Shao and Badler [1993b] noted several problems with this 

approach, and instead suggested the following: 
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This essentially sums the amount of unsent flux the patch will later receive from the elements in the 

environment and multiplies it by the reflectance of the patch. The patch effectively gathers the unsent flux 

it would otherwise receive in later steps and shoots it along with its own unsent flux. 

Equation 6.43 ensures that the patch will never receive a negative amount of flux from any element. 

Thus, only positive overshooting can occur. On the other hand, the patch may shoot a negative amount of 

flux; this serves to cancel the overshot flux in later steps. 

Since we can now have both positive and negative unsent flux, we need to modify our convergence 

criterion. Equation 6.34 becomes: 
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Experiments performed by Shao and Badler [1993b] on two complex environments demonstrated that 

the convergence rate with positive overshooting can be accelerated by a factor of two or more over that of 

conventional progressive radiosity. There was also strong evidence that the appearance of subtle color 

bleeding and soft shadow effects may appear as much as three to five times more quickly. Positive 

overshooting is clearly a useful addition to the basic progressive radiosity algorithm. 

Other overrelaxation techniques for solving the radiosity equation are described by Gortler and Cohen 

[1993a] and Greiner et al. [1993]. 

6.9 A Progressive Refinement Radiosity Class 

Having explored the mathematical techniques needed to solve the radiosity equation, we can 

encapsulate these ideas in a C++ class. First, however, we need to complete our RadEqnSolve class that we 

began in Chapter Four. We defined a number of several “stub” functions in RAD_TMP.CPP (Listing 4.19). 

Following the above discussions on progressive refinement radiosity and ambient exitance, we can replace 

them with: 

// RAD_EQN.CPP - Radiosity Equation Solver Base Class 
 
#include "rad_eqn.h" 
 
// Initialize patch and element exitances 
void RadEqnSolve::InitExitance() 
{ 
  int i;                // Loop index 
  int num_vert;         // Number of element vertices 
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  Instance *pinst;      // Instance pointer 
  Element3 *pelem;      // Element pointer 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
  Spectra emit;         // Surface emittance 
  Vertex3 *pvert;       // Vertex pointer 
 
  total_flux = 0.0; 
 
  // Walk the instance list 
  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Get surface emittance 
      emit = psurf->GetEmittance(); 
 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Set patch unsent exitance 
        ppatch->SetExitance(emit); 
 
        // Update total environment flux 
        total_flux += ppatch->GetUnsentFlux(); 
 
        // Walk the element list 
        pelem = ppatch->GetElementPtr(); 
        while (pelem != NULL) 
        { 
          // Initialize element exitance 
          pelem->GetExitance().Reset(); 
 
          num_vert = pelem->GetNumVert(); 
          for (i = 0; i < num_vert; i++) 
          { 
            // Get element vertex pointer 
            pvert = pelem->GetVertexPtr(i); 
 
            // Initialize vertex exitance 
            pvert->GetExitance().Reset(); 
          } 
          pelem = pelem->GetNext(); 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
} 
 
// Update unsent flux statistics 
void RadEqnSolve::UpdateUnsentStats() 
{ 
  double curr_unsent;   // Current unsent flux 
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  double max_unsent;    // Maximum unsent flux 
  Instance *pinst;      // Instance pointer 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
 
  // Initialize unsent flux values 
  total_unsent = 0.0; 
  max_unsent = 0.0; 
 
  // Walk the instance list 
  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Get current unsent flux value 
        curr_unsent = ppatch->GetUnsentFlux(); 
 
        // Update total unsent flux 
        total_unsent += curr_unsent; 
 
        // Update maximum unsent flux and patch pointer 
        if (curr_unsent > max_unsent) 
        { 
          max_unsent = curr_unsent; 
          pmax = ppatch; 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  // Update convergence value 
  if (total_flux > MIN_VALUE) 
    convergence = fabs(total_unsent) / total_flux; 
  else 
    convergence = 0.0; 
} 
 
// Calculate interreflection factors 
void RadEqnSolve::CalcInterReflect() 
{ 
  Instance *pinst;  // Instance pointer 
  Patch3 *ppatch;   // Patch pointer 
  Spectra sr;       // Surface reflectance 
  Spectra sum;      // Sum areas times reflectances 
  Surface3 *psurf;  // Surface pointer 
 
  irf.Reset(); 
  sum.Reset(); 
  total_area = 0.0; 
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  // Walk the instance list 
  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Update sum of patch areas times reflectances 
        sr = ppatch->GetParentPtr()->GetReflectance(); 
        sr.Scale(ppatch->GetArea()); 
        sum.Add(sr); 
 
        // Update sum of patch areas 
        total_area += ppatch->GetArea(); 
 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  // Calculate area-weighted average reflectance 
  sum.Scale(1.0 / total_area); 
 
  // Calculate interreflection factors 
  irf.SetRedBand((float) 1.0 / ((float) 1.0 - 
      sum.GetRedBand())); 
  irf.SetGreenBand((float) 1.0 / ((float) 1.0 - 
      sum.GetGreenBand())); 
  irf.SetBlueBand((float) 1.0 / ((float) 1.0 - 
      sum.GetBlueBand())); 
} 
 
// Calculate ambient exitance 
void RadEqnSolve::CalcAmbient() 
{ 
  Instance *pinst;  // Instance pointer 
  Patch3 *ppatch;   // Patch pointer 
  Spectra sum;      // Sum areas times unsent exitances 
  Spectra unsent;   // Patch unsent exitance 
  Surface3 *psurf;  // Surface pointer 
 
  sum.Reset(); 
 
  // Walk the instance list 
  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
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      while (ppatch != NULL) 
      { 
        // Update sum of unsent exitances times areas 
        unsent = ppatch->GetExitance(); 
        unsent.Scale(ppatch->GetArea()); 
        sum.Add(unsent); 
 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  // Calculate area-weighted average unsent exitance 
  sum.Scale(1.0 / total_area); 
 
  // Calculate ambient exitance 
  ambient.SetRedBand(irf.GetRedBand() * 
      sum.GetRedBand()); 
  ambient.SetGreenBand(irf.GetGreenBand() * 
      sum.GetGreenBand()); 
  ambient.SetBlueBand(irf.GetBlueBand() * 
      sum.GetBlueBand()); 
} 

Listing 6.1 - RAD_EQN.CPP 

These four functions do more or less what their names suggest. InitExitance initializes the patch unsent 

exitances with that of their parent surfaces and resets the element and vertex exitances to zero. 

UpdateUnsentStats finds the patch with the maximum unsent flux, and also calculates the convergence 

value as a fraction of the total unsent flux to the total environment flux. CalcInterReflect calculates the 

environment interreflection factors (one for each color band), while CalcAmbient calculates the ambient 

exitance terms. 

With this, we can derive a progressive refinement radiosity class from RadEqnSolve as follows: 

// PROG_RAD.H - Progressive Refinement Radiosity Class 
 
#ifndef _PROG_RAD_H 
#define _PROG_RAD_H 
 
#include "environ.h" 
#include "rad_eqn.h" 
 
// NOTE: Either _HEMI_CUBE or _CUBIC_TETRA must be defined 
//       in order to specify the appropriate form factor 
//       determination class for FormFactor. This will 
//       typically be done from the command line or through 
//       the integrated development environment (IDE). 
 
#if defined(_HEMI_CUBE) 
#include "hemicube.h" 
#elif defined(_CUBIC_TETRA) 
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#include "cubic_t.h" 
#else 
#error Either _HEMI_CUBE or _CUBIC_TETRA must be defined 
#endif 
 
// Progressive refinement radiosity equation solver 
class ProgRad : public RadEqnSolve 
{ 
  protected: 
    float *ff_array;        // Form factor array pointer 
    BOOL over_flag;         // Overshoot flag 
    BOOL status;            // Object status 
    FormFactor ffd;         // Form factor determination 
    Spectra overshoot;      // Overshooting parameters 
 
    void AddAmbient(); 
    void CalcOverShoot(); 
 
  public: 
    ProgRad() : RadEqnSolve() { over_flag = TRUE; } 
 
    ~ProgRad() { Close(); } 
 
    BOOL Calculate(); 
    BOOL OverShootFlag() { return over_flag; } 
    BOOL GetStatus() { return ffd.GetStatus(); } 
    BOOL Open( Environ * ); 
    void Close(); 
    void DisableOverShoot() { over_flag = FALSE; } 
    void EnableOverShoot() { over_flag = TRUE; } 
}; 
 
#endif 

Listing 6.2 - PROG_RAD.H 

Note that ProgRad can use either the HemiCube or CubicTetra class for form factor determination. If 

you forget to define either _HEMI_CUBE or _CUBIC_TETRA at compile time, your compiler will issue an 

appropriate error message via the #error directive. 

Since ProgRad is derived from RadEqnSolve (Listing 4.18), we already have a mechanism for toggling 

the ambient exitance feature on and off via RadEqnSolve::EnableAmbient and 

RadEqnSolve::DisableAmbient. The functions EnableOverShoot and DisableOverShoot provide the same 

functionality for positive overshooting. Our HELIOS program provides the necessary user interface for 

both these features through its Convergence Parameters dialog box. This allows you to experiment with 

various environments to see exactly how the ambient exitance affects the image quality and how much 

faster the radiosity algorithm (usually) converges with positive overshooting enabled. 

The remainder of our ProgRad class consists of: 
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// PROG_RAD.CPP - Progressive Refinement Radiosity Class 
 
#include "prog_rad.h" 
 
// Open progressive radiosity renderer 
BOOL ProgRad::Open( Environ *pe ) 
{ 
  penv = pe;            // Save environment pointer 
  step_count = 0;       // Reset step count 
  convergence = 1.0;    // Convergence 
  InitExitance();       // Initialize exitances 
 
  if (amb_flag == TRUE) // Ambient exitance required ? 
  { 
    CalcInterReflect(); // Calculate interreflection factor 
    CalcAmbient();      // Calculate initial ambient term 
  } 
 
  // Allocate form factor array 
  if ((ff_array = new float[penv->GetNumElem()]) == NULL) 
    return FALSE; 
 
  return TRUE; 
}  
 
// Close progressive radiosity renderer 
void ProgRad::Close() 
{ 
  // Release form factor array 
  if (ff_array != NULL) 
  { 
    delete [] ff_array; 
    ff_array = NULL; 
  } 
 
  if (penv != NULL) 
  { 
    // Interpolate vertex exitances 
    tone.Interpolate(penv->GetInstPtr()); 
 
    // Normalize vertex exitances 
    tone.Normalize(penv->GetInstPtr()); 
  } 
} 
 
// Calculate element exitances 
BOOL ProgRad::Calculate() 
{ 
  float rff;            // Reciprocal form factor 
  BOOL self;            // Self patch flag 
  WORD ff_index = 0;    // Form factor array index 
  Element3 *pelem;      // Element pointer 
  Instance *pinst;      // Instance pointer 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
  Spectra delta;        // Delta exitance 
  Spectra reflect;      // Surface reflectance 
  Spectra shoot;        // Shoot exitance 
 
  // Check for maximum number of steps 
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  if (step_count >= max_step) 
  { 
    if (amb_flag == TRUE) 
    { 
      AddAmbient();     // Add ambient exitance 
    } 
    return TRUE; 
  } 
 
  UpdateUnsentStats();  // Update unsent flux statistics 
 
  // Check for convergence 
  if (convergence < stop_criterion) 
  { 
    if (amb_flag == TRUE) 
    { 
      AddAmbient();     // Add ambient exitance 
    } 
    return TRUE; 
  } 
 
  // Calculate form factors 
  ffd.CalcFormFactors(pmax, penv->GetInstPtr(), ff_array, 
      penv->GetNumElem()); 
 
  if (over_flag == TRUE) 
  { 
    CalcOverShoot();    // Calculate overshooting parameters 
  } 
 
  // Walk the instance list 
  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Get surface reflectance 
      reflect = psurf->GetReflectance(); 
 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Check for self patch 
        self = (ppatch == pmax) ? TRUE : FALSE; 
 
        // Walk the element list 
        pelem = ppatch->GetElementPtr(); 
        while (pelem != NULL) 
        { 
          if (self == FALSE)    // Ignore self 
          { 
            // Check element visibility 
            if (ff_array[ff_index] > 0.0) 
            { 
              // Compute reciprocal form factor 
              rff = (float) min((double) ff_array[ff_index] 
                  * pmax->GetArea() / pelem->GetArea(), 
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                  1.0); 
 
              // Get shooting patch unsent exitance 
              shoot = pmax->GetExitance(); 
 
              if (over_flag == TRUE) 
              { 
                // Add overshoot exitance 
                shoot.Add(overshoot); 
              } 
 
              // Calculate delta exitance 
              delta.SetRedBand(reflect.GetRedBand() * 
                  rff * shoot.GetRedBand()); 
              delta.SetGreenBand(reflect.GetGreenBand() * 
                  rff * shoot.GetGreenBand()); 
              delta.SetBlueBand(reflect.GetBlueBand() * 
                  rff * shoot.GetBlueBand()); 
 
              // Update element exitance 
              pelem->GetExitance().Add(delta); 
 
              // Update patch unsent exitance 
              delta.Scale(pelem->GetArea() / 
                  ppatch->GetArea()); 
              ppatch->GetExitance().Add(delta); 
            } 
          } 
          pelem = pelem->GetNext(); 
          ff_index++; 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  // Reset unsent exitance to zero 
  pmax->GetExitance().Reset(); 
 
  if (over_flag == TRUE) 
  { 
    // Subtract overshoot exitance 
    pmax->GetExitance().Subtract(overshoot); 
  } 
 
  if (amb_flag == TRUE) 
  { 
    CalcAmbient();      // Recalculate ambient exitance 
  } 
 
  step_count++;         // Increment step count 
  return FALSE;         // Convergence not achieved yet 
} 
 
void ProgRad::AddAmbient()      // Add ambient exitance 
{ 
  Element3 *pelem;      // Element pointer 
  Instance *pinst;      // Instance pointer 
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  Patch3 *ppatch;       // Patch pointer 
  Spectra delta_amb;    // Delta ambient exitance 
  Spectra reflect;      // Surface reflectance 
  Surface3 *psurf;      // Surface pointer 
 
  // Walk the instance list 
  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Get surface reflectance 
      reflect = psurf->GetReflectance(); 
 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Walk the element list 
        pelem = ppatch->GetElementPtr(); 
        while (pelem != NULL) 
        { 
          // Calculate delta ambient exitance 
          delta_amb.SetRedBand(ambient.GetRedBand() * 
              reflect.GetRedBand()); 
          delta_amb.SetGreenBand(ambient.GetGreenBand() * 
              reflect.GetGreenBand()); 
          delta_amb.SetBlueBand(ambient.GetBlueBand() * 
              reflect.GetBlueBand()); 
 
          // Update element exitance 
          pelem->GetExitance().Add(delta_amb); 
 
          pelem = pelem->GetNext(); 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
} 
 
// Calculate overshooting parameters 
void ProgRad::CalcOverShoot() 
{ 
  BOOL self;            // Self patch flag 
  WORD ff_index = 0;    // Form factor array index 
  Element3 *pelem;      // Element pointer 
  Instance *pinst;      // Instance pointer 
  Patch3 *ppatch;       // Patch pointer 
  Spectra spr;          // Shooting patch reflectance 
  Spectra unsent;       // Patch unsent exitance 
  Surface3 *psurf;      // Surface pointer 
 
  overshoot.Reset();    // Reset overshooting parameters 
 
  // Walk the instance list 
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  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Check for self patch 
        self = (ppatch == pmax) ? TRUE : FALSE; 
 
        // Walk the element list 
        pelem = ppatch->GetElementPtr(); 
        while (pelem != NULL) 
        { 
          if (self == FALSE)    // Ignore self 
          { 
            // Get unsent patch exitance 
            unsent = ppatch->GetExitance(); 
                 
            // Ensure unsent exitance is positive in each 
            // color band 
            if (unsent.GetRedBand() < 0.0) 
              unsent.SetRedBand(0.0); 
            if (unsent.GetGreenBand() < 0.0) 
              unsent.SetGreenBand(0.0); 
            if (unsent.GetBlueBand() < 0.0) 
              unsent.SetBlueBand(0.0); 
 
            // Multiply unsent exitance by patch-to- 
            // element form factor 
            unsent.Scale(ff_array[ff_index]); 
 
            // Update overshooting parameters 
            overshoot.Add(unsent); 
          } 
          pelem = pelem->GetNext(); 
          ff_index++; 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  // Get shooting patch reflectance 
  spr = pmax->GetParentPtr()->GetReflectance(); 
 
  // Multiply overshooting parameters by shooting patch 
  // reflectance 
  overshoot.SetRedBand(overshoot.GetRedBand() * 
      spr.GetRedBand()); 
  overshoot.SetGreenBand(overshoot.GetGreenBand() * 
      spr.GetGreenBand()); 
  overshoot.SetBlueBand(overshoot.GetBlueBand() * 
      spr.GetBlueBand()); 
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} 

Listing 6.3 - PROG_RAD.CPP 

Most of the above is a straightforward implementation of the preceding algorithms. The only item not 

discussed so far is the calculation of the reciprocal form factor in Calculate. If this value is greater than 

unity, it indicates that hemi-cube (or cubic tetrahedron) aliasing has occurred. When this happens, we 

should in theory subdivide the shooting patch and shoot the exitance again. Here, we take the simpler 

approach of silently clipping the reciprocal form factor to unity. (See Section 7.5.2 for further details.) 

With ProgRad, we have all the code we need to render photorealistic images. Before doing so, 

however, we should look at how easily we can accommodate vertex-to-source form factors within the 

progressive refinement radiosity paradigm. 

6.10 A Ray Casting Radiosity Algorithm 

Recalling Section 5.23, ray casting allows us to determine the form factor from an element vertex v to a 

source patch i. Repeating Equation 5.46 here (with a change of subscripts to avoid confusion), we have: 
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which is calculated by our RayCast class (Listings 5.29 and 5.30). 

We want to shoot exitance from each vertex to the source patch. Repeating Equation 6.33 with another 

change of subscripts, we have: 

vi
unsent
ivv FMM ρ=∆  (6.46) 

With this, our progressive refinement radiosity algorithm (Figure 6.4) becomes: 
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    ENDFOR 
    verticesnumMMM unsent

j
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  ENDFOR 
   0=∆ unsent

iM
ENDWHILE 

Figure 6.7 - Progressive refinement radiosity algorithm with ray casting 

Note that we no longer have to calculate and store the form factors for each selected shooting element. 

This makes the ray casting radiosity algorithm more efficient with respect to memory usage. On the other 

hand, Equation 6.42 requires the shooting patch-to-receiving element form factors before the exitance is 

shot into the environment. This means that we can no longer calculate the amount of positive overshooting 

required for each pass. 

We can, however, take advantage of our patch-element hierarchy and ambient exitance enhancements. 

From Figure 6.5, we have: 
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    // Add initial and ambient exitance contributions 



Solving the Radiosity Equation 415 
________________________________________________________________________ 

    ambientkokvv MMMM ρ++=  
  ENDFOR 
ENDFOR 

Figure 6.8 - Ray casting radiosity algorithm with ambient exitance 

Once again using RadEqnSolve as the base class, we can derive the following: 

// RAY_RAD.H - Ray Casting Radiosity Class 
 
#ifndef _RAY_RAD_H 
#define _RAY_RAD_H 
 
#include "environ.h" 
#include "rad_eqn.h" 
#include "ray_cast.h" 
 
// Ray casting radiosity equation solver 
class RayRad : public RadEqnSolve 
{ 
  private: 
    RayCast ffd;        // Form factor determination 
 
    void AddAmbient(); 
 
  public: 
    RayRad() : RadEqnSolve() { } 
 
    ~RayRad() { } 
 
    BOOL Calculate(); 
    BOOL Open( Environ * ); 
    void Close() { tone.Normalize(penv->GetInstPtr()); } 
}; 
 
#endif 

Listing 6.4 - RAY_RAD.H 

and: 

// RAY_RAD.CPP - Ray Casting Radiosity Class 
 
#include "ray_rad.h" 
 
// Open ray casting radiosity renderer 
BOOL RayRad::Open( Environ *pe ) 
{ 
  penv = pe;            // Save environment pointer 
  step_count = 0;       // Reset step count 
  convergence = 1.0;    // Convergence 
  InitExitance();       // Initialize exitances 
 
  if (amb_flag == TRUE) // Ambient exitance required ? 
  { 
    CalcInterReflect(); // Calculate interreflection factor 
    CalcAmbient();      // Calculate initial ambient term 
  } 
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  return TRUE; 
}  
 
// Calculate element exitances 
BOOL RayRad::Calculate() 
{ 
  int i;                // Loop index 
  int num_vert;         // Number of element vertices 
  float vsff;           // Vertex-to-source form factor 
  BOOL self;            // Self patch flag 
  Element3 *pelem;      // Element pointer 
  Instance *pinst;      // Instance pointer 
  Patch3 *ppatch;       // Patch pointer 
  Surface3 *psurf;      // Surface pointer 
  Spectra p_delta;      // Patch delta exitance 
  Spectra v_delta;      // Vertex delta exitance 
  Spectra reflect;      // Surface reflectance 
  Spectra shoot;        // Shoot exitance 
  Vertex3 *pvert;       // Vertex pointer 
 
  // Check for maximum number of steps 
  if (step_count >= max_step) 
  { 
    if (amb_flag == TRUE) 
    { 
      AddAmbient();     // Add ambient exitance 
    } 
    return TRUE; 
  } 
 
  UpdateUnsentStats();  // Update unsent flux statistics 
 
  // Check for convergence 
  if (convergence < stop_criterion) 
  { 
    if (amb_flag == TRUE) 
    { 
      AddAmbient();     // Add ambient exitance 
    } 
    return TRUE; 
  } 
 
  // Initialize form factor determination object 
  ffd.Init(pmax); 
 
  // Walk the instance list 
  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Get surface reflectance 
      reflect = psurf->GetReflectance(); 
 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
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        // Check for self patch 
        self = (ppatch == pmax) ? TRUE : FALSE; 
 
        // Walk the element list 
        pelem = ppatch->GetElementPtr(); 
        while (pelem != NULL) 
        { 
          if (self == FALSE)    // Ignore self 
          { 
            // Get shooting patch unsent exitance 
            shoot = pmax->GetExitance(); 
 
            // Reset patch delta exitance 
            p_delta.Reset(); 
 
            num_vert = pelem->GetNumVert(); 
            for (i = 0; i < num_vert; i++) 
            { 
              // Get element vertex pointer 
              pvert = pelem->GetVertexPtr(i); 
 
              // Get vertex-to-source form factor 
              if ((vsff = (float) ffd.CalcFormFactor(pvert, 
                  penv->GetInstPtr())) > 0.0) 
              { 
                // Calculate vertex delta exitance 
                v_delta.SetRedBand(reflect.GetRedBand() 
                    * vsff * shoot.GetRedBand()); 
                v_delta.SetGreenBand(reflect.GetGreenBand() 
                    * vsff * shoot.GetGreenBand()); 
                v_delta.SetBlueBand(reflect.GetBlueBand() 
                    * vsff * shoot.GetBlueBand()); 
 
                // Update vertex exitance 
                pvert->GetExitance().Add(v_delta); 
 
                // Update patch delta exitance 
                p_delta.Add(v_delta); 
              } 
            } 
 
            // Update patch unsent exitance 
            p_delta.Scale(pelem->GetArea() / ((double) 
                num_vert * ppatch->GetArea())); 
            ppatch->GetExitance().Add(p_delta); 
          } 
          pelem = pelem->GetNext(); 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
    } 
    pinst = pinst->GetNext(); 
  } 
 
  // Reset unsent exitance to zero 
  pmax->GetExitance().Reset(); 
 
  if (amb_flag == TRUE) 
  { 
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    CalcAmbient();      // Recalculate ambient exitance 
  } 
 
  step_count++;         // Increment step count 
  return FALSE;         // Convergence not achieved yet 
} 
 
void RayRad::AddAmbient()       // Add ambient exitance 
{ 
  int i;                // Loop index 
  int num_vert;         // Number of element vertices 
  Element3 *pelem;      // Element pointer 
  Instance *pinst;      // Instance pointer 
  Patch3 *ppatch;       // Patch pointer 
  Spectra delta_amb;    // Delta ambient exitance 
  Spectra reflect;      // Surface reflectance 
  Surface3 *psurf;      // Surface pointer 
  Vertex3 *pvert;       // Vertex pointer 
 
  // Walk the instance list 
  pinst = penv->GetInstPtr(); 
  while (pinst != NULL) 
  { 
    // Walk the surface list 
    psurf = pinst->GetSurfPtr(); 
    while (psurf != NULL) 
    { 
      // Get surface reflectance 
      reflect = psurf->GetReflectance(); 
 
      // Walk the patch list 
      ppatch = psurf->GetPatchPtr(); 
      while (ppatch != NULL) 
      { 
        // Walk the element list 
        pelem = ppatch->GetElementPtr(); 
        while (pelem != NULL) 
        { 
          // Calculate delta ambient exitance 
          delta_amb.SetRedBand(ambient.GetRedBand() * 
              reflect.GetRedBand()); 
          delta_amb.SetGreenBand(ambient.GetGreenBand() * 
              reflect.GetGreenBand()); 
          delta_amb.SetBlueBand(ambient.GetBlueBand() * 
              reflect.GetBlueBand()); 
 
          num_vert = pelem->GetNumVert(); 
          for (i = 0; i < num_vert; i++) 
          { 
            // Get element vertex pointer 
            pvert = pelem->GetVertexPtr(i); 
 
            // Update vertex exitance 
            pvert->GetExitance().Add(delta_amb); 
          } 
          pelem = pelem->GetNext(); 
        } 
        ppatch = ppatch->GetNext(); 
      } 
      psurf = psurf->GetNext(); 
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    } 
    pinst = pinst->GetNext(); 
  } 
} 

Listing 6.5 - RAY_RAD.CPP 

As you can see, the differences between RayRad and ProgRad are minimal. Apart from their form 

factor determination requirements, the two Calculate functions differ only in their innermost loops. The 

same holds true for UpdateUnsentStats and AddAmbient. For the effort of developing a few dozen 

additional lines of code, we now have two radiosity algorithms to play with. Each has its advantages and 

disadvantages in rendering photorealisitc images, as we shall soon see. 

6.11 HELIOS: Putting It All Together 

C’est fini! After nearly 7,000 lines of source code and fifty C++ classes, we are done. All we need to do 

now is to compile and link a new version of HELIOS. With it, we can then render photorealistic images of 

an environment. 

HELIOS is designed for Microsoft Windows 3.1 and Windows NT (see Chapter Four). If you are 

developing for another target environment, you will need to port the user interface portion of HELIOS to 

that environment. See Section 4.19 for details. 

The first step is build a make file or a project file from within an integrated development environment 

(IDE). This leads to a minor complication: we must choose between one of three versions of HELIOS to 

compile and link. There is a different list of source code files and conditional compilation directives 

required, depending on whether we want to use the progressive refinement or ray casting radiosity 

algorithms. If we choose the former, we then have to decide between hemi-cubes and cubic tetrahedrons. 

Then again, there should be no choice. Having expended the effort in developing the code, we may as 

well compile, link and experiment with all three versions. To avoid the otherwise inevitable confusion and 

frustration, it is probably best to set up make or IDE project files in three separate subdirectories. There is 

nothing more exasperating than debugging what appears to be a successfully compiled and linked program, 

only to discover that an incorrect object file was used. 

With this in mind, we can start with: 
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HELIOS Version 1.00A/HC 

 Radiosity algorithm: Progressive refinement 
 Form factor determination: Hemi-cube 

 C++ compiler directive: _HEMI_CUBE 
 Resource compiler directive: _HEMI_CUBE 

 16-bit memory model: Large 

 Source code file list: 
 c_jitter.cpp error.cpp ff_clip.cpp ff_scan.cpp 
 gamma.cpp hc_clip.cpp hc_delta.cpp hc_scan.cpp 
 helios.cpp helios.def helios.rc hemicube.cpp 
 p_clip4.cpp p_render.cpp parse.cpp patch3.cpp 
 prog_rad.cpp rad_eqn.cpp syn_cam.cpp tone_rep.cpp 
 vector3.cpp view_sys.cpp win_bmap.cpp win_sbar.cpp 

Figure 6.9 - HELIOS (hemi-cube) project files 

Note that for 16-bit Windows 3.1, the memory model must be specified as LARGE. As was explained 

in Section 3.13, the WinText class assumes that its functions use _far pointers. 

Also, the compilation directive _HEMI_CUBE must be globally defined. This can be usually done from 

a make file or through the compiler preprocessor options. Furthermore, it must be separately defined for 

the C++ compiler and the resource script compiler. 

Once you successfully compile and link this version, you can run it and display the About dialog box. 

The version number should read “1.00A/HC”, where “HC” stands for “Hemi-Cube". 

Our next version is: 

HELIOS Version 1.00A/CT 

 Radiosity algorithm: Progressive refinement 
 Form factor determination: Cubic tetrahedron 

 C++ compiler directive: _CUBIC_TETRA 
 Resource compiler directive: _CUBIC_TETRA 

 16-bit memory model: Large 

 Source code file list: 
 c_jitter.cpp ct_clip.cpp ct_delta.cpp ct_scan.cpp 
 cubic_t.cpp error.cpp ff_clip.cpp ff_scan.cpp 
 gamma.cpp helios.cpp helios.def helios.rc 
 p_clip4.cpp p_render.cpp parse.cpp patch3.cpp 
 prog_rad.cpp rad_eqn.cpp syn_cam.cpp tone_rep.cpp 
 vector3.cpp view_sys.cpp win_bmap.cpp win_sbar.cpp 

Figure 6.10 - HELIOS (cubic tetrahedron) project files 
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The globally defined compilation directive to use here is _CUBIC_TETRA. Once again, it must be 

separately defined for the C++ compiler and the resource script compiler. Once you successfully compile 

and link this version, its version number should read “1.00A/CT”, where “CT” stands for “Cubic 

Tetrahedron". 

The cubic tetrahedron and hemi-cube versions are, apart from the form factor determination methods 

used, identical. There are also few if any discernable differences between the images they produce. If 

anything, the cubic tetrahedron might offer a slight advantage in alleviating aliasing problems for 

environments with primarily parallel and perpendicular surfaces. There may also be slight differences in 

execution time when rendering images. 

Given these minimal differences, you might ask “why bother?” The answer is that neither HemiCube or 

CubicTetra have been optimized. Section 5.19.1 offers several suggestions for improving the performance 

of both algorithms, and the references cited in Chapter Five offer a variety of acceleration techniques. 

Since form factor determination consumes most of the CPU time needed to generate a radiosity rendering, 

these two classes and their associated classes (HemiClip and so on) should be prime candidates for 

optimization efforts. Having two separate algorithms to work with can only improve the chances for 

success. 

On the other hand, we also have our ray casting approach to consider: 

HELIOS Version 1.00A/RC 

 Radiosity algorithm: Ray casting (progressive refinement) 
 Form factor determination: Ray casting 

 C++ compiler directive: _RAY_CAST 
 Resource compiler directive: _RAY_CAST 

 16-bit memory model: Large 

 Source code file list: 
 c_jitter.cpp error.cpp gamma.cpp helios.cpp 
 helios.def helios.rc p_clip4.cpp p_render.cpp 
 parse.cpp patch3.cpp rad_eqn.cpp ray_cast.cpp 
 ray_rad.cpp syn_cam.cpp tone_rep.cpp vector3.cpp 
 view_sys.cpp win_bmap.cpp win_sbar.cpp 

Figure 6.11 - HELIOS (ray casting) project files 
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The globally defined compilation directive required is _RAY_CAST, and it must be separately defined 

for the C++ compiler and the resource script compiler. The program’s version number should read 

“1.00A/RC”, where “RC” stands for “Ray Casting". 

With three successfully compiled and linked versions of HELIOS in hand, all we need now is an 

environment to view … and therein lies a problem. Describing a complex environment requires many lines 

of ASCII text. Do you really want to enter 100,000 lines by hand? 

6.12 A Simple Test Environment 

In a few years’ time, books like this will likely be published on CD-ROM. It would be wonderful to 

have megabytes of space available to include a collection of complex and interesting environments to play 

with. Until then, we have the printed page and the diskette accompanying this book. 

The diskette includes several moderately complex environments that demonstrate the capabilities of 

HELIOS. The best that can be done in print is to present a very simple environment–a bench and two 

suspended lights in an otherwise empty room. While this may seem rather mundane, the color plates 

demonstrate that it can offer some surprising subtleties. 

We first need an entity file for the bench: 

ENTITY bench 
VERTEX 
< 0.0 0.0 2.5 > 
< 2.5 0.0 2.5 > 
< 2.5 2.5 2.5 > 
< 0.0 2.5 2.5 > 
< 5.0 0.0 2.5 > 
< 5.0 2.5 2.5 > 
< 5.0 0.0 0.0 > 
< 5.0 2.5 0.0 > 
< 5.0 2.5 2.5 > 
< 5.0 0.0 2.5 > 
< 0.0 0.0 0.0 > 
< 0.0 0.0 2.5 > 
< 0.0 2.5 2.5 > 
< 0.0 2.5 0.0 > 
< 4.8 0.0 0.0 > 
< 4.8 0.0 2.3 > 
< 4.8 2.5 2.3 > 
< 4.8 2.5 0.0 > 
< 0.2 0.0 0.0 > 
< 0.2 2.5 0.0 > 
< 0.2 2.5 2.3 > 
< 0.2 0.0 2.3 > 
< 5.0 0.0 0.0 > 
< 5.0 2.5 0.0 > 
< 5.0 2.5 2.5 > 
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< 5.0 0.0 2.5 > 
< 0.0 0.0 0.0 > 
< 0.0 2.5 0.0 > 
< 0.0 2.5 2.5 > 
< 0.0 0.0 2.5 > 
END_VERT 
SURFACE 
[ 0.5 0.2 0.7 ] [ 0.0 0.0 0.0 ] 
[ 0.0 0.8 0.3 ] [ 0.0 0.0 0.0 ] 
[ 0.0 0.8 0.3 ] [ 0.0 0.0 0.0 ] 
[ 0.0 0.3 0.0 ] [ 0.0 0.0 0.0 ] 
END_SURF 
PATCH 
0 {  0  4  5  3 } 
1 {  6  7  8  9 } 
2 { 10 11 12 13 } 
3 { 14 15 16 17 } 
3 { 18 19 20 21 } 
3 { 21 20 16 15 } 
3 { 17 16 24 23 } 
3 { 16 20 28 24 } 
3 { 19 27 28 20 } 
3 { 14 17 23 22 } 
3 { 10 27 19 18 } 
3 { 14 22 25 15 } 
3 { 21 15 25 29 } 
3 { 26 18 21 29 } 
END_PATCH 
ELEMENT 
 0 {  0  1  2  2 } 
 0 {  0  2  3  3 } 
 0 {  4  2  1  1 } 
 0 {  4  5  2  2 } 
 1 {  6  7  8  8 } 
 1 {  6  8  9  9 } 
 2 { 10 11 12 12 } 
 2 { 10 12 13 13 } 
 3 { 14 15 16 17 } 
 4 { 18 19 20 21 } 
 5 { 21 20 16 15 } 
 6 { 17 16 24 23 } 
 7 { 16 20 28 24 } 
 8 { 19 27 28 20 } 
 9 { 14 17 23 22 } 
10 { 26 27 19 18 } 
11 { 14 22 25 15 } 
12 { 21 15 25 29 } 
13 { 26 18 21 29 } 
END_ELEM 
END_ENTITY 

Listing 6.6 - BENCH.ENT 

The color scheme is a bit garish–a mauve top, sea green sides and dark green edges. If you prefer 

something more contemporary, you can always change the surface reflectance values in the SURFACE 

section. 
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The top surface is divided into two square patches, and each patch is divided into two equal triangles 

(Fig. 6.13). A finer mesh of patches and elements would allow us to display more shading details in the 

rendered image. (Adding the necessary patch, element and especially vertex description lines to 

BENCH.ENT is left as a typing exercise for the masochistic reader.) 

There are two identical light fixtures, so we only need one common entity file to describe them: 

ENTITY light 
VERTEX 
< 0.0 0.0 0.02 > 
< 0.2 0.0 0.02 > 
< 0.4 0.0 0.02 > 
< 0.6 0.0 0.02 > 
< 0.8 0.0 0.02 > 
< 1.0 0.0 0.02 > 
< 1.0 1.0 0.02 > 
< 0.8 1.0 0.02 > 
< 0.6 1.0 0.02 > 
< 0.4 1.0 0.02 > 
< 0.2 1.0 0.02 > 
< 0.0 1.0 0.02 > 
< 0.0 0.0 0.0 > 
< 1.0 0.0 0.0 > 
< 1.0 0.0 0.02 > 
< 0.0 0.0 0.02 > 
< 1.0 0.0 0.0 > 
< 1.0 1.0 0.0 > 
< 1.0 1.0 0.02 > 
< 1.0 0.0 0.02 > 
< 1.0 1.0 0.0 > 
< 0.0 1.0 0.0 > 
< 0.0 1.0 0.02 > 
< 1.0 1.0 0.02 > 
< 0.0 1.0 0.0 > 
< 0.0 0.0 0.0 > 
< 0.0 0.0 0.02 > 
< 0.0 1.0 0.02 > 
< 0.0 0.0 0.0 > 
< 0.2 0.0 0.0 > 
< 0.4 0.0 0.0 > 
< 0.6 0.0 0.0 > 
< 0.8 0.0 0.0 > 
< 1.0 0.0 0.0 > 
< 1.0 1.0 0.0 > 
< 0.8 1.0 0.0 > 
< 0.6 1.0 0.0 > 
< 0.4 1.0 0.0 > 
< 0.2 1.0 0.0 > 
< 0.0 1.0 0.0 > 
END_VERT 
SURFACE 
[ 0.0 0.0 0.0 ] [ 1.0 1.0 1.0 ] 
[ 0.0 0.0 0.5 ] [ 0.0 0.0 0.0 ] 
[ 0.0 0.0 0.5 ] [ 0.0 0.0 0.0 ] 
[ 0.0 0.0 0.5 ] [ 0.0 0.0 0.0 ] 
[ 0.0 0.0 0.5 ] [ 0.0 0.0 0.0 ] 
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[ 0.0 0.0 0.0 ] [ 0.5 0.5 0.5 ] 
END_SURF 
PATCH 
0 { 0 1 10 11 } 
0 ( 1 2 9 10 } 
0 { 2 3 8 9 } 
0 { 3 4 7 8 } 
0 ( 4 5 6 7 } 
1 { 12 13 14 15 } 
2 { 16 17 18 19 } 
3 { 20 21 22 23 } 
4 { 24 25 26 27 } 
5 { 28 39 38 29 } 
5 { 29 38 37 30 } 
5 { 30 37 36 31 } 
5 { 31 36 35 32 } 
5 { 32 35 34 33 } 
END_PATCH 
ELEMENT 
0 { 0 1 10 11 } 
1 ( 1 2 9 10 } 
2 { 2 3 8 9 } 
3 { 3 4 7 8 } 
4 ( 4 5 6 7 } 
5 { 12 13 14 15 } 
6 { 16 17 18 19 } 
7 { 20 21 22 23 } 
8 { 24 25 26 27 } 
9 { 28 39 38 29 } 
10 { 29 38 37 30 } 
11 { 30 37 36 31 } 
12 { 31 36 35 32 } 
13 { 32 35 34 33 } 
END_ELEM 
END_ENTITY 

Listing 6.7 - LIGHT.ENT 

LIGHT.ENT describes the light fixture as a unit square, which is definitely not what is shown in Figure 

6.13 and the color plates. Remember, however, that we can scale, rotate and translate an entity as required, 

depending on the parameters we specify in the environment file. In this case, we can stretch LIGHT.ENT 

into a semblance of a linear fluorescent lighting fixture that emits light from both its top and bottom faces. 

Figure 6.13 shows the light fixtures suspended below the ceiling plane. Accordingly, the top and 

bottom faces of LIGHT.ENT consist of five patches. This is an attempt to comply with the Five-Times 

Rule (Section 5.5), again within the limits of the size of text file that can be reproduced here. LIGHT.ENT 

will be rotated 180 degrees on its horizontal axis to properly orient it in the environment. 

Finally, we need to define the floor, ceiling and walls of our room. Each of these surfaces consists of 

one patch and a square grid of 25 elements. This is far from optimal with respect to the Five-Times Rule, 
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especially where the surfaces meet at the corners. On the other hand, it will serve to demonstrate both the 

strengths and weaknesses of our radiosity methods. 

We can use the following entity file as a template to define these surfaces: 

ENTITY white wall 
VERTEX 
< 0.00 0.00 0.00 > 
< 0.20 0.00 0.00 > 
< 0.40 0.00 0.00 > 
< 0.60 0.00 0.00 > 
< 0.80 0.00 0.00 > 
< 1.00 0.00 0.00 > 
< 0.00 0.20 0.00 > 
< 0.20 0.20 0.00 > 
< 0.40 0.20 0.00 > 
< 0.60 0.20 0.00 > 
< 0.80 0.20 0.00 > 
< 1.00 0.20 0.00 > 
< 0.00 0.40 0.00 > 
< 0.20 0.40 0.00 > 
< 0.40 0.40 0.00 > 
< 0.60 0.40 0.00 > 
< 0.80 0.40 0.00 > 
< 1.00 0.40 0.00 > 
< 0.00 0.60 0.00 > 
< 0.20 0.60 0.00 > 
< 0.40 0.60 0.00 > 
< 0.60 0.60 0.00 > 
< 0.80 0.60 0.00 > 
< 1.00 0.60 0.00 > 
< 0.00 0.80 0.00 > 
< 0.20 0.80 0.00 > 
< 0.40 0.80 0.00 > 
< 0.60 0.80 0.00 > 
< 0.80 0.80 0.00 > 
< 1.00 0.80 0.00 > 
< 0.00 1.00 0.00 > 
< 0.20 1.00 0.00 > 
< 0.40 1.00 0.00 > 
< 0.60 1.00 0.00 > 
< 0.80 1.00 0.00 > 
< 1.00 1.00 0.00 > 
END_VERT 
SURFACE 
[ 0.8 0.8 0.8 ] [ 0.0 0.0 0.0 ] 
END_SURF 
PATCH 
0 { 0 5 35 30 } 
END_PATCH 
ELEMENT 
0 {  0  1  7  6 } 
0 {  1  2  8  7 } 
0 {  2  3  9  8 } 
0 {  3  4 10  9 } 
0 {  4  5 11 10 } 
0 {  6  7 13 12 } 
0 {  7  8 14 13 } 



Solving the Radiosity Equation 427 
________________________________________________________________________ 
0 {  8  9 15 14 } 
0 {  9 10 16 15 } 
0 { 10 11 17 16 } 
0 { 12 13 19 18 } 
0 { 13 14 20 19 } 
0 { 14 15 21 20 } 
0 { 15 16 22 21 } 
0 { 16 17 23 22 } 
0 { 18 19 25 24 } 
0 { 19 20 26 25 } 
0 { 20 21 27 26 } 
0 { 21 22 28 27 } 
0 { 22 23 29 28 } 
0 { 24 25 31 30 } 
0 { 25 26 32 31 } 
0 { 26 27 33 32 } 
0 { 27 28 34 33 } 
0 { 28 29 35 34 } 
END_ELEM 
END_ENTITY 

Listing 6.8 - W_WALL.ENT 

W_WALL.ENT describes the three white walls of our room. The surface reflectance is described by 

the surface identifier, which is: 

… 
SURFACE 
[ 0.8 0.8 0.8 ] [ 0.0 0.0 0.0 ] 
END_SURF 
… 

(This actually describes a light gray surface that reflects 80 percent in each of the three color bands. 

Looking at it in real life, we would probably say it is “off-white” in color.) 

To create the red wall, we only need to change the above to: 

[ 0.95 0.0 0.0 ] [ 0.0 0.0 0.0 ] 

and name the modified file R_WALL.ENT. Similarly, the floor becomes: 

[ 0.2 0.3 0.3 ] [ 0.0 0.0 0.0 ] 

which we name FLOOR.ENT. (This will look like a rather pleasant gray carpet with a blue-green tinge. 

We can blame the furnishings on the interior decorator.) 

Finally, the ceiling is a sparklingly clean white: 

[ 0.95 0.95 0.95 ] [ 0.0 0.0 0.0 ] 

which we name CEILING.ENT. That done, we can arrange our room and its furnishings with: 

WORLD room 
COMMENT floor 
floor.ent 
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< 1.0 1.6 1.0 > 
< 0.0 0.0 0.0 > 
< 0.0 0.0 0.0 > 
COMMENT ceiling 
ceiling.ent 
< 1.0 1.6 1.0 > 
< 180.0 0.0 0.0 > 
< 0.0 1.6 1.0 > 
COMMENT red wall 
r_wall.ent 
< 1.0 1.0 1.0 > 
< 270.0 0.0 0.0 > 
< 0.0 0.0 1.0 > 
COMMENT white wall 
w_wall.ent 
< 1.0 1.6 1.0 > 
< 0.0 90.0 0.0 > 
< 0.0 0.0 1.0 > 
COMMENT white wall 
w_wall.ent 
< 1.0 1.0 1.0 > 
< 90.0 0.0 0.0 > 
< 0.0 1.6 0.0 > 
COMMENT white wall 
w_wall.ent 
< 1.0 1.6 1.0 > 
< 0.0 270.0 0.0 > 
< 1.0 0.0 0.0 > 
COMMENT light #1 
light.ent 
< 0.8 0.05 1.0 > 
< 180.0 0.0 0.0 > 
< 0.1 0.2 0.8 > 
COMMENT light #2 
light.ent 
< 0.8 0.05 1.0 > 
< 180.0 0.0 0.0 > 
< 0.1 1.4 0.8 > 
COMMENT bench 
bench.ent 
< 0.16 0.16 0.08 > 
< 0.0 0.0 0.0 > 
< 0.1 0.2 0.0 > 
END_FILE 

Listing 6.9 - ROOM.WLD 

This gives us an environment with 9 instances, 22 surfaces, 48 patches, 197 elements and 326 vertices. 

6.12.1 Taking It For A Test Drive 

We have an environment and three versions of HELIOS to examine it with. Their user interfaces are 

almost identical, so we can choose whichever one we please for a test drive. 

To display a view of the room, we first need to ensure that the following files are in the same directory: 

 BENCH.ENT CEILING.ENT FLOOR.ENT LIGHT.ENT 
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 R_WALL.ENT W_WALL.ENT ROOM.WLD 

Figure 6.12 - ROOM enviroment data files 

and run HELIOS as a MS-Windows program. Once its main window is displayed, we can: 

1. Choose File from the menu bar. 

2, Choose the Open… menu item to display the Open common dialog box. 

3. Select the ROOM.WLD file. 

An Environment Statistics dialog box will appear with an enumeration of the instances, surfaces, patches, 

elements, and vertices in the environment. 

If the entity files are not in the same directory as ROOM.WLD, an error message will appear in a dialog 

box. Rather than exiting HELIOS, we can: 

1. Choose File from the menu bar. 

2. Choose the Directories… menu item to display the Directories dialog box. 

3. Enter the correct file path in the Entities File Path edit control. 

and repeat the previous three steps to select the ROOM.WLD file again. 

With the environment file parsed and loaded into memory, we can now: 

1. Choose Camera from the menu bar. 

2. Choose the Set Parameters menu item to display the Camera Parameters dialog box. 

3. Enter “2” in the View Distance edit control. 

This sets the camera view distance at 2.0 units, giving a field of view roughly equivalent to a 35 mm lens 

on a 35 mm camera. The default Window Dimensions values tell HELIOS to display the image as a 

horizontally-oriented bitmap of  pixels. We can change this to whatever size we want, from a 

minimum of 32 to a maximum of 1,024 pixels. 

480640×

The synthetic camera’s position and orientation must be specified next: 

1. Choose View from the menu bar. 

2. Choose the Specify View… menu item to display the View Parameters dialog box. 

3. Enter “-1.5” (note the minus sign) in the Eye Position X-Axis edit control. 

4. Enter “1.9” in the Eye Position Y-Axis edit control. 
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5. Enter “0.5” in the Eye Position Z-Axis edit control. 

6. Enter “-30” (note the minus sign) in the View Direction Horizontal Degrees edit control. 

The View Direction Vertical Degrees and View-Up Vector edit controls remain unchanged. 

The synthetic camera is now set up to display an image, starting with: 

1. Choose Render from the menu bar. 

2. Choose the Wireframe menu item. 

A wireframe image of the room will be displayed (Fig. 6.13). Recalling Chapter Four, this image will 

automatically resize itself whenever the display window size is changed. We can also go back and change 

any of the previous entries to change the view or camera parameters; the wireframe image will update itself 

accordingly. 

 

Figure 6.13 - ROOM.WLD wireframe display 

To display a full-color shaded bitmap image: 

1. Choose Render from the menu bar. 

2. Choose the Shaded menu item. 

It may take a few seconds or more to display the image, depending on the CPU speed and whether a math 

coprocessor is present. Increasing the bitmap size in either direction increases display calculation time 

accordingly. Remember that we are using floating point operations here; an integer-only version (Section 

4.12) would speed this up considerably for an 80x86-based computer. 
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Now, remember that: 

HELIOS needs a computer system capable of displaying at least 32,768 colors. 

We can use a computer with a 256-color display, but the images as displayed by HELIOS will appear 

posterized. The diskette accompanying this book includes C++ source code and an executable file for a 

color quantization utility (Section 3.5.2) that converts 24-bit color bitmaps to 8-bit (256 color) bitmaps. 

As an aside, it is worth noting that an MS-Windows program operating in 256-color mode does not 

automatically map 24-bit RGB colors to the current palette of 256 colors when the MS-Windows API 

function SetPixel is called. Unless specifically programmed to do otherwise, the Windows GDI (Graphical 

Device Interface) merrily maps the color to one of 20 default system colors that have been specified via the 

Control Panel for the window borders, title bars, menu bars, background and so forth. This explains why 

24-bit color images displayed using Microsoft Paintbrush and similar programs usually appear so garish 

when a 256-color display adapter is used. 

Remember also that even though our computer may be capable of displaying 32,768 or more colors, the 

Microsoft Windows environment may be set up to use an 8-bit (256-color) display driver for speed 

reasons. You may have to use the Windows Setup program to change to the appropriate display driver (see 

your documentation for details). 

Ready then? Here we go: 

1. Choose Render from the menu bar. 

2. Choose the Rendering menu item. 

and … wait … and there you have it: a photorealistic rendering of the room. The Convergence Statistics 

dialog box will tell us how many steps were required to achieve the default stopping criterion of 0.001. 

How long do we have to wait? On a typical 66-Mhz 486 machine, execution times were as follows: 

HELIOS/CT: 35 seconds 

HELIOS/HC: 44 seconds 

HELIOS/RC: 196 seconds 
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which included five seconds for Gouraud shading and bitmap display calculations. Our execution times 

will obviously vary, depending on the CPU speed of our machine and whether it has a numeric coprocessor 

(which is highly recommended). Radiosity rendering is almost entirely concerned with floating point 

calculations. As such, it will not matter much whether we are running under 16-bit MS-Windows 3.1 or 

32-bit Windows NT. The execution times will be roughly comparable for the same CPU clock speed. 

As promised, there are no discernable differences between the images produced by the hemi-cube and 

cubic tetrahedral algorithms. On the other hand, there are marked differences between these images and the 

ray cast image. The former clearly shows the effects of nodal averaging (Section 4.16) in smoothing out 

differences between element exitances, while the ray cast image shows some rather obvious Mach bands. 

Despite these problems, you have to admit that the images show none of the plastic surfaces we so 

often see in ray traced images. Achieving similar results with an unoptimized ray tracing programs would 

consume hours to days of CPU time. As the color plates show, HELIOS is quite capable of rendering more 

complex environments with very aesthetic results. 

There are two other points to be made here concerning the relative execution times. First, the cubic 

tetrahedron algorithm appears to offer approximately 25 percent better execution times than the hemi-cube 

algorithm. Remember, however, that this only applies for the particular implementations of these 

algorithms we have developed. The discussion at the end of Section 5.19.1 presented a number of possible 

acceleration techniques that may skew the performance results in either direction. 

Second, the ray casting algorithm is nearly six times slower than the cubic tetrahedron algorithm–but 

only for this particular environment. Section 5.23.3 noted that a naive implementation of the ray casting 

algorithm has a time complexity of  for m patches and n elements, whereas the hemi-cube and 

cubic tetrahedron algorithms have a time complexity of 

)( 2mnO

( )mnO . This means that the difference in 

execution times will increase with increasing environment complexity. This clearly indicates the need for 

implementing one or more ray tracing acceleration techniques within the RayCast class, again as discussed 

in Section 5.23.3. Remember that HELIOS is a testbed for experimentation; it is not a production-quality 

radiosity renderer! 
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Having performed the radiosity calculations for the environment, we do not need to choose Rendering 

again until we load in a new environment data file. That is, we can change the camera and view parameters 

to look at the environment from whatever direction we choose, using the Wireframe display to provide a 

quick preview. Once we have what we want, we can: 

1. Choose Render from the menu bar. 

2. Choose the Redisplay menu item. 

to redisplay a photorealistic image of the room. 

We can redisplay the image in grayscale or pseudocolor by: 

1. Choose Options from the menu bar. 

2. Choose the Set Display… menu item to display the Display Parameters dialog box. 

3. Select either the Grayscale or Pseudocolor radio button. 

4. Select the OK button. 

5. Choose Render from the menu bar. 

6. Choose the Redisplay menu item. 

The Display Parameters dialog box also allows us to specify the gamma correction value (Section 

3.5.1). The default value is 2.2; increasing it has the effect of increasing the image contrast and lightening 

the image. We can disable gamma correction by unchecking the Enable checkbox. 

If the display is only capable of 32,768 or 65,536 colors, there will be some noticeable color banding in 

the image. This is not an aliasing artifact, but a slight posterization of the image. This is also where color 

reduction comes in (Section 3.5.2). It is disabled by default, but we can enable it by checking the Enable 

checkbox and redisplaying the image. The default Noise Level value is 1, but we can set it to any integer 

value from 1 to 8 (which results in a very grainy image). 

We can also do the following: 

1. Choose Options from the menu bar. 

2. Choose the Set Convergence… menu item to display the Convergence Parameters dialog box. 

3. Enter an integer value between 1 and 2000 in the Maximum Steps edit control. (The default value is 

100). 
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4. Enter a floating point value between 0.0 and 1.0 in the Stopping Criterion edit control. (The default 

value is 0.001). 

5. Check or uncheck the Ambient Exitance checkbox as desired. (Ambient exitance is disabled by default). 

6. Check or uncheck the Positive Overshoot checkbox (positive overshooting is enabled by default. It also 

does not appear in the HELIOS/RC version of the dialog box.) 

ROOM.WLD takes between 40 and 50 steps to converge to the default stopping citerion of 0.001 with 

positive overshooting enabled. As an experiment, we might try setting the maximum steps to 1 and 

enabling or disabling ambient exitance. We can select Rendering again and see what the difference is 

between the images. We might also disable positive overshooting to see how long ROOM.WLD takes to 

converge without it. 

To save the image to a BMP file: 

1. Choose File from the menu bar. 

2. Choose the Save As… menu item to display the Save As common dialog box. 

and specify an appropriate directory and file name. The file can later be viewed using Microsoft Paintbrush 

or any other BMP-compatible graphics program capable of displaying at least 32,768 colors. 

Finally, we can: 

1. Choose Help from the menu bar. 

2. Choose the About Helios… menu item to display the About HELIOS dialog box. 

to confirm which version of HELIOS we are currently running. 

The preface promised that radiosity is “… fascinating to experiment with.” This demonstration of 

HELIOS should fulfill that promise. 

6.13 Conclusions 

We began this chapter with a promise that solving the radiosity equation would be easy in comparison 

to the material presented in the preceding chapters. Looking back, you may be inclined to disagree. 

However, look again at the progressive refinement radiosity algorithm outlined in Figure 6.4. This is the 

radiosity approach in its entirety! Everything else can be considered bothersome implementation details. 
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More to the point, we can take some pride in having developed three functional versions of HELIOS. 

At some 7,000 lines of C++ source code, it represents a medium-sized software engineering project for one 

person. Seen from a different perspective, it offers a surprising amount of functionality for its size. This is 

due in no small part to the underlying graphical user interface provided by MS-Windows … can you 

imagine implementing HELIOS under MS-DOS? 

So, we finally have our radiosity-based rendering program. True, we have to create our environment 

and entity data files by hand, which can be a nuisance. Do this enough times and you will be ready and 

willing to write your own AutoCAD DXF translator. (See the accompanying diskette for a simple 

example.) Before then, however, we need to determine how an environment should be meshed to produce 

the best radiosity rendering results. 
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Chapter 7 
Meshing Strategies 

7.0 Introduction 

Looking at our first radiosity-based images, we quickly become aware that the accuracy of the radiosity 

approach is very much dependent on the underlying mesh of elements used to represent each surface. 

While the images may display soft shadows and subtle color bleeding effects, their details are limited by 

the size and shape of the underlying elements. This is particularly evident where surfaces are close to one 

another–there are no sharp shadow edges. 

We can see this problem more clearly in Figure 7.1. The continuous curve represents the “true” 

exitance distribution  that we might measure across a surface in a physical environment. Looking at 

this surface, we would see the steeply sloped portions of the curve as reasonably well defined shadow 

edges. 

( )xM

M(x) M(x)

A B C
 

Figure 7.1 - Interpolating shadow details requires a closely spaced mesh 

Now, suppose we model this surface as an array of elements. The vertical lines then indicate the 

positions of the element vertices, while the height of each line represents the exitance at that vertex. The 

shaded gray area connecting these lines represents the linearly interpolated exitance at each point on the 

surface. In a 3-D environment, this interpolation would be the result of Gouraud shading (Section 4.13). 

This demonstrates the need to choose an appropriately spaced mesh of elements. If the mesh is too 

coarse, there may be excessive interpolation errors between the vertices (C). These become evident in the 
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rendered image as missing shadow details (B) and unrealistically soft shadow edges. In some cases, the 

outlines of the elements themselves may become visible. 

One brute force solution to this problem is to finely mesh each surface such that individual elements are 

too small to be visible in any rendered image. This works, but the cost in terms of memory requirements 

and execution times quickly becomes unmanageable. It is also inefficient, since there is no reason to finely 

mesh the surface where the change in exitance is relatively constant ( A). 

7.1 Non-Uniform Meshing Techniques 

A better approach is to employ a non-uniform element spacing such as that shown in Figure 7.2. Here, 

the element vertices are placed such that the interpolation error at any point on the surface does not exceed 

some predetermined maximum value. Large, smoothly shaded areas of the surface can be represented by 

relatively few elements, while the shadow edges and other areas where the true surface exitance  

changes abruptly can be represented by small and closely spaced elements. 

( )xM

M(x)

 

Figure 7.2 - Interpolating shadows details with a non-uniform mesh 

Of course, the problem with this scheme is that we need to know the distribution of shadows in the 

environment before we begin solving the radiosity equation. Rephrasing this slightly, we need to know the 

solution to the radiosity equation in order to create an appropriate mesh that allows us to solve the radiosity 

equation. 

There are several solutions to this circular reasoning. We can attempt to predict a priori where the 

shadows will occur when we generate our initial mesh for an environment. This allows us to concentrate 

elements where we suspect the exitance distribution will change rapidly across a surface. We can also 

iteratively refine our mesh after each step in solving the radiosity equation. We can split or merge 

elements, move element vertices or create an entirely new mesh as required. 
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The great advantage of these solutions is that they can be automated. That is, we can provide our 

radiosity renderer with a geometric description of an environment and let these meshing algorithms decide 

how to mesh each surface. There may be some touch-up work required to obtain a suitable mesh, but most 

of the work will have been done for us. 

7.2 Meshing Strategies 

Having said this, there are two disadvantages that prevent us from implementing these algorithms 

within the context of HELIOS. First, they require a detailed knowledge of the geometry of each object in 

the environment. This information is available from our environment data structure, but it can be difficult 

and time-consuming to obtain. A more flexible geometrical representation is generally required. 

The second disadvantage is more immediate. We have a limited amount of space remaining in which to 

discuss both meshing techniques and other radiosity approaches. This book is about radiosity, not 

automatic meshing algorithms. Moreover, a detailed discussion and implementation of these algorithms 

properly deserves an entire book. 

This leaves us with one option. We will have to create our initial meshes by hand and modify them 

based on our analysis of the rendered images. To this end, we need to develop a set of heuristic rules, or 

meshing strategies, that will allow us to understand and predict the cause-and-effect relationship between 

element meshes and what we see in the images. 

HELIOS is admittedly incomplete. Entering thousands of vertices by hand is obviously impractical for 

truly complex environments. Also, a professional implementation should include an automatic meshing 

algorithm that relieves the user of having to understand the following strategies. To this end, the following 

discussions include numerous references for further study. HELIOS was designed from the beginning to be 

extensible; the challenge is to use it as a testbed for your own experiments and investigations. 

7.3 Generating Input Files 

The easiest way to create an entity data file is to use a commercial 3-D CAD program such as 

AutoDesk’s AutoCAD. As we noted in Chapter Three, these programs offer many more features than we 

shall ever require. On the other hand, their ability to model complex 3-D surfaces is essential for any truly 
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serious radiosity rendering efforts. While we do not have the space needed to develop a CAD file 

translation utility here, we should nevertheless examine the issues involved in generating input files. 

7.3.1 Surface Orientation 

One problem common to many 3-D CAD programs is that they do not enforce the concept of a surface 

having a visible side. The user is expected to specify a surface as an ordered sequence of vertices, but the 

concept of a surface normal is undefined. If these vertices are imported as is into our entity files, there is no 

guarantee that the surfaces will be properly oriented. This includes the popular AutoCAD DXF file format 

(Autodesk [1992a-c]). 

One practical solution is to display the CAD files using shaded surfaces. If a surface faces away from 

the camera, it should be displayed as a wireframe. A user interface command then allows the user to 

identify and interactively “flip” incorrectly oriented surfaces by reordering their vertices. Smith [1991], 

Baum et al. [1991] (which is an expanded version of Smith [1991]) and Blinn [1993] offer several practical 

suggestions on how to perform this interactive preprocessing of CAD files. 

7.3.2 Surfaces Versus Solids 

Another problem–and this also applies to our own entity data files–is that a physical surface has two 

sides. There is no problem in an exterior wall of our test environment room (Section 6.12), for example, 

having only one visible side. The radiant flux in the room will never encounter the invisible side of these 

surfaces. Similarly, each surface of our solid light fixtures and bench need only one visible side. However, 

consider a sheet of paper suspended in mid-air. (This is, after all, virtual reality.) While we may see its 

visible side from our camera position in the room, we must remember that light is flowing though the 

environment in all directions. The paper may cast a shadow on the floor, which is reasonable. However, the 

light subsequently reflected from within this shadow will pass right through the invisible side of the paper 

if it is modeled as a single surface. To avoid this anomaly, we need to model the paper as having two 

visible sides; that is, with two identical and coplanar surfaces facing in opposite directions. 

This highlights an important point: the radiosity approach interacts with solid objects in an 

environment. This implies that the environment data file should be created with a solid modeling program 
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that intrinsically enforces this concept. Until such programs become widely available, however, we shall 

have to expect data input from less capable 3-D CAD programs. 

7.3.3 Coplanar Surfaces 

Coplanar surfaces present yet another problem. Suppose we have a (single-sided) sheet of paper lying 

on a desktop surface. This appears reasonable until we remember that our vertex co-ordinates and Z-

buffering algorithm have a finite depth precision. It may well be that the two surfaces are no longer exactly 

coplanar after their vertex co-ordinates have been independently scaled, translated, rotated and interpolated 

during perspective projection and clipping. At worst, the paper may appear to be partially embedded in the 

desktop when the two surfaces are rendered. 

It is not always evident which of two coplanar surfaces should be visible. Baum et al. [1991] adopted 

the heuristic that the smaller of the two surfaces should remain visible. The larger, underlying surface is 

then topologically modified by “cutting a hole” in it to accommodate the visible surface. 

7.3.4 Merging Surfaces 

A CAD user will often build a complex surface piece by piece. While the final result may look correct 

when rendered as a shaded image, it may be that adjoining vertices are almost but not quite coincident 

(e.g., Segal [1990]). Baum et al. [1991] simplified these surfaces by first determining whether adjoining 

surfaces consisted of the same material (i.e., they had the same reflectance properties). If so, then any 

vertices whose 3-D co-ordinates were less than some minimum distance apart are merged. (Vertex co-

ordinates were stored in an octree data structure to simplify their comparison.) Once this was done, the 

edges were then merged as well to create a contiguous set of surfaces (e.g., Fig. 7.3). 

Before vertex merging After vertex merging After edge merging  

Figure 7.3 - Vertex and edge merging for complex surfaces 
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Baum et al. [1991] also found it convenient to merge complex surface sets into single (but possibly 

topologically complex) surfaces (e.g., Fig. 7.4). This made subsequent division of these maximally 

connected surfaces into a mesh of elements a more controllable process with fewer geometric constraints. 

 

Figure 7.4 - Merging surfaces 

7.3.5 T-Vertex Elimination 

A second reason to merge complex sets of common surfaces is that it eliminates T-vertices (Fig. 7.5). 

As Baum et al. [1991] observed, these create several problems. For example, the additional vertex along a 

common edge between two elements can create discontinuities when they are Gouraud-shaded. In Figure 

7.5, the calculated exitance at vertex C will likely differ from the exitance interpolated at that point from 

the vertices A, D and E (see Section 4.13 for details). The resultant differences in shading may be visible as 

a line extending from vertices A to D. 

B

A

C E

D  

Figure 7.5 - Vertex C is a T-vertex 

A more serious problem may occur due to the finite precision of the floating point arithmetic used to 

manipulate the vertex co-ordinates. Suppose in Figure 7.5 that vertices A, D and E represent one element. 

If the T-vertex C is not exactly coincident with the edge defined by A and D, there may be a noticeable gap 

between the elements in the rendered edges. 
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Figure 7.6 - T-vertices may create gaps between elements 

T-vertices are less of a problem when they occur on the edges separating different surfaces, since each 

surface is independently shaded. However, gaps between these surfaces (also referred to as “pixel 

dropouts”) may still occur due to floating point roundoff. These gaps will also occur between elements of 

the same surface. They are never more than a single pixel wide, which makes them easy to distinguish from 

errors in the entity data files. 

Baum et al. [1991] proposed that edges of adjoining polygons be “ziplocked” by using identical sets of 

vertices for each edge. For example, if the triangle A-D-E in Figure 7.5 were a different surface from 

A-B-C and B-D-C, ziplocking would change it into the quadrilateral A-C-D-E. (The addition of vertices 

may require that the original elements be split into quadrilaterals and triangles to limit their number of 

edges to four. Alternatively, ziplocking can be done immediately before displaying the image if the 3-D 

graphics package supports more complex polygons.) 

While eliminating T-vertices from a mesh is highly recommended, it is not essential. Cohen and 

Wallace [1993] describe their use as slave vertices. A mesh is developed with T-vertices and solved using 

one of the radiosity algorithms presented in Chapter Six. However, the exitances of the T-vertices are not 

used when it comes time to display the elements using Gouraud shading. Instead, they are linearly 

interpolated from those of the edge endpoint vertices (e.g., A and D in Fig. 7.5). This may introduce some 

small amount of error into the radiosity solution. However, it ensures that the Gouraud-shaded elements of 

a surface do not exhibit any visible discontinuities at their edges. 

7.3.6 Preprocessing CAD Files 

Baum et al. [1991] incorporated the above rules in a series of filter programs that preprocessed 

AutoCAD DXF files for radiosity rendering applications (see also Smith [1991]). While such programs are 
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undeniably useful, they represent a major software development effort that clearly extends beyond the 

scope of this book. Fortunately, much of the above can be applied equally well to input files that are 

generated by hand. 

A much simpler but still useful approach is to use a 3-D CAD program to create initial surface meshes 

for our entity files. AutoCAD, for instance, can be used to model the surfaces as polygon meshes and 

generate DXF files. Creating a program that reads these files and generates an output file of surfaces, 

patches and elements is straightforward. The technical details of the DXF file format are described in 

Autodesk [1992a-c], and an example DXF file parser is included on the diskette accompanying this book. 

This relieves much of the tedium involved in creating entity files by hand using a text editor. 

One of the problems inherent in the AutoCAD DXF and similar CAD file formats is that they do not 

include the geometrical information needed by automatic meshing algorithms. However, Baum et al. 

[1991] found that this information can be derived from such files during the process of merging vertices, 

edges and surfaces and stored in a winged edge data structure. Thus, while they are by no means ideal, 

most CAD file formats can be used to represent environments for radiosity-based rendering programs. 

7.4 Meshing Considerations 

There are many ways in which light can interact with a mesh of elements. We have already seen some 

examples, including a) a non-uniform mesh is needed to capture exitance gradients efficiently, b) aliasing 

effects can occur at shadow edges if the mesh is too coarse, and c) small shadow details can be missed 

entirely by a coarse mesh. We need to consider these and other interactions, and from them develop more 

heuristic rules for our mesh design strategies. 

7.4.1 Aliasing Effects and Discontinuity Meshing 

Aliasing effects require further explanation. Consider a sharply defined shadow edge that is diagonal to 

a set of elements (Fig. 7.6). There are two related problems here. First, the expanded view of one element 

indicates that the surface exitance should be zero inside the shadow and 100 otherwise. However, the 

screen scan line drawn across the element indicates that Gouraud shading would show a continuous 

decrease in screen luminance from left to right. Looking at the set of elements in a rendered image, we 

would see the shadow as having a staircase appearance that clearly indicates the underlying element mesh. 
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Figure 7.6 - Aliasing may occur at shadow boundaries 

This problem has an obvious but difficult solution: orient the elements such that their edges follow the 

shadow boundaries. This allows Gouraud-shaded elements to accurately follow the contours of the shadow 

edges. We ideally want the boundaries to follow the edges of soft shadows as well (Fig. 7.7). The trick is to 

determine where these boundaries occur. 

Penumbra

Occluding surface

 

Figure 7.7 - Discontinuity meshing minimizes shadow aliasing artifacts 

This is where automatic meshing algorithms are useful. We can perform an a priori geometrical 

analysis of the environment to determine where shadows will most likely occur. Nishita and Nakamae 

[1985] and Campbell and Fussell [1990] did this by shooting “shadow rays” from the light sources to 

project silhouettes of objects onto surfaces. This defines both the umbrae (shadows) and penumbrae 

(literally, “almost shadows”) cast by the object onto the surfaces, much as our ray casting radiosity 

algorithm determines vertex-to-source form factors. These silhouettes provide the geometrical information 

needed to align surface elements with the penumbra boundaries. 

Heckbert [1991] referred to these boundaries as discontinuities in the surface exitance distribution. 

Efficient discontinuity meshing algorithms for determining optimal element meshes are presented in 
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Heckbert [1992], Lischinski et al. [1992] and Tampieri [1993]. (See also Cohen and Wallace [1993] for a 

detailed summary). Unfortunately, these algorithms are too involved to discuss or implement here. 

One problem with discontinuity meshing is that it can only identify shadows due to direct illumination 

from light sources. There may be circumstances where well-defined soft shadows are a result of indirect 

lighting from highly reflective surfaces. These generally cannot be identified until the radiosity equation 

has been at least partially solved. 

7.4.2 Gouraud Shading Anomalies 

The second aliasing problem has to do with Gouraud shading in general. Remember that this is done in 

screen space. That is, we are really interpolating pixel luminances rather than surface exitances. Every time 

we reorient the quadrilateral element shown in Figure 7.8, the scan line has a different pair of endpoint 

pixel luminances to interpolate between. From this, we can see that the appearance of the element will 

change as we change our camera view position and orientation in an environment. 
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Figure 7.8 - Gouraud shading results depend on screen space orientation 

Note that this problem only applies to quadrilateral elements; it does not occur when triangular 

elements are rendered. This suggests the simple solution of splitting quadrilaterals into triangles. Since this 

problem only occurs during the shading process, we can perform this triangulation in screen space 

immediately before Gouraud interpolation. 

Airey et al. [1990] and Haines [1991] recommended splitting quadrilaterals such that the endpoints of 

the diagonal edge have the least exitance difference (averaged over all three color bands). If, for example, a 

quadrilateral element has average vertex exitances values of 1.0, 2.0, 3.0 and 7.0, it would be split with a 

new edge extending from the first to the third vertex. This tends to smooth out aliasing at shadow 

boundaries and alleviate other shading problems. 
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A more rigorous (and computationally expensive) solution is to perform bilinear interpolation of 

exitances in world space directly on the surface of each element (e.g., Cohen and Wallace [1993]). This 

also solves another problem with Gouraud shading. The perspective projection of an element’s co-

ordinates from world space to screen space results in the element depth co-ordinates being distorted 

(Section 4.3). Thus, linear interpolation between two points of an element’s edge is not entirely correct, 

since the element depth along the scan line may change in a nonlinear fashion. On the other hand, linear 

interpolation is itself an approximation, and so we can generally ignore this problem. (See Blinn [1992] for 

another approach.) 

7.4.3 Mach Banding 

Mach banding is another issue that is exacerbated by Gouraud shading. The human visual system is 

acutely sensitive to edges in its field of view. When we look at an edge between a dark gray and a white 

surface, we often perceive the gray as being darker and the white as being whiter adjacent to the edge. This 

is a purely physiological effect–measuring the surface luminance at these points would show no such 

anomalies. 

The problem is that Gouraud shading creates sudden changes in surface luminance at element edges 

(e.g., Fig. 7.1). We perceive these changes as being edges within what should be smoothly shaded surfaces. 

These become more noticeable when the surfaces are large in the rendered image. They also occur where 

the slope of the exitance distribution changes rapidly across the surface, such as within soft shadows. 

Mach banding problems can be minimizing by using a finer element mesh. Another approach is to 

perform a higher order interpolation between vertex exitances. Referring to Figure 7.1, we can replace the 

straight lines connecting the vertices with curves that are described by quadratic or cubic equations. In two 

dimensions, this is equivalent to modeling a curved surface with Bézier or B-spline surfaces (e.g., Foley et 

al. [1990]), except that the 2-D “surface” we are trying to model is the true exitance distribution . A 

detailed review of these interpolation techniques is presented in Cohen and Wallace [1993]. 

( )xM

7.4.4 Mesh Grading and Aspect Ratios 

Mach banding problems can also be alleviated by ensuring that the mesh grading is relatively smooth. 

That is, the difference in areas between adjacent elements should be kept as small as possible. This 
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produces a mesh like that shown in Figure 7.9 (where T-vertices have been allowed for illustrational 

clarity). 

 

Figure 7.9 - A smooth mesh grading is desirable 

One consequence of a smooth mesh grading is that the individual elements tend to have a small aspect 

ratio, which is defined as the ratio of the inner and outer bounding circles (Fig. 7.10) for the element 

vertices (e.g., Baum et al. [1991]). Such elements are referred to as being well-shaped. This has three 

advantages. First, it maximizes the element area and thereby minimizes the number of elements needed to 

mesh a surface. Second, it produces elements that approximate circular disks; this is one of the assumptions 

of the ray casting radiosity algorithm (Section 5.23). Third, it improves the accuracy of the form factor 

determination process and through it the radiosity solution (Baum et al. [1989]). 

I
O
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Element

 

Figure 7.10 - Element aspect ratio is determined by inner and outer bounding circles 

Baum et al. [1991] suggested subdividing quadrilaterals and triangles into four by placing new vertices 

at the midpoint of each element edge, as shown in Figure 7.11. If the parent element is well-shaped, then 

each of its child elements will also be well-shaped. This is particularly convenient when it comes to 

subdividing elements with an automatic meshing algorithm. 
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Figure 7.11 - Four-to-one subdivision of well-shaped elements 

7.4.5 Light and Shadow Leakage 

Finally, we need to recognize the consequences of randomly placing one entity on top of another. 

Consider a flat surface with a vertical partition dividing it (Fig. 7.12). The two gray elements on the flat 

surface receive flux that is shot from the light source. However, these elements are divided by the partition. 

When they later shoot their flux, it will be sent to both sides of the partition. In other words, there is light 

leakage through the partition (Bullis [1989] and Campbell and Fussell [1990]). 

 

Figure 7.12 - Mismatched element boundaries allow light and shadow leakage 

Suppose the partition is a wall that divides two rooms. If only one of the rooms is illuminated, we will 

see in the rendered image that the wall apparently has a gap between it and the floor, with light spilling 

through to illuminate the darkened room. An interesting effect, but definitely not what was intended! 

Similarly, this light is lost from the illuminated room. The floor elements adjacent to the wall will appear 

darker than they should, so that we also have shadow leakage from the darkened room. 

The solution is to ensure that element boundaries are aligned not only with the shadow boundaries (as 

in discontinuity meshing), but also with the surface boundaries of other entity surfaces. Baum et al. [1991] 

performed this alignment automatically using algorithms presented in Segal [1990] and Segal and Séquin 

[1988]. 
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This is perhaps the most difficult and frustrating aspect of meshing, since one or more surfaces usually 

need to be remeshed whenever an object is moved in the environment. On the other hand, it should be 

recognized that remeshing is not necessary in each instance, nor will light and shadow leakage be 

significant in many cases. It is largely a matter of experience, subjective judgment and most importantly, 

trial and error. 

7.5 Adaptive Subdivision 

Most of the meshing considerations discussed above can be implemented manually as a set of rules to 

follow when designing an initial mesh. However, there are limits to how many patches and elements we 

can expect a user to generate. A better solution is to begin with a coarse mesh and let an automatic meshing 

algorithm iteratively refine it after each step in solving the radiosity equation. This allows the program to 

develop a mesh that concentrates elements at shadow boundaries and other regions where the exitance 

distribution changes rapidly. 

Again, we do not have the space to implement an automatic meshing algorithm within the context of 

HELIOS. However, it is instructive to review how we might implement one. 

There are several possibilities for mesh refinement (e.g., Cohen and Wallace [1993] and Ho-Le [1988]). 

We can, for example, reposition the element vertices to align them with the shadow boundaries (e.g., 

Águas et al. [1993]). This is useful to some extent, but it assumes that the mesh spacing is such that the 

number of elements is sufficient to represent the shadow details. It can also result in thin elements that are 

not well-shaped. 

A second possibility is to subdivide the elements. This adaptive subdivision allows us to generate new 

elements only where they are most needed. Following the heuristic rules presented above, we ideally want 

to: 

1. Minimize element aspect ratios. 

2. Minimize element vertex-to-vertex exitance differences. 

3. Avoid T-vertices. 

4. Ensure a smooth mesh grading. 
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When should an element be subdivided? One criterion to compare the element vertex exitances and 

subdivide only if they differ by more than some predetermined amount in any color band with respect to 

the range of reflected vertex exitances in the environment. There are more involved criteria that result in 

fewer elements being subdivided (e.g., Cohen and Wallace [1993]), but this criterion is usually sufficient. 

We also need some sort of stopping criterion. This is relatively easy: we stop when the subdivided 

element area becomes too small to be significant in a rendered image. Since each subdivision produces four 

child elements that each has approximately one-quarter of the parent element’s area (Fig. 7.11), the process 

will likely stop at third or fourth level. 

If we begin with a smooth mesh grading, subdividing elements according to Figure 7.11 will ensure 

that the mesh remains smoothly graded. It will also tend to minimize the subdivided element aspect ratios. 

Baum et al. [1991] suggested that the initial mesh should be balanced by ensuring that each element of a 

surface should be adjacent to no more than two other elements along any of its edges (Fig. 7.13a). 

 

Figure 7.13a - A balanced mesh Figure 7.13b - A balanced and anchored mesh 

Every subdivision will unavoidably generate new T-vertices. Baum et al. [1991] also suggested that 

neighboring elements should be anchored to these vertices. That is, the neighboring elements are further 

subdivided by connecting the T-vertex to another vertex in the same element (Fig. 7.13b). Assuming that 

only triangular and quadrilateral elements are allowed and ignoring symmetry, there are only six 

possibilities for anchoring (Fig. 7.14). This simplifies the development of an automatic meshing algorithm 

that supports balanced and anchored mesh elements. 

 

Figure 7.14 - Element anchor morphology 
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7.5.1 Winged Edged Data Structures 

So what is the mystique behind creating a meshing algorithm? It certainly looks simple enough: add a 

few new elements and vertices to the environment data structure and the problem is mostly solved. 

The real problem is in those minor implementation details. If we use one of the progressive refinement 

radiosity algorithms from Chapter Six, we need to know which elements share a vertex in order to 

interpolate its exitance. We also need to know this information before we can interpolate a vertex’s normal. 

This is the reason why each of our Vertex3 objects maintains a linked list of pointers to the Element3 

objects that share it. 

Now, suppose we want to subdivide a parent element to create four child elements. The first step is to 

insert new vertices midway between each pair of existing vertices (which define the element edges). This is 

easy enough, although we should check beforehand to see whether a T-vertex belonging to an adjacent 

element of the same surface is already at that position. If it is, then we must use it instead. 

This poses a question: which other elements of the surface share this edge of the parent element? If 

T-vertices are allowed, there could be any number of elements. We would have to check every edge of 

every other element in the Instance object to determine whether it is collinear with current edge and 

whether the new vertex intersects it. 

We have to repeat this process for every vertex we consider when subdividing an element. This 

includes existing T-vertices, since we have to update their element lists when we split the parent element at 

that point. The process clearly becomes unmanageable for even moderately complex environments. 

The proper solution to this situation is to redesign our environment data structures from Vertex3 

upwards as a winged edge data structure. These are described in detail in Baumgart [1974] and Baumgart 

[1975]. Further details are provided by Glassner [1991], Hanrahan [1982], Mäntlyä and Sulonen [1982], 

Weiler [1985] and Wilson [1985]. 

The advantage of the winged edge data structure is that it provides a wealth of geometric connectivity 

information concerning the vertices, edges and polygonal faces of a 3-D solid object. The above question 

becomes trivial, since the winged edge data structure directly encodes information about which elements 

share an edge. 
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The disadvantage is that the winged edge data structure can be difficult to implement properly. For 

example, an implementation described in part by Glassner [1991] requires nineteen algorithmic steps to 

insert a new edge between two existing vertices. Glassner punctuates his description of the data structure 

with such disclaimers as “you have to make sure you do things in just the right order, or disaster will 

ensue” and “I have provided only some signposts around what I found to be the most twisting parts of the 

road.” Comments like these indicate that designing a robust and efficient winged edge data representation 

is not without its own perils. 

Winged edge data structures have been used in many radiosity rendering programs (e.g., Cohen et al. 

[1986), Baum et al. [1991] and Lischinski et al. [1992]), and with good reason. They offer an elegant 

means of accessing the geometrical information needed by both adaptive subdivision and discontinuity 

meshing algorithms. It is unfortunate that their complexity precluded their description in this book. 

7.5.2 Patches and Form Factors 

We have so far discussed the adaptive subdivision of element meshes. Cohen et al. [1986] noted that 

there are two occasions where patches may need to be subdivided as well. For example, subdivision is 

required when the differences between patch vertex exitances in any color band exceed some 

predetermined limit, similar to the criterion we used for subdividing elements. 

The second occasion is less obvious. Recalling the progressive refinement radiosity algorithm presented 

in Figure 6.4, we calculate the form factor  from a patch  to all other elements  in the 

environment. This can be done using either the hemi-cube or cubic tetrahedral algorithms from Chapter 

Five. However, we then calculate the delta exitance 

ijF iE jE

M∆ to be sent to each of these elements as: 

unsent
ijij

j

iunsent
iijj MF

A
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since the reciprocity relation (Section 2.5) states that jijiji FAFA = . 

The problem is that we obtain an approximate value of  by modeling  as a differential element 

located at the center of the patch. If the area of  is much larger than that of , the calculated value of 

ijF iE

EiE j
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the reciprocal form factor  can clearly exceed unity at some point. This is a serious error, since it 

implies that the element  will receive more exitance than the patch  has sent into the environment! 

jiF

jE iE

jiF

There are several possible solutions. First, we can ensure that the range of element sizes does not 

become excessive. The minimum value of  is that of the smallest delta form factor for the hemi-cube or 

cubic tetrahedron. By limiting the ratio 

ijF

jAiA , we can guarantee that  will never exceed unity. 

Subdividing the patch is a second possibility that has the same effect. Its advantage is that the process 

becomes transparent to the user. On the other hand, it will require a number of modifications to both the 

element meshing and form factor determination algorithms. 

The third possibility was suggested by Chen [1991], and was used in our implementation of the 

progressive refinement radiosity algorithm (Listing 6.3). The reciprocal form factor is simply (and silently) 

clipped to unity. 

7.6 Conclusions 

This chapter has outlined the issues involved in developing suitable meshes for the radiosity equation. 

While we did not have the space to develop an adaptive subdivision algorithm, we now have a much better 

understanding of the cause-and-effect relationship between an element mesh and the rendered images. The 

meshing strategies developed in this chapter should help in improving the images that HELIOS creates. 

There is a deep and fundamental relationship between the radiosity approach and finite element 

methods. These are extremely important tools for scientists and engineers in a number of fields ranging 

from fluid mechanics and structural engineering to cosmology. The radiosity approach models the field of 

light in an environment. Finite element methods have been used to model everything from stresses in steel 

and concrete structures to the magnetic fields of galaxies. The literature on this topic is vast and 

multidisciplinary. Nevertheless, many of the techniques developed for finite element analysis can be 

applied to the automatic generation and modification of element meshes for radiosity. Recommended 

reading includes Baehann et al. [1987], Bank et al. [1983], Chew [1989], Frey [1987], Heckbert and 

Winget [1991], Hugues [1987], Lalonde [1993], Schuierer [1989] and Watson [1984]. 

There are numerous challenges here for the ambitious reader. First, HELIOS would benefit from a 

utility that automatically preprocesses CAD files. This could be modeled after the filter programs described 
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in Baum et al. [1991]. Full technical details for the AutoCAD DXF file format are presented in Autodesk 

[1992a-c]. 

A more challenging project is to redesign the environment data structure presented in Chapter Three to 

incorporate the winged edge data structure. Unfortunately, the few complete sources of information on this 

topic (e.g., Baumgart [1974] and Baumgart [1975]) may be difficult to obtain unless you have access to a 

large university library or an interlibrary loan service. 

With this in place, you could implement one or more adaptive subdivision or discontinuity meshing 

algorithms (e.g., Lischinski et al. [1992]). With these, HELIOS would be well on its way to becoming a 

professional-quality radiosity rendering tool. 

Meshing is a difficult problem for which there are no easy solutions. While it is somewhat incidental to 

the radiosity equation, a well-shaped mesh is essential to obtaining an accurate approximation to the true 

radiosity solution, and from it truly photorealistic images. The best we can do for now is to develop our 

initial meshes, modify them through trial and error, and in general practice what Heckbert [1991] aptly 

called the “black art” of finite element meshing. 
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Chapter 8 
Looking to the Future 

8.0 Introduction 

For all the effort we have put into developing HELIOS, it is only the beginning. The full scope of 

radiosity extends well beyond the limits of this book. We do not have the space to implement or even 

discuss many important topics and techniques, including: 

• modeling complex area and volumetric light sources (Ashdown [1993a, b], Bao and Peng [1993] and 

Languénou and Tellier [1992]). 

• semispecular and specular reflections (Chen et al. [1991], Hall and Rushmeier [1993], Immel et al. 

[1986], Jessel et al. [1991], Kok et al. [1990], Le Saec and Schlick [1990], Rushmeier and Torrance 

[1990], Sillion and Puech [1989], Sillion et al. [1991] and Wallace et al. [1987]). 

• bump mapping (Chen and Wu [1990] and Chen and Wu [1991]). 

• participating media (Rushmeier [1988] and Rushmeier and Torrance [1987]). 

• parallel processor implementations (Airey et al. [1990], Baum and Winget [1990], Bu and Deprettere 

[1987a, b], Chalmers and Paddon [1991], Chen [1991], Feda and Purgathofer [1991], Guitton et al. 

[1991], Hermitage et al. [1990], Jessel et al. [1991], Ng and Slater [1993], Price [1989], Shen et al. 

[1992] and Purgathofer and Zeller [1990]). 

• higher order radiosity basis functions (Bian et al. [1992], Cohen and Wallace [1993], Gortler et al. 

[1993], Lischinski et al. [1991], Schröder et al. [1993], Tampieri and Lischinski [1991], Troutman and 

Max [1993] and Zatz [1993]). 

• other radiosity approaches and related global illumination algorithms (Aupperle and Hanrahan [1993], 

Baranoski [1992], DiLaura and Franck [1993], Dretakkis and Fiume [1991], Greiner et al. [1993], 

Heckbert [1990], Kawai et al. [1993], Kok [1992], Kok et al. [1993], Liere [1991], Lischinksi et al. 

[1991], Neumann and Keleman [1991], Neumann and Neumann [1989], Neumann and Neumann 
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[1990], Rushmeier et al. [1993], Salesin et al. [1992], Shao et al. [1988a, b], Tampieri and Lischinksi 

[1991], Wang et al. [1992, Xu et al. [1989] and Zhou and Peng [1992]). 

Some of these are interesting from a theoretical perspective, but too demanding in terms of execution 

time and memory requirements to be of practical use. Others are practical and useful, and may have 

important roles to play in future radiosity developments. 

Fortunately, we do have the space to discuss, however briefly, some possible extensions to HELIOS 

that you might consider. They vary from simple modifications to major programming projects. 

8.1 Ray Tracing Techniques 

One of the disadvantages of HELIOS and the radiosity algorithms discussed in this book is that they 

can only model opaque and diffuse surfaces. Moreover, these surfaces are intrinsically featureless within 

each surface. The only details we see are in their shading, due to the field of light in the environment. 

This is in sharp contrast to the ray tracing paradigm, which can model specular and semispecular 

reflections and transparent or semitransparent objects with relative ease. Texture mapping and Phong 

illumination techniques–to name a few–offer the possibility of richly detailed images that radiosity 

methods by themselves can never equal. 

8.1.1 Texture Mapping 

There is no reason, however, why we cannot borrow these techniques for our radiosity-based images. 

Texture mapping is an excellent example. Suppose that we want to model an office environment as seen 

from above a wooden desk. Using ray tracing, we would map an image of wood grain to the surface of the 

desk. The details of this technique can be found in any book on advanced ray tracing algorithms such as 

Wilt [1993]. (See also Cohen et al. [1986], who discuss it in relation to radiosity-based rendering, and 

Heckbert [1986], for a comprehensive survey.) 

Using radiosity methods, we can model the surface by computing its average spectral reflectance . 

That is, we average the spectral reflectance of each pixel in the texture map image (for each color band) 

and use this to represent the desktop as an otherwise featureless surface. Clearly, the details of the wood 

grain will have a mostly insignificant effect on the global radiosity solution. 

avgρ
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Once we have solved the radiosity equation for the room and rendered (but not displayed) a preliminary 

bitmapped image, we can perform a pixel-by-pixel texture mapping of the wood grain to the desk in the 

image. This requires two operations. First, we need to warp and scale the rectangular wood grain image to 

the 3-D view of the desktop (e.g., Foley et al. [1990]). This can become somewhat involved, especially 

where there are intervening objects between the surface and the synthetic camera position. Fortunately, we 

have already implemented most of the necessary algorithms in our viewing system. 

Second, we need to incorporate the shading details we obtained from our radiosity solution. This is the 

easy part. Given the Gouraud-interpolated radiant exitance for each color band and visible pixel of the 

surface, its texture-mapped exitance is simply: 

avg

xy
xyxy MM
ρ
ρ

=ˆ  (8.1) 

where Mxy  is the Gouraud-interpolated spectral exitance for a pixel with screen co-ordinates x and y, xyρ  

is the interpolated surface reflectance as determined from the texture map, and  is the pixel’s texture-

mapped spectral exitance. 

xyM̂

There is one caveat to this procedure: we cannot always assume that the effect of a texture-mapped 

surface on the environment can be accurately approximated with a featureless surface having its average 

spectral reflectance. A surface with large and prominent changes in texture (a black-and-white tiled floor, 

for example) may locally affect the environment by reflecting patterns of light onto adjacent surfaces (such 

as a wall). In cases like these, we may have to consider each textured area as a separate surface and model 

its average reflectance accordingly. 

Incorporating texture mapping in HELIOS is not exactly a “simple modification." Balanced against this, 

however, is the marked increase in realism that the technique offers. If you do decide to attempt this 

extension, the rewards should more than repay the effort. 

8.1.2 Phong Illumination Model 

One characterization of Gouraud shading is that the surfaces it renders appear uniformly lifeless. This is 

due to the lack of specular highlights that we subconsciously expect to see in photorealistic images. 
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In ray tracing, one popular solution to this problem is the Phong illumination model (Phong [1975]). If 

we consider the reflection of a ray of light from various surfaces (Fig. 8.1), we realize that a semi-specular 

surface reflects some but not all of the light in a given direction. The more specular the surface, the more 

light there will be reflected in the general direction of the specularly reflected ray. 

Specular Semi-specular Diffuse  

Figure 8.1 - Reflection from specular, semi-specular and diffuse surfaces 

Referring to Figure 8.2, Phong illumination models semi-specular reflections as: 

( f
rvisv LL uu ⋅= ρ )  (8.2) 

where  is the luminance of a ray i emitted by a white light point source,  is the luminance of the ray v 

seen by the viewer, 

iL vL

sρ  is the specular reflectance of the surface (which can differ from the surface 

reflectance), u  is a normalized vector pointing in the direction of the viewer, u  is a normalized vector 

pointing in the direction of the reflected ray r, and f is a constant that determines the degree of specularity 

and which typically ranges from 1 (diffuse) to 200 or so (highly specular). 

v r

If  the specular reflectance is equal for all three color bands, the resultant reflection will have the same 

spectral distribution as the light source. This will give the surface a plastic-looking finish. Alternatively, 

the specular reflectance can be made the same as the surface reflctance. The surface will then appear to 

have a metallic finish. 
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Figure 8.2 - Phong illumination model parameters 
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The Phong illumination model can be combined with our ray casting radiosity algorithm as follows: 

solving the radiosity equation gives us the diffuse exitance component for each vertex in the environment. 

Using the existing code in our RayCast class, we can determine the visibility of each light source as seen 

from each vertex. By modelling each source element as a point source located at the element’s center, we 

can solve Equation 8.2 for any given viewpoint within the environment. This solves for the specular 

exitance component at each vertex. Combining the diffuse and specular components for each vertex, we 

can then use our Z-buffer and Gouraud shading algorithms as before to render an image. 

As an alternative, and assuming that we have sufficient memory, we can store a linked list of light 

source visibilities for each vertex when we perform our vertex-to-source form factor calculations. We 

normally do not need much precision for the visibility value, so that one byte or even one bit could be used 

for each source. 

It is important to note that the Phong illumination model does not consider semi-specular reflections 

within the environment. This means that the resultant image will be somewhat ad hoc in that the radiosity 

solution does not take these reflections into account. On the other hand, the amount of radiant flux 

represented by the specular highlights is minuscule compared to the total amount of flux in the 

environment, and so it has little if any effect on the radiosity solution. Indeed, the only reason for 

incorporating Phong illumination is to provide the specular and semi-specular highlights that add to the 

realism of the final image. 

Some high-end workstations support both texture mapping and Phong illumination in hardware (see 

Cohen and Wallace [1993] for implementation details). For the rest of us, we must replicate these features 

in software. While it may be a non-trivial programming project, the increased realism of the rendered 

images should more than repay the effort. 

8.2 Radiosity In Motion 

Given the ease and speed with which simple radiosity environments can be rendered, you might 

consider something more challenging. Creating a full-color image with subtle color bleeding effects and 

realistic soft shadows is impressive enough. However, think of the possibilities in creating a “walkthrough” 

that can be displayed in full motion on a multimedia computer. 
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Modifying HELIOS to generate a sequence of images according to a script file of camera positions and 

orientations is trivial. Once the radiosity equation has been solved for a given environment, you can 

repeatedly call the various SynCamera member functions to update the camera viewpoint and shoot 

images. 

From here, it is mostly an issue of recording the images in some suitable form. Given the appropriate 

software and hardware, they can be written to a motion-compressed digital video file or sent frame by 

frame to a video recorder. Depending on the supporting software provided by the hardware manufacturers, 

this can be an evening-long programming project or a major software development effort. 

Of course, this assumes that the radiosity equation needs to be solved only once for a static 

environment. The true challenge comes when the environment is dynamic. 

8.2.1 Changes In Lighting 

Suppose we want to change the lighting as our camera moves through the environment. The form factor 

matrix remains unchanged, but this is little consolation where progressive refinement radiosity is 

concerned. In general, we have to solve the radiosity equation, form factors and all, whenever the initial 

exitance of a light source is changed. 

There are some shortcuts we can consider, however. To begin with, an environment with a single light 

source will require no recalculation at all–we only need to dim or brighten the entire environment 

accordingly when its initial exitance is changed. Of course, this will require a minor change to 

ToneRep::Normalize to ensure that the bitmap pixel luminances are properly calculated. 

A complex environment will likely have more than one light source. Changing the initial exitance of 

one source will require us to find a new solution to the radiosity equation. However, we already have a 

good approximation with the current solution. We can model the change in initial exitance as an additional 

quantity of unsent exitance. This requires a minor change to RadEqnSolve::InitExitance to prevent it from 

resetting the final vertex exitances. ProgRad::Calculate or RayCast::Calculate will then simply calculate 

the changes in exitance and add them to the current solution. In most situations, the radiosity algorithm will 

converge to a solution much more quickly, since the stopping criterion is still based on the total quantity of 

flux in the environment. 
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Of course, if the light source is dimmed, this implies a negative quantity of unsent exitance (Chen 

[1990]). Several minor changes to the radiosity equation solver functions will be needed to accommodate 

this physically impossible but eminently useful possibility. 

If there are many lighting changes to be modeled–theater lighting, for example–it may be useful to 

calculate separate solutions for each individual group of light sources (Airey et al. [1990]). These solutions 

are independent of one another. You can scale and sum them to represent any possible combination of light 

sources and their initial exitances. Dorsey et al. [1991] and Dorsey [1993] describe a similar approach, 

except that images are prerendered for a fixed camera position and each group of light sources. Lighting 

changes can then be represented at interactive rates by simply blending the rendered images. 

8.2.2 Changes In Surface Reflectance 

A second challenge comes when the surface reflectances are changed. One typical example is in 

architectural design, where the viewer may want to compare the visual appearance of different wall or floor 

finishes. Again, the form factor matrix remains unchanged. However, the solution may change drastically 

if the surface area is large and its spectral reflectance in one or more color bands is changed by any 

significant amount. 

Once again, we have to solve the radiosity equation whenever a surface reflectance is changed. Chen 

[1990] noted that the current solution often provides a good starting point, particularly when the number of 

surfaces that have changed are small in number. From Equation 2.21, we know that the exitance of an 

element is given by: 
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If we define  as the new initial exitance and oiM ′ iρ′  as the new reflectance of the element, then the 

incremental change in final exitance is given by: 
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where the current surface reflectance iρ  is assumed to be greater than zero. We can add this value (which 

may be negative) to the current calculated element exitance  and also the unsent exitance of the parent 

patch. From this, we can shoot the exitance until the radiosity algorithm converges to a new solution. 

iM

This technique becomes less helpful as the number of surfaces with changed reflectances or initial 

exitances increases. Another, more general approach to this problem–eigenvector radiosity–is described by 

DiLaura and Franck [1993]. It has the distinct advantage that its solution to the radiosity equation is 

independent of the surface reflectances. In other words, the radiosity equation for a given environment only 

has to be solved once. The effects of changing the surface reflectances or initial patch exitances can be 

trivially solved thereafter. Unfortunately, it is a full radiosity method in that the entire form factor matrix 

must be precalculated and stored in memory while the radiosity equation is being solved. 

8.2.3 Changes In Environment Geometry 

Changes to the geometry of the environment, even something as simple as moving one small object, 

can have global effects on the radiosity solution. It can be difficult to predict these effects, especially when 

the objects are close to a light source. Moving an object or modifying its geometry changes the form factor 

matrix, and so a new solution to the radiosity equation is required. 

As before, there are advantages in beginning with the current solution. If the changes to the radiosity 

equation are small, convergence to a new solution will proceed rapidly. 

There are other possibilities. Baum et al. [1986] present an algorithm for situations where the changes 

to the geometry are known in advance and can be precomputed. More general approaches are taken by 

Chen [1990] and George et al. [1990], who discuss several techniques for isolating those portions of the 

environment whose form factors are affected by moving, modifying, adding or deleting objects. Positive or 

negative exitance is then shot as required to account for these changes. The discussions include practical 

implementation details and pseudocode for algorithms that are unfortunately beyond the scope of this 

book. If you need to account for geometric changes in the environment, however, these two references are 

definitely worth investigating. 

8.3 Monte Carlo Radiosity 
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Most radiosity-based rendering programs use either progressive refinement or ray casting to solve the 

radiosity equation. While these are certainly the two most popular algorithms, there are others. They range 

from simple probabilistic ray tracing techniques to bleeding-edge research in higher mathematics. 

Monte Carlo radiosity takes a brute force approach to radiosity rendering. Like progressive refinement 

radiosity, it begins by dividing surfaces into arrays of elements. It then shoots rays of light in random 

directions from the light sources. Each ray is followed until it intersects a surface, at which point it is 

multiplied by the surface reflectance and reshot. Again, a set of random rays is used. This is continued until 

most of the radiant flux has been absorbed. 

Monte Carlo radiosity is essentially a variant of progressive refinement radiosity, where the form 

factors are implicitly calculated using ray casting. In pseudocode, the algorithm becomes (adapted from 

Shirley [1991a]): 

FOR each element i 
   oi

unsent
ii Φ=∆Φ=Φ

ENDFOR 

WHILE  ε>∆Φ∑
=

n

i

unsent
i

1

  Select element i with greatest unsent flux  unsent
i∆Φ

  Send ∆Φ to other elements unsent
i

   0=∆Φunsent
i

ENDWHILE 
FOR each element i 
  iii AM Φ=  
ENDFOR 

Figure 8.3 - Monte Carlo radiosity algorithm 

Recalling that , this can be seen to be identical in outline to our progressive refinement 

radiosity algorithm pseudocode in Figure 6.4. The only difference is the line “Send to other 

elements." Monte Carlo radiosity does this by dividing the flux into a number r of equal “packets” and 

shooting each as a ray in a random direction from the element into the environment. The origin of the ray is 

chosen at random across the sending element’s surface. 

iii AM=Φ

unsent
i∆Φ
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The number r depends on the quantity of unsent flux. By ensuring that each ray has an approximately 

constant amount of flux, r will depend on the value of . This results in each ray having an 

approximately equal effect on the environment. 

unsent
i∆Φ

The random direction of the ray is weighted by the flux distribution or reflectance characteristics of the 

source or reflecting surface. A Lambertian surface, for example, reflects flux in a cosine distribution (i.e., 

Lambert’s Cosine Law, Eqn. 1.9). Thus, the probability of a ray being shot at a vertical angle θ from the 

surface normal is proportional to ( )θcos . 

In pseudocode then, “Send to other elements” becomes: unsent
i∆Φ

FOR each ray 
  Choose a random origin 
  Choose a weighted random direction 
  Shoot ray in random direction 
  Find nearest intersecting element j 
  runsent

ij∆Φ=∆Φ ρ  

   ∆Φ+Φ=Φ jj

   ∆Φ+Φ=Φ unsent
j

unsent
j

ENDFOR 

Figure 8.3 - Sending flux between two elements 

Further implementation details are presented in Shirley [1991a]. Also, Ashdown [1992] presented an 

implementation of the above pseudocode (written in C) as part of an overview of radiosity methods. 

Monte Carlo radiosity offers several important advantages in comparison to progressive refinement and 

ray casting radiosity. First, there is no need to calculate form factors. This is done implicitly when the rays 

are shot into the environment. 

Second, the Monte Carlo radiosity algorithm is not limited to modeling Lambertian light sources and 

surfaces. The random ray direction weighting approximates the flux distribution or reflectance 

characteristics of the light source or surface. This allows us to easily model semispecular surfaces and non-

Lambertian light sources. There are a variety of illumination models (e.g., Foley et al. [1990]) that can be 

directly represented within the context of the Monte Carlo radiosity algorithm. Even transparent and fully 

specular surfaces such as glass and mirrors can be accommodated. 
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Given these advantages, why do we even bother with other radiosity methods? The answer is that it can 

take a very large number of rays to accurately model the lighting of a complex environment. We are trading 

the simplicity of ray tracing for long (and sometimes very long) execution times. 

Feda and Purgathofer [1993] present an adaptation that adds an outer loop to the pseudocode shown in 

Figure 8.3. More rays are shot at each iteration, thereby incrementally increasing the overall accuracy of 

the solution while generating increasingly accurate intermediate images as the algorithm progresses. This 

makes Monte Carlo radiosity somewhat more competitive with progressive refinement and ray casting 

radiosity in terms of user interaction. 

Further information and discussions of Monte Carlo radiosity can be found in Kajiyama and Kodaira 

[1989], Pattanaik and Mudur [1992], Rushmeier [1986], Shirley [1990a-c], Shirley [1991b], Shirley et al. 

[1991], Shirley and Wang [1991], Stanger [1984], Tregenza [1983] and Ward et al. [1988]. 

Finally, no discussion of Monte Carlo radiosity is complete without mentioning Radiance, a superlative 

ray tracing program that incorporates a wide variety of shading and illumination models aimed at 

producing photorealistic images of physically-based phenomena. It also features the view-dependent 

Monte Carlo radiosity algorithm presented in Ward et al. [1988]. 

Radiance was developed by Greg Ward of Lawrence Berkeley Laboratory under the sponsorship of the 

U.S. Department of Energy. Originally written for UNIX-based platforms, it has since been ported to the 

80x86 and Amiga environments. It is production-quality software with features that rival those of the best 

commercial products.  

The source code to Radiance is freely distributed, and is currently available on the Internet via 

anonymous ftp from hobbes.lbl.gov. 

8.4 Other Radiosity Algorithms 

There are several other important but mathematically complex algorithms for solving the radiosity 

equation. They are at the forefront of radiosity research and well beyond the scope of this text. 

Nevertheless, a few brief comments are in order regarding their advantages and significance. 

Hierarchical radiosity extends the concept of patches and elements to its logical limit. Recall from 

Section 5.10 that patches were divided into elements in order to limit the number of element-to-element 
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form factors that must be calculated while solving the radiosity equation. As long as the Five Times Rule 

(Section 5.5) is satisfied, we can group elements and calculate the form factor from an element to each 

group. Each patch constitutes a group of elements. 

Suppose, however, that elements are grouped such that each element sees a minimum number of groups 

where the Five Times Rule is still satisfied for each group. The two-level hierarchy of patches and 

elements is extended to whatever depth is needed to link individual elements to appropriate groups of other 

elements in the environment. 

At first, this suggests the need for a truly gargantuan data structure of linked lists, possibly one for each 

element. It also implies that every form factor has to be precomputed in order to group the elements seen 

by each element. 

Hanrahan and Salzman [1990a, b] and Hanrahan et al. [1991] demonstrated that this is not the case. 

(See also Cohen and Wallace [1993] for a more accessible discussion and detailed pseudocode.) An 

“oracle” function can be used to quickly estimate form factors and indicate which elements should be 

grouped together. Furthermore, surfaces are adaptively subdivided into a hierarchy of elements, thereby 

minimizing the number of elements needed to represent an environment. (Each element is subdivided into 

at most four child elements.) In a test environment consisting of 98 polygons, their hierarchical radiosity 

algorithm (Hanrahan et al. [1991]) created 4,280 elements arranged in a quadtree with 5,674 nodes, and 

computed 11,800 element-to-element interactions. By comparison, a naive radiosity algorithm would have 

required as many as 175,000 elements and computed some 15 billion interactions. 

There is a deeper mathematical basis to hierarchical radiosity than that of simply minimizing the 

number of element-to-element form factor calculations. It can be described in terms of hierarchical “basis 

functions” (e.g., Cohen and Wallace [1993]) that have interesting parallels with the mathematics of the Fast 

Fourier Transform and various lossy image compression algorithms (such as the Discrete Cosine and Haar 

transforms). This has led to the development of wavelet radiosity (Gortler et al. [1993b] and Galerkin 

radiosity (Zatz [1993]). These in turn are related to the independently derived eigenvector radiosity 

algorithm (DiLaura and Franck [1993]). This iterative algorithm has been recently superceded by a very 

efficient direct algorithm (DiLaura [1994]) and a novel technique that precalculates much of the radiosity 

equation solution for dynamic environments where changes in the environment geometry are likely. 
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Finally, there is importance-based radiosity (Smits et al. [1992]), which borrows its inspiration from the 

nuclear physicist’s neutron transport theory. This radiosity method differs from those previously described 

in that it generates view-dependent solutions. While this may limit its usefulness in some applications, it 

offers an important advantage when extremely complex environments must be rendered. Importance-based 

radiosity identifies those components of a scene that will significantly affect the radiosity solution for a 

given viewpoint. This brings the number of elements that must be considered in form factor calculations 

down to manageable levels. 

These advanced radiosity algorithms have only been introduced within the past two years, and are for 

the most part ongoing research projects. Given time, they may lead to practical and useful radiosity 

rendering techniques that outperform any algorithms currently in use. 

8.5 Conclusions 

Shenchang Eric Chen (Chen [1991]) was right: implementing a radiosity program is indeed “an 

enormous task.” It has taken us more than 500 pages and over 7,000 lines of C++ source code to develop 

HELIOS. Even so, there are numerous finishing touches–in particular, anti-aliasing, integer-based polygon 

fill, ray casting acceleration techniques, winged-edge data structures and adaptive subdivision–that had to 

be left as those infamous “exercises for the reader.” 

Despite these shortcomings, we can be proud of HELIOS. It opens the door to new opportunities in 

computer graphics. It was not designed to be a “user friendly” (whatever that means) program for the 

madding crowd. Rather, it is a software development platform, a testbed for your ideas and experiments 

with radiosity. 

The radiosity approach has been the domain of a small coterie of academic researchers for the past ten 

years. We must thank these people for their interest in what was at first a mathematical curiosity, and their 

dedication to transforming it into a powerful computer graphics tool. We must also encourage them to 

continue their studies, for there are undoubtedly other fascinating and useful radiosity techniques still 

waiting to be discovered. 

For us, however, the excitement is here and now. This book has given you a lengthy and practical 

introduction to the radiosity approach. If you want to learn more, begin with Cohen and Wallace [1993]–
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there is no better introduction to the intricacies of advanced radiosity methods. Beyond this, there are many 

excellent academic papers that cover all aspects of radiosity. The Bibliography lists most (but certainly not 

all) of those that have been published to date. While some of them may be difficult to obtain, they all have 

something to offer. 

More to the point, however, we have HELIOS. This program–and this book–were written to bring 

radiosity into the wider world of computer science students and those who love to program. Remember: 

radiosity is easy to understand and fascinating to experiment with. Try HELIOS and see for yourself. 

8.6 Postscript 

At the risk of communication overload, the author extends an invitation to readers interested in sending 

e-mail messages regarding the contents of this book. Bug reports, comments, and questions are welcomed. 

(Please recognize, however, that questions regarding porting the code to different environments and 

compiler-related problems are often difficult to answer.) 

The author’s current e-mail address is: ian_ashdown@helios32.com 
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Appendix A 
Photometric and Radiometric 
Definitions 
A.0 Introduction 

The photometric and radiometric definitions presented in Chapter One are those commonly used in 

illumination engineering, and are in accordance with the American National Standards Institute publication 

“Nomenclature and Definitions for Illuminating Engineering” (ANSI/IES [1986]). This booklet is a 

veritable encyclopedia of photometric and radiometric terminology. However, interested readers are 

forewarned: it is anything but light bedside reading! 

As noted in Chapter One, the photometric and radiometric terminology presently used by the computer 

graphics community differs somewhat from that promoted by ANSI/IES [1986]. The concepts are the 

same; the differences are in name only. Hopefully this situation will change in the future–ANSI/IES [1986] 

offers a consistent and useful set of definitions for both the computer graphics and illumination engineering 

communities. 

The following definitions have been excerpted (with some minor editing) from ANSI/IES [1986] with 

the kind permission of the Illuminating Engineering Society of North America. 

A.1 ANSI/IES Definitions 

2. Electromagnetic Radiation 
2.1 Radiant energy, Q. Energy traveling in the form of electromagnetic waves. It is measured in units of 
energy such as joules or kilowatt-hours. 

2.1.1 Spectral radiant energy, Qλ = dQ/dλ. Radiant energy per unit wavelength interval; e.g., joules per 
nanometer. Qλ(λ) = dQ/dλ at wavelength λ. 

2.4 Radiant flux (radiant power), Φ = dQ/dt. The time rate of flow of radiant energy. It is expressed 
preferably in watts. 

2.4.1 Spectral radiant flux, Φλ = dΦ/dλ. Radiant flux per unit wavelength interval at wavelength λ; 
e.g., watts per nanometer. 

2.5 Radiant flux areal density, dΦ/dA, (at a point on a surface). The quotient of the radiant flux incident 
on or emitted by an element of surface area at the point, by the area of the element. Radiant flux density 
emitted from a surface has been called emittance (a deprecated term). The preferred term for radiant flux 
density leaving a surface is exitance, (M). Radiant flux density incident on a surface is irradiance, (E). 
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2.5.1 Spectral radiant exitance, Mλ, and irradiance Eλ. Spectral concentration of radiant exitance, Mλ 
= dM/dλ, and spectral concentration of irradiance, Eλ = dE/dλ. 

2.6 Radiant intensity, I = dΦ/dω (in a given direction). The radiant flux proceeding from a source per 
unit solid angle in the given direction; e.g., watts per steradian. 

Note: Mathematically, a solid angle must have a point at its apex; the definition of radiant intensity, 
therefore, applies strictly only to a point source. In practice, however, radiant energy emanating from a 
source whose dimensions are negligible in comparison with the distance from which it is observed may 
be considered as coming from a point. Specifically, this implies that with change of distance (1) the 
variation in solid angle subtended by the source at the receiving point approaches 1/(distance)2; and that 
(2) the average radiance of the projected source area as seen from the receiving point does not vary 
appreciably. 
2.6.1 Spectral radiant intensity, Iλ = dI/dλ. Radiant intensity per unit wavelength interval; e.g., watts 

per (steradian-nanometer). 

2.7 Radiance, L = d2Φ/[dω(dA · cos θ)] = dI/(dA · cos θ) (in a given direction at a point on the surface 
of a source, of a receiver, or of any other real or virtual surface). The quotient of the radiant flux 
leaving, passing through, or arriving at an element of the surface surrounding the point, and propagated in 
directions defined by an elementary cone containing the given direction, by the product of the solid angle 
of the cone and the area of the orthogonal projection of the element of the surface on a plane perpendicular 
to the given direction. 

Note: In the defining equation θ is the angle between the normal to the element of the surface and the 
given direction. 
2.7.1 Spectral radiance, Lλ. Spectral concentration of radiance: 

Lλ = d3Φ/[dω(dA · cos θ)dλ]. 

2.10 Radiant sterisent, L*(x), (at a point along a ray path). Rate of increase in radiance, per unit path 
length, at the point and in the direction of the ray, due to “generated” (emitted or scattered) radiance, or the 
“generated” radiant intensity per unit volume, at the point and in the direction of the ray, by which a 
distributed source can be characterized. L* = dLg/dx = dIg/dV, where dx is an element of distance along the 
ray path, dV is an element of volume at the point, and the subscript g denotes a “generated” quantity. 

2.10.1 Spectral radiant sterisent, L*λ. Spectral concentration of sterisent, L*λ = dL*/dλ. 

3. Light 
3.1 Light. Radiant energy that is capable of exciting the retina and producing a visual sensation. The 
visible portion of the electromagnetic spectrum extends from about 380 to 770 nanometers. 

3.2 Luminous flux Φ. Radiant flux (radiant power); the time rate of flow of radiant energy, evaluated in 
terms of a standardized visual response. 

Φν = Km ∫ΦeλV(λ)dλ 
where 

Φν = lumens 
Φeλ = watts per nanometer 
λ = nanometers 
V(λ) = spectral luminous efficiency 
Km  = maximum spectral luminous efficacy in lumens/watt (lm/W) 

Unless otherwise indicated, the luminous flux is defined for photopic vision. For scotopic vision, the 
corresponding spectral luminous efficiency V’(λ) and the corresponding maximum spectral luminous 
efficacy K’m are substituted in the above equation. Km and K’m are derived from the basic SI definition of 
luminous intensity and have the values 683 lm/W and 1754 lm/W respectively. 

3.2.1 Lumen, lm. SI unit of luminous flux. Radiometrically, it is determined from the radiant power. 
Photometrically, it is the luminous flux emitted within a unit solid angle (one steradian) by a point source 
having a uniform luminous intensity of one candela. 
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3.3 Luminous flux density at a surface, dΦ/dA. The luminous flux per unit area at a point on a surface. 
Note: This need not be a physical surface; it may also be a mathematical plane. 
3.3.1 Illuminance, E = dΦ/dA. The areal density of the luminous flux incident at a point on a surface. 

3.3.1.1 Illumination. An alternative, but deprecated, term for illuminance. 
3.3.1.2 Lux, lx. The SI unit of illuminance. One lux is one lumen per square meter (lm/m2). 
3.3.1.3 Footcandle, fc. A unit of illuminance. One footcandle is one lumen per square foot (lm/ft2). 
3.3.2 Luminous exitance, M = dΦ/dA. The areal density of luminous flux leaving a surface at a point. 

Formerly, luminous emittance (deprecated). 

3.4 Luminous intensity, I = dΦ/dω (of a point source of light in a given direction). The luminous flux 
per unit solid angle in the direction in question. Hence, it is the luminous flux on a small surface centered 
on and normal to that direction divided by the solid angle (in steradians) which the surface subtends at the 
source. Luminous intensity may be expressed in candelas or in lumens per steradian (lm/sr). 

Note: Mathematically, a solid angle must have a point at its apex; the definition of luminous intensity, 
therefore, applies strictly only to a point source. In practice, however, light emanating from a source 
whose dimensions are negligible in comparison with the distance from which it is observed may be 
considered as coming from a point. Specifically, this implies that with change of distance (1) the 
variation in solid angle subtended by the source at the receiving point approaches 1/(distance)2; and that 
(2) the average luminance of the projected source area as seen from the receiving point does not vary 
appreciably. 

The word intensity as defined above is used to designate luminous intensity (or candlepower). It is also 
widely used in other ways ... Intensity has been used to designate the level of illuminance on a surface or 
the flux density in the cross section of a beam of light. In physical optics, intensity usually refers to the 
square of the wave amplitude. 
3.4.1 Candela, cd. The SI unit of luminous intensity. One candela is one lumen per steradian (lm/sr). 

Formerly, candle. 
Note: The fundamental luminous intensity definition in the SI is the candela. The candela is the luminous 
intensity, in a given direction of a source that emits monochromatic radiation of frequency 540 · 1012 
Hertz that has a radiant intensity inn that direction of 1/683 watt per steradian. 
3.4.2 Candlepower, cp. Luminous intensity expressed in candelas. 

3.5 Luminance, L = d2Φ/(dωdA · cos θ) (in a direction and at a point on a real or imaginary surface). 
See Fig. A.1. The quotient of the luminous flux at an element of the surface surrounding the point, and 
propagated in directions defined by an elementary cone containing the given direction, by the product of 
the solid angle of the cone and the area of orthogonal projection of the element of the surface on a plane 
perpendicular to the given direction. The luminous flux may be leaving, passing through, and/or arriving at 
the surface. Formerly, photometric brightness. 

By introducing the concept of luminous intensity, luminance may be expressed as L = dI/(dA · cos θ). 
Here, luminance at a point on a surface in a given direction is interpreted as the quotient of luminous 
intensity in the given direction, produced by an element of the surface surrounding the point, by the area of 
the orthogonal projection of the element of surface on a plane, perpendicular to the given direction. 
(Luminance may be measured at the receiving surface by using 

L = dE/(dω · cos θ) 
This value may be less than the luminance of the emitting surface due to attenuation of the transmitting 
media.) 

3.5.1 SI unit of luminance. Candela per square meter (cd/m2). 
3.5.2 Inch-pound (formerly English [USA]) unit of luminance. Candela per square foot (cd/ft2). 
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Figure A.1 - Luminance 

3.8 Luminous sterisent, L*(x), (at a point along a ray path). Rate of increase in luminance, per unit path 
length, at the point and in the direction of the ray, due to “generated” (emitted or scattered) luminance, or 
the “generated” luminous intensity per unit volume, at the point and in the direction of the ray, by which a 
distributed source can be characterized. L* = dLg/dx = dIg/dV, where dx is an element of distance along the 
ray path, dV is an element of volume at the point, and the subscript g denotes a “generated” quantity. 

3.9 Quantity of light (Luminous energy, Q = ∫Φdt). The product of the luminous flux by the time it is 
maintained. It is the time integral of luminous flux. 

3.10 Spectral luminous efficacy of radiant flux, K(λ) = Φνλ/Φeλ. The quotient of the luminous flux at a 
given wavelength by the radiant flux at that wavelength. It is expressed in lumens per watt. 

3.10.1 Spectral luminous efficiency of radiant flux. The ratio of the luminous efficacy for a given 
wavelength to the value at the wavelength of maximum efficacy. It is dimensionless. 
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Appendix B 
Memory Management Issues 

B.0 Introduction 

Memory, memory and more memory. It always seems that our applications require more memory than 

we currently have available. This curse of the computer is nowhere more evident than in radiosity 

rendering. Depending on the radiosity methods we employ, we may need to store both vertices and form 

factors as floating point data types for thousands to hundreds of thousands of polygons. Tens of megabytes 

can disappear in the blink of an eye as a complex environment is read into memory. 

While we may not be able to avoid these requirements, we can at least curb our programs’ appetite for 

memory by carefully examining how memory is allocated, used and released. Dynamic memory allocation 

is an obvious and well-documented candidate; other software engineering techniques include dynamic 

multidimensional arrays, non-rectangular array allocation and class-specific memory managers. 

For whatever reason, most C and C++ programming texts dismiss multidimensional arrays and memory 

management in a few paragraphs. This is unfortunate in the extreme, since dynamic multidimensional 

arrays and class-specific memory management techniques are essential to many computer graphics and 

scientific programming applications. Thus, while they not be directly related to radiosity rendering 

methods, we are advised to examine them carefully. The effective use of memory can make the difference 

between a demonstration program and a production-quality application. 

B.1 The Default Memory Manager 

Calling new in C++ or malloc in C invokes the default memory manager provided by the compiler. This 

gives us convenient and nearly transparent access to dynamically allocated memory blocks of almost any 

size. It also, however, brings with it some hidden costs in terms of execution time and memory 

requirements. 
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When your program first starts, its memory manager receives a pointer to a large block of memory 

(called the heap or free store) from the operating system. The memory manager then typically initializes 

this block with a header similar to: 

struct BlockHeader 
{ 
  size_t size;  // Block size (less block header) 
  void *pnext;  // Next block pointer 
}; 

where size is set to the size of the block in bytes (less that occupied by the BlockHeader structure) and 

pnext is set to NULL. It then saves a global FreeMemoryList pointer to this header. 

A call to new or malloc with a request for n bytes results in the following sequence of events: 

1. The size member of the block header pointed to by the FreeMemoryList pointer is compared to the 

requested size n. 

2. If size greater than n, then a null pointer is returned, indicating memory allocation failure. 

3. The size member is set to n ; the n bytes following the block header will become the allocated memory 

block. 

4. Another block header is initialized, starting at n + sizeof(BlockHeader) bytes beyond the current block 

header. The current header’s pnext pointer and the FreeMemoryList pointer are both set to point to this 

new header. 

5. The new header’s size member is set to the size of the remaining block in bytes, less 

sizeof(BlockHeader). Its pnext pointer is again set to NULL. 

6. If the call was to new, the class constructor (if any) is executed to initialize the allocated block. 

7. A pointer to the allocated block (not the block header) is returned. 

Successive calls to new or malloc results in the same sequence being repeated until the heap is exhausted, 

in which case it stops at the second step. 

Calling delete or free is more interesting. The pointer received is to the allocated block, but of course 

the block header immediately precedes it in memory. The memory manager sets pnext to point to the block 

header currently pointed to by FreeMemoryList, then sets FreeMemoryList to point to the allocated block. 

This effectively frees the block by adding it to the linked list of free memory blocks. (If the next free block 



Memory Management Issues 489 
________________________________________________________________________ 

in the list immediately follows the current block in memory, the memory manager will likely coalesce the 

two blocks into one by setting the current pnext to the value of the following block’s pnext pointer.) 

Further calls to new or delete will now execute the above sequence of events with the exception of the 

second step. It becomes: 

2. If size greater than n, then check the block header pointed to by pnext; continue doing so until either 

size is less than or equal to n or pnext is NULL. If pnext is NULL, return a null pointer (no suitably-

sized block is available); otherwise continue to the next step. 

The memory manager effectively walks the linked list of free memory blocks, looking for a free 

memory block large enough to satisfy the allocation request. 

There are several problems with this scheme. First, a hidden header block is used for every successful 

allocation of memory. This may be only eight bytes or so in size, but it quickly adds up when many small 

objects must be allocated. 

Second, it takes time to scan the free memory list looking for suitably sized blocks, particularly when a 

large number of blocks have already been allocated. (This is more important in real-time systems, where 

some functions may have to execute within specific and guaranteed time limits.) 

Third, and most importantly, randomly allocating and releasing blocks of memory of varying sizes 

quickly fragments the heap. The memory manager first looks for memory on the free memory list. If it 

finds one that is larger than necessary, it simply splits it into two, allocating one block and adding the 

second to the free memory list. The result is that each free block tends to become smaller and smaller until 

adjacent blocks are releasing, whereupon they are coalesced into a larger block. 

Finally, dynamically allocating large contiguous blocks of memory creates a certain amount of havoc 

for the memory manager. To begin with, it may not be able to satisfy the allocation request if the heap is 

too fragmented. There may be plenty of memory available, but only in small, scattered blocks. (Some 

programming languages–Lisp, for example–support “garbage collection”, where the blocks of allocated 

memory in the heap are physically copied to other locations such that the resulting free blocks can be 

coalesced. This is impractical in C and C++, since it means that every pointer to dynamic memory has to be 

somehow updated at the same time.) 
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Even if one or more large contiguous blocks (one or two megabytes for a Z-buffer, for example) can be 

allocated, this drastically limits the ability of the memory manager to allocate other blocks without running 

into memory fragmentation problems. 

There are two solutions to these problems. The simpler one involves a close look at how C and C++ 

address multidimensional arrays; the second is to write our own memory manager. 

B.2 Dynamic Multidimensional Arrays 

Multidimensional arrays are often required in computer graphics and scientific programming. With 

access to megabytes of RAM, it becomes possible to solve large and complex problems quickly and 

efficiently. However, both C and C++ make it difficult to dynamically allocate and access 

multidimensional arrays unless the array dimensions are known at compile time. The general lack of 

documentation on programming in C and C++ using multidimensional arrays only exacerbates the 

problem. 

The solution is to understand in detail how C and C++ access multidimensional arrays at run-time. 

Consider this quote from “The Annotated C++ Reference Manual” (Ellis and Stroustrup [1990]): 

A consistent rule is followed for multidimensional arrays. If E is an n-dimensional array of rank 
, then E appearing in an expression is converted to a pointer to an kji ××× K ( )1−n -dimensional array 

with rank . If the * operator, either explicitly or implicitly as a result of subscripting, is applied to 
this pointer, the result is a pointed-to 

k×Kj ×
( 1)−n -dimensional array, which itself is immediately converted into 

a pointer. 
For example, consider 

int x[3][5]; 

Here x is a 3  array of integers. When x appears in an expression, it is converted to a pointer to (the first 
of three) five-membered arrays of integers. In the expression 

5×
[ ]ix , which is equivalent to * , x is first 

converted to a pointer as described; then 
( ix + )

ix +  is converted to the type of x, which involves multiplying i 
by the length of the object to which the pointer points, namely five integer objects. The results are added 
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the 
first of the integers. If there is another subscript the same argument applies again; this time the result is an 
integer. 

It follows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and that the 
first subscript in the declaration helps determine the amount of storage consumed by an array but plays no 
other part in subscript calculations. 

This explanation also applies to ISO Standard C (ISO/IEC [1990]) and the original Unix C (Kernighan 

and Ritchie [1988]). Hidden in the jargon is the key phrase: 

“  … is equivalent to * ” [ ]ix ( )ix +
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Suppose we have a one-dimensional array F of n values. The data type doesn’t matter, but let’s make it 

float for convenience. It can be dynamically allocated with a call to new or malloc (followed by casting to a 

pointer to float). Unfortunately, we can only access F as a one-dimensional array of float values … 

Not true! Suppose we also have a one-dimensional array D of m pointers to float, and that each points 

to an element in F. Given an integer index i for D, we could access the element in F that  points to as: [ ]iD

value = *(D[i]); 

However, this is equivalent to: 

value = D[i][0]; 

We could also use a second index j to access the jth element in F beyond [ ]iD . This can be expressed 

as: 

value = *(D[i] + j); 

or even: 

value = *(*(D + i) + j); 

However, the most succinct expression is: 

value = D[i][j]; 

In other words, we can use two one-dimensional arrays to simulate a two-dimensional array. Each 

pointer in D points to a fixed span of values in F (Fig. B.1). Furthermore, we never have to explicitly 

access the second array F. Generalizing this approach, we can use 1−n  one-dimensional arrays of pointers 

and a single one-dimensional array of values to simulate an n-dimensional array (e.g., Ashdown [1988]). 

0     1      2     3      4      5     6      7      8      9    10    11

0     1      2      3D

F

D[0][0] D[1][0] D[2][0] D[3][0]  

Figure B.1 - Dynamically allocated 2-D array 

True multidimensional arrays are those that are statically allocated and optionally initialized at compile 

time. They fill contiguous block of memory, and form part of the executable program that must be loaded 

from disk along with the program code. The arrays themselves are stored in contiguous blocks of memory. 
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The compiler must be told the sizes of the first 1−n  dimensions of a static n-dimensional array. With 

these, it can calculate array offsets using integer multiplication and addition. These calculations can be 

performed very quickly, especially if the code ends up being cached by the CPU. 

The interesting point here is that while a multidimensional array subscript expression such as [ ][ ]jiD  

can be interpreted in terms of pointers and pointer arithmetic, the compiler only needs to access the address 

of D; the rest is integer arithmetic. 

Dynamically allocated multidimensional arrays are a different story. The compiler doesn’t know the 

array dimensions, and so it must generates code to physically read each pointer implied by the expression 

. This may lead to slightly slower array access times if the necessary pointers aren’t stored 

in the CPU’s internal cache. Usually, however, the difference in performance will negligible. 

( )( jiD ++** )

What does make a difference–a big difference–is that there is no requirement for F to be a single 

contiguous array. In other words, each pointer in D can point to a separate one-dimensional array of values. 

This allows the memory manager to allocate memory in small chunks, one row at a time. It’s the perfect 

solution to the problem of dynamically allocating large arrays. It’s even better for MS-Windows 3.1 

applications, since it allows us to evade the 64 Kbyte maximum array size limitation without declaring the 

array as a _huge data type and suffering the considerable expense of _huge pointer arithmetic. 

Another advantage of dynamically allocated multidimensional arrays is that the memory manager 

considers each allocated row to be an independent block of memory. This allows truly gargantuan arrays to 

be stored in virtual memory while still providing reasonably fast and efficient access to their row elements. 

We used these techniques without fanfare in our PolyRender, HemiClip and CubicClip classes to 

dynamically allocate depth buffers and delta form factor arrays. In PolyRender, it allowed us to allocate 

arrays larger than 64 Kbytes under MS Windows 3.1. CubicClip made use of yet another advantage of 

dynamic allocation: non-rectangular arrays. 

B.3 Triangular Arrays 

A seeming disadvantage of the cubic tetrahdral algorithm (Section 5.8) is that it requires a triangular 

array in which to store delta form factors. We could of course use a square array and simply not use half of 

it. However, this is an unnecessary waste of memory, particularly for high cubic tetrahedron resolutions. 
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Figure B.1 shows each pointer in D pointing to a fixed span of values in F. In other words, each of the 

“rows” in F has the same length. Clearly, however, this does not need to be the case. Each row can be 

whatever length we choose. If we decrement the row length by one for each successive pointer in D, we 

can simulate a triangular array with no wasted space other than the array of pointers needed for D itself. 

We need to know the length of each row in F when we access it through D, but this is no different from our 

need to know the number of rows and columns in a rectangular 2-D array. 

A clear understanding of pointers and pointer arithmetic allows us to effectively manage dynamic 

multidimensional arrays in C and C++. It’s only unfortunate that most programming texts fail to adequately 

address these capabilities. 

B.4 Class-Specific Memory Management 

From our perspective of writing an efficient radiosity renderer, the default memory manager underlying 

the global new and malloc operators has the undesirable trait of using a block header for every object it 

allocates. It would be much better if we could allocate small objects (such as polygon vertices) as arrays 

and eliminate the hidden headers. 

Fortunately, we can, and on a per-class basis. When it comes to memory management, C++ provides 

the ultimate solution: if you don’t like how the default memory manager works for a particular class, 

replace it with one of your own design by overloading new and delete. 

Write your own memory manager? It’s not as onerous a project as you might think. Following an 

example presented in Stroustrup [1991], a user-defined class with its own built-in memory manager can be 

as simple as: 

// Class-specific new and delete operators - EXAMPLE ONLY 
 
#include <stdlib.h> 
 
static int ObjectsPerChunk = 128; 
 
class MyClass 
{ 
  private: 
    ... class-specific data 
 
    static MyClass *FreeListPtr;    // Free list pointer 
 
    MyClass *pnext;     // Next object pointer 
 
  public: 
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    ... class-specific data access functions 
 
    void *operator new( size_t ); 
    void operator delete( void * ); 
}; 
 
// Global free object list pointer 
MyClass *MyClass::FreeListPtr = NULL; 
 
void *MyClass::operator new( size_t size ) 
{ 
  int i;                            // Loop index 
  MyClass *pfree = FreeListPtr;     // Free object pointer 
 
  if (pfree != NULL)    // Free object available ? 
  { 
    // Update free object list pointer 
    FreeListPtr = FreeListPtr->pnext;    
  } 
  else 
  { 
    // Allocate new chunk 
    pfree = new MyClass[ObjectsPerChunk]; 
 
    // Link chunk to free object list 
    FreeListPtr = pfree; 
 
    // Link objects in chunk 
    for (i = 1; i < ObjectsPerChunk; i++) 
    { 
      pfree->pnext = pfree + 1; 
      pfree++; 
    } 
    pfree->pnext = NULL;     // Terminate free list 
 
    // Point to first free object in chunk 
    pfree = FreeListPtr; 
  } 
 
  return pfree; 
} 
 
void operator delete( void *pobj ) 
{ 
  MyClass *pcurr = (MyClass *) pobj; 
 
  // Link object to free object list 
  pcurr->pnext = FreeListPtr; 
  FreeListPtr = pcurr; 
} 

Figure B.2 - A simple example of class-specific memory management 

The basis of this class is almost self-explanatory. Each MyClass object consists of user-defined data 

and a pointer to the next object. There’s also a global MyClass object pointer called FreeListPtr that is 

initialized to NULL at program startup. 
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When the overloaded new operator is first called, it allocates an array of uninitialized MyClass objects 

in a block of memory called a “chunk”. The call to new is not recursive; the default (i.e., global) new 

operator is always called when arrays of objects are to be allocated. 

As shown, there are 128 objects in a chunk. In practice, ObjectsPerChunk would be defined such that 

the chunk is reasonably sized, say 4 Kbytes. The object pointers are initialized to form a linked list of 

objects within the chunk, with the last object’s pointer set to NULL. The first object in the chunk is linked 

to FreeListPtr, and a pointer to it is returned by new. 

Successive calls to new simply advance the FreeListPtr pointer and return a pointer to the next object in 

the list. If the free object list is exhausted (i.e., the chunk is full), another chunk is allocated and the process 

started over. 

Calling delete links the object to be deleted to the head of the free object list, ready for the next call to 

new. This means that after a while, the linked list of free objects may span several allocated chunks in 

possibly random order. 

This is a very simple memory manager. Once a chunk has been allocated, there is no mechanism to 

delete it short of program termination. You also can’t derive anything from MyClass without providing a 

rewritten new operator, and even then you end up with multiple free memory lists, one for each class. It 

would be more useful to have a generic memory manager that allocates several sizes of chunks for various 

classes, depending on the size parameter passed to new. It should also indicates memory allocation failure 

and delete chunks that are no longer in use. 

More comprehensive memory manager classes that perform intelligent chunk allocation are 

occasionally presented in computer programming magazines. Examples include Burk and Custer [1992], 

Peterson [1992] and Weller [1990]. The discussion provided by Burk and Custer is very informative and 

well worth reading. Despite its title, their generic “chunk allocator” is applicable to any environment that 

supports a C++ compiler. 

Our radiosity rendering program doesn’t need a chunk allocator, but it could benefit from a class-

specific memory managers for Vertex3 and Element3. Relying on the default memory manager incurs a 

memory overhead of approximately 20 percent for each allocated object. The (incomplete) code in Figure 
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B.2 outlines how these classes can be extended to include built-in memory management. The 

implementation details are left to the interested reader as an exercise. 
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