

Radiosity: A Programmer’s Perspective
Copyright © 2002 byHeart Consultants Limited1

All rights reserved.

Reproduction or translation of this work beyond that permitted by Section 107 or 108 of the 1976 United States
Copyright Act without the express written permission of the copyright holder is unlawful.

For further information contact:

Ian Ashdown, President
byHeart Consultants Limited
620 Ballantree Road
West Vancouver, BC
Canada V7S 1W3

admin@helios32.com
http://www.helios32.com

1 Radiosity: A Programmer’s Perspective was originally published in 1994 by John Wiley & Sons, New York, NY.

http://www.helios32.com/

Contents
.
Foreword .. i

Preface .. iii

Introduction ... 1

Part I Radiosity Models Light ... 13

Chapter 1: Measuring Light ... 14
Chapter 2: Radiosity Theory .. 40

Part II Tools of the Trade .. 65

Chapter 3: Building An Environment .. 66
Chapter 4: A Viewing System ... 143

Part III Radiosity and Realism ... 270

Chapter 5: Form Factor Determination .. 271
Chapter 6: Solving the Radiosity Equation ... 383
Chapter 7: Meshing Strategies ... 438
Chapter 8: Looking to the Future .. 461

Appendix A: Photometric and Radiometric Definitions .. 483
Appendix B: Memory Management Issues ... 487

Bibliography ... 497

Foreword

In the last decade three-dimensional computer graphics has emerged from research laboratories and has

quickly become a part of our experience. Today, it is routine to find realistic, computer-generated images

on television and in the movies. Synthetic images are also routinely used in scientific and engineering

applications, such as medicine, astronomy, and mechanical engineering. Of particular interest these days is

the creation, manipulation, and display of virtual environments such as cities, campuses, buildings, and

rooms. These environments have obvious applications in architecture, but they may also be used to

organize large information landscapes and virtual communities.

Underlying all these applications is the computer technology, both software and hardware, to create

realistic pictures. In the strongest use of the term, realism may be interpreted to mean indistinguishable

form the real world. Many of us are routinely fooled into thinking a digital artifact is, in fact, a photo of a

real event or place. The goals of realistic rendering, however, go beyond mere duplication. Our perceptual

system responds to many complex visual cues, such as perspective, shading, texturing, and shadows, and

these are used to perceive attributes and relationships of objects and the environment in which they are

embedded. To the designer, these visual cues may be used to communicate space and form. This ability to

use visual metaphors to connect to our perceptual system is why there are so many applications of three-

dimensional graphics.

The majority of the computer graphics technology revolving around imagery manipulates images

directly. Images or drawing primitives are input, and images are output. Three-dimensional graphics are

quite different in that the process involves creating a computer model of the scene and running an

algorithm to produce an image from that model. To produce an interesting image, the computer model must

describe a complex environment with diverse objects. The objects must have interesting shapes and be

made from interesting materials. Also input are the position and properties of a digital camera and a set of

digital lights. The objects that comprise the computer model are not that different, in principle, from the

“objects” that a director manipulates to produce a scene in a film.

ii Foreword

The next step, rendering, produces the images from the model. The rendering process simulates the

action of a digital camera: Virtual light is focused onto virtual film to create virtual image. Virtual light is

emitted from sources, interacts with material objects, and eventually arrives at the camera’s film plane. The

key to three-dimensional rendering is modeling light.

Two major techniques have been developed for modeling light on a computer, ray tracing and radiosity.

Ray tracing was the first of the two, and is well known to anyone interested in computer graphics. Ray-

tracing systems model light rays traveling from the eye to the light sources. As the rays propagate they may

be blocked by intervening occluders, or they may be reflected or refracted according to the classic laws of

optics. Radiosity is a more recent innovation. Radiosity systems model the interreflections of light from

matte or diffuse surfaces. A matte surface reflects light equally in all directions. The key advantage of a

radiosity algorithm is that multiple bounces of light can be modeled. Thus it is possible to capture very

subtle, but dramatic, illumination effects such as soft shadows and indirect light. These lighting effects are

what create the ambience of many of the environments in which we live.

This book is the first attempt to bring radiosity algorithms to a wide audience. It provide a lively and

accessible description of the basic ideas and techniques. But more important, the book is not merely a

collection of formulas and references, but contains C++ source code that implements a complete radiosity

system on readily available PCs. If the reader is interested in three-dimensional graphics, and likes to learn

through experimenting with real programs, this is the book.

Princeton, New Jersey Pat Hanrahan

Preface
The soul’s radiance in a wintry hour
Flings a sweet summer halo round us

Miscellaneous Poems
B. Cornwell, 1822

What is Radiosity?

There are two approaches to generating photorealistic images–digital pictures that are difficult to

distinguish from real photographs–in computer graphics. The first approach involves ray tracing

techniques; the second approach is radiosity.

The use of photorealistic images in television and print advertising has left us somewhat inured to the

capabilities of ray tracing techniques. We see images that look almost, but not quite, like reality every day.

Look carefully, however, at the cover and color plates of this book. Notice the accurate rendition of diffuse

reflections and color bleeding between surfaces, realistic penumbrae along shadow boundaries and detailed

shading within shadows. These subtle but important visual effects, so difficult to achieve with conventional

ray tracing techniques, are inherent attributes of the radiosity approach.

Radiosity offers more than mere realism, however. Imagine creating a virtual reality stroll through the

lobby, halls and rooms of an international-class hotel. The building exists only as a set of architectural

CAD drawings. What you want is an animated sequence of images, a video where every frame is as richly

detailed as the images shown in this book. If you use ray tracing techniques, each frame has to be traced

pixel by pixel. Ray tracing techniques are view-dependent; the number of ray-surface intersection

calculations can increase geometrically with the complexity of the scene. In contrast, the radiosity approach

is view-independent. Most of the lighting calculations are performed only once for a given environment.

Once they have been completed, it is a relatively simple task to render a view of the environment as seen

from any camera position. The effort required to generate a sequence of images can be considerably less

than that needed using ray tracing techniques.

This is not a theoretical example that requires some future supercomputer. The cover of this book is

courtesy of the architectural firm of Hellmuth, Obata and Kassabaum, Inc. They are using radiosity-based

iv Preface

rendering software that runs on desktop graphics workstations to create promotional stills and videos for

their clients. The radiosity approach is being used today.

Few of us are rich or fortunate enough to have a thirty-thousand dollar graphics workstation sitting on

our desk. For now at least, we will have to let the professionals create their photorealistic and richly

detailed videos. We can, however, create high resolution color images using nothing more expensive than

an off-the-shelf desktop personal computer.

What sort of images? The color plates in this book imply that the radiosity approach is useful primarily

as an architectural design and illustration tool. This emphasis reflects the original development of radiosity

as a computer graphics tool. Architectural interiors provided convenient and impressive demonstrations of

radiosity’s strengths. Since then, the radiosity approach has been applied to entertainment productions,

virtual reality systems, diagnostic medicine, scientific research and engineering studies. Research into the

applications of radiosity has really just begun.

Radiosity and Ray Tracing

Radiosity is in a sense the complement of ray tracing. Ray tracing techniques excel in the rendition of

point light sources, specular reflections and refraction effects. Radiosity methods accurately model area

light sources, diffuse reflections, color bleeding effects and realistic shadows. It follows that the best use of

radiosity may lie in a combination of radiosity methods and ray tracing techniques. Fortunately, most

scenes of everyday interest include few specular surfaces and transparent objects. We can potentially use

radiosity methods to visualize a scene, followed where necessary by a ray tracing pass to more accurately

render the specular highlights and refraction effects. The number of rays that must be traced is far fewer

than if the scene was visualized using ray tracing techniques alone.

Looking to the future, virtual reality systems will be expected to offer photorealistic images at real-time

display rates. The radiosity approach allows us to create such images using “progressive refinement”

techniques, where each image initially appears as an approximate rendering of the scene. The radiosity

algorithm is then iterated to progressively “refine” the image. The longer we focus our attention on a scene,

the closer it will approach reality. We will be able to combine this ability with motion compensation and

Preface v

other video data compression techniques to create seemingly smooth zoom and pan sequences through our

virtual worlds.

Critics have argued that radiosity methods require inordinate amounts of memory and processing

power. Their complaints were justified when the first of these methods was proposed a decade ago. Times

have changed, however, and will continue to do so. We have affordable personal computers with memory,

processing power and video display capabilities undreamt of a decade ago sitting on our desktops. We also

have practical radiosity methods that can be easily implemented on these computers. Radiosity is no longer

the domain of academic researchers with their multiprocessor workstations and dedicated hardware

graphics accelerators. We can experiment and work with radiosity today using off-the-shelf personal

computers.

A Few Limitations

The radiosity approach has several limitations when compared to ray tracing techniques. To begin with,

radiosity theory is based on the assumption that all surfaces are ideal diffuse reflectors. Accurately

modeling specular surfaces and transparent materials requires a combination of radiosity methods and ray

tracing techniques. These combinations–extended radiosity methods–offer the best features of radiosity and

ray tracing, but often at the expense of impractical processing requirements.

Another limitation involves the representation of surfaces. Whereas ray tracing techniques can use

implicit equations to define curved surfaces, most radiosity methods require all surfaces–curved and flat–to

be modeled as typically nonuniform polygon meshes. This is not a fundamental limitation, since any flat or

curved surface can be approximated by a polygon mesh. Nevertheless, a complex curved surface defined as

a mesh usually requires a fair amount of memory. The same surface represented by an implicit equation

(e.g., a Bézier or quadric surface) requires memory for only a few parameters.

A more serious limitation is that these polygon meshes must be carefully chosen to avoid aliasing

artifacts in the rendered images. Choosing an appropriate mesh for each surface is a non-trivial problem

that depends on the geometrical relationship between surfaces, the placement of light sources and surface

reflectance properties. Fortunately, the meshing process can be automated to some extent using “adaptive

subdivision” techniques.

vi Preface

On the positive side, there is a popular misconception that radiosity approach requires a closed

environment, where every ray of light must eventually intersect at least one surface. In fact, it is just that–a

misconception. Radiosity can model any environment that ray tracing can.

Given these limitations, the radiosity approach is clearly not a panacea for generating photorealistic

images of arbitrary scenes. As a rule of thumb, it is best suited for those applications where the majority of

objects have surfaces that are flat, opaque and diffusely reflective. Many architectural scenes fall nicely

into this category, which explains why most artistic examples of radiosity feature office interiors and the

like. Scenes featuring mostly curved objects with specular or semi-specular surfaces and transparent

materials such as glass are more appropriately rendered using ray tracing techniques.

This is not to say that radiosity approach should be considered only for architectural design and

illustration. More esoteric applications include thermal engineering analysis, solar atmospheric studies,

computer-aided tomography and virtual reality simulations. After ten years of research, we are just

beginning to see radiosity methods applied to real-world problems. It will be interesting to see where future

work will take us.

Higher Mathematics Not Required

Radiosity is very much a computer graphics tool. Consequently, this book examines the gamut of

radiosity methods in depth, beginning with the basics of radiosity theory and ending somewhere in the

frontiers of current research. The algorithms are rigorously and clearly explained, implementation details

are examined at length, and C++ source code is presented for a complete radiosity-based renderer–

HELIOS–that runs under Microsoft Windows 3.1 and Windows NT. Moreover, most of the code is

platform-independent and designed for 32-bit environments, which means that it can be ported to other

development and target platforms with minimal effort. In short, this book is itself a programmer’s tool for

exploring radiosity.

Many advanced computer graphics techniques rely heavily on sophisticated mathematics; this is not

true for radiosity. Understanding radiosity requires no more than a basic knowledge of vectors and

matrices, plus an ability to visualize in three dimensions. Please do not let the brief excursions into higher

mathematics deter you. If you remember your high-school algebra, you have all the mathematical tools you

Preface vii

need. The occasional text box provides a brief explanation of possibly unfamiliar mathematical notation

and concepts. At worst, the mathematics can be skipped altogether with minimal loss of continuity.

This book is aimed at computer science undergraduates and computer enthusiasts of all ages. There are

no classroom exercises to spoil the fun–we all learn best by doing. The radiosity renderer presented in this

book offers endless opportunities. Take it apart, see how it works, and rebuild it ... add features,

experiment with different algorithms and profile their performance. Learn from your experiences and

discoveries, and above all else enjoy what you are doing. Remember: radiosity is easy to understand and

fascinating to experiment with.

What You Need

In terms of today’s personal desktop computer technology, what you need to compile and run HELIOS

are minimal. They are:

• an IBM PC-AT clone with a ‘386 CPU and 4 megabytes of RAM and a ‘387 floating point

coprocessor (‘486 or Pentium CPU recommended)

• minimum 256-color display adapter and color monitor (65,536 or 16.7 million [24-bit] colors

recommended)

• Microsoft Windows 3.1 or Windows NT

• a C++ compiler capable of generating Windows 3.1 or Windows NT executables

These are minimum requirements. An IBM PC-AT clone with a 66 MHz ‘486-DX2 CPU rendered the

photorealistic image shown in Color Plate 1 in 40 seconds. A computer with a 16 MHz ‘386-SX CPU will

take considerably longer.

HELIOS uses Microsoft’s BMP graphics file format to both display and store 24-bit color images. It

can also generate color dithered images suitable for 16-bit (65,356 color) and 15-bit (32,768 color)

displays. However, it does not directly support 256-color displays. The images it does display on

computers with these adapters will appear posterized.

Nevertheless, a computer with a 256-color display adapter can be used. The accompanying diskette

includes a standalone utility (with fully documented C++ source code) for generating 8-bit (256 color)

BMP files from the 24-bit BMP files that HELIOS produces. (It would take very little work to add this

viii Preface

capability to HELIOS itself. However, both programs require a fair amount of memory. On a machine with

4 megabytes of memory, it is probably better to run each program separately to avoid those dreaded “out of

memory” error messages.)

This book is about radiosity and the implementation of radiosity methods in C++. It is not about

programming in or for any particular environment. There are some 7,000 lines of draft ANSI C++ source

code, of which only 1,700-odd lines are devoted to the graphical user interface provided by MS-Windows.

The remainder is devoted to the underlying computer graphics software needed to implement the radiosity

renderer.

The MS-Windows interface is written in ANSI C, and compiles without modification under either

Microsoft Visual C++ Version 1.5 or Borland C++ Version 4.0. No use whatsoever is made of any

compiler-specific functions or class libraries other than those required for generic MS-Windows programs.

More importantly, the interface code is completely encapsulated in its own set of classes.

Are you programming for another environment? HELIOS also compiles as a Microsoft Win32s or

Windows NT program without modification. You only need to specify a global #define to create a 32-bit

executable. As such, the platform-independent C++ radiosity code should properly compile under any C++

compiler. All you have to add is a graphical user interface.

A radiosity algorithm can be written in about a dozen lines of pseudocode. A functional radiosity-based

rendering program, on the other hand, requires much more. In particular, it requires the support of a

complete 3-D viewing system. While the algorithms have been published before, few computer graphics

programming texts have attempted to address the complexities of writing the necessary code. The effort

needed to develop a ray tracing program pales in comparison. Neverthless, it is all here.

From Beginning to End

Regardless of the subject, a programmer’s perspective must consider more than implementing

pseudocode in C++. While the basics of radiosity can be explained in five hundred words or less–see the

introduction–we need to understand its underlying and fundamental principles. We will see that these

principles can be expressed in one unifying phrase: radiosity models light.

Preface ix

Radiosity models light. Chapter One, Measuring Light begins with an overview of light–what is it and

how do we measure it? We will examine the parallel sciences of radiometry and photometry in detail, with

a brief excursion into radiometric field theory. The concepts are simple but extremely important to what

follows.

Chapter Two, Radiosity Theory explains radiosity in terms of the geometrical nature of light, using a

minimum of mathematics. Mathematical proofs of key concepts are provided as optional reading.

Most radiosity methods expect only one type of graphic primitive: three-dimensional polygons. Chapter

Three, Building An Environment presents the basic algorithms needed to represent them. These algorithms

are not part of the radiosity approach per se. Neverthess, they are needed to describe complex 3-D scenes

and to view them afterwards. Fortunately, they are simple to understand and straightforward to implement.

We will also need many of the basic algorithms used in 3-D computer-aided drafting programs. Chapter

Four, A Viewing System reviews synthetic cameras, windowing and clipping, hidden surface elimination,

scan conversion and incremental shading techniques. From these, it builds a complete 3-D viewing system

for MS-Windows 3.1 and Windows NT. With it, we will be able to view wireframe images, shaded 3-D

models and photorealistic renderings.

Form factors are the heart and soul of radiosity theory. Imagine two polygons floating in space. If one

polygon is emitting light, how much of it will be intercepted by the other one? This is a simple question

with no easy answer. Believe it or not, it took mathematicians over 230 years to find a equation that solves

for the general case of two arbitrarily-oriented polygons! Fortunately, there are much simpler solutions for

our needs. Chapter Five, Form Factor Determination looks at a number of efficient calculation methods,

including hemi-cubes, cubic tetrahedrons and ray casting.

Chapter Six, Solving the Radiosity Equation details several radiosity algorithms and associated

techniques that have been developed over the past ten years. The first method, full radiosity, was an

academic curiosity derived from radiant heat transfer theory. The subsequent improvements and

modifications represent a fascinating tour de force of mathematical insight and programming ingenuity.

The chapter concludes with three fully functional versions of HELIOS.

Aliasing is an ever-present problem for the radiosity approach. Surfaces are described as polygon

meshes. If the mesh is too coarse, the mesh outline will be visible in the rendered surface. If the mesh is too

x Preface

fine, the radiosity methods must perform unnecessary calculations. Chapter Seven, Meshing Strategies

examines the issues involved and explores substructuring techniques that attempt to create optimal meshes

for surfaces.

Finally, Chapter Eight looks to the future of both HELIOS and the radiosity approach in general. It

proposes a number of enhancements that you might consider as programming projects, and concludes with

a look at the “bleeding edge” of radiosity research.

Acknowledgments

My debts of gratitude extend in several directions. First, I am indebted to the many computer graphics

researchers who found radiosity as fascinating a topic as I have. More to the point, it is their investigative

work that has provided the foundations for this book. There are too many names to acknowledge here; I

can only hope my interpretations have done justice to their contributions.

Second, I am indebted to a number of researchers in other fields. There are many interwoven threads

leading to the development of radiosity, including geometrical optics, astronomy, photometry and

radiometry, radiant heat and illumination engineering, field theory and nuclear physics. They include

forgotten and neglected names such as Fock, Yamauti, Gershun and Moon, whose pioneering work in

photometric and radiometric theory was fifty to one hundred years before its time. Their efforts are

implicitly acknowledged throughout this book.

Third, I owe personal debts to a number of people. They include Peter Murphy of Ledalite

Architectural Products for financial support and an unending interest in the impossible, Domina Eberle

Spencer for inspiration, David DiLaura at the University of Colorado for providing an unattainable goal

and sharing his love of higher mathematics, and Peter Ngai of Peerless Lighting for ten years of unwitting

incentive. I also thank Peter Franck of Ledalite Architectural Products for his careful review of the draft

manuscript and Eric Haines of 3D/Eye for his insightful comments and for sharing his radiosity

bibliography.

The radiosity research community is small and friendly. I am extremely grateful to Stuart Feldman,

Filippo Tampieri and Rod Recker of Lightscape Graphics Software and David Munson of Hellmuth, Obata

and Kassabaum, Inc. for providing their exquisite color images. Thanks are also due to Holly Rushmeier,

Preface xi

Michael Cohen, Pat Hanrahan, Richard Mistrick, Greg Ward, Mark Pavicic, Nelson Max, John Wallace,

Alain Fournier, Pierre Poulin and numerous others for their collective assistance and many small but

important contributions.

Writing a program as complicated as a radiosity renderer from scratch is not for the faint of heart. Aside

from the mathematics and technical issues involved, it requires a great deal of careful thought, detailed

planning and discipline. For this, I thank my friends at Glenayre Electronics and Josef Roehrl of

Stonehenge Technologies, who collectively spent four years teaching me the difference between

programming and software engineering. One million-plus lines of C and 680x0 assembly code for

electronic voice mail and radio telecommunications–now there is a program to be proud of!

Finally, I thank the following for their encouragement and moral support: my wife Janet, my parents

Frank and Marjorie Ashdown, and last but not least, Annie Ballyk for endlessly repeating her favorite

phrase: “Have you finished your book yet?”

Never underestimate the power of a grandmother’s words. Yes, Annie, I finally have!

February 17th, 1994

West Vancouver, British Columbia

Introduction

I.0 Radiosity: A Tenth Anniversary

This year marks the tenth anniversary of radiosity as recognized by the computer graphics community.

It began more or less as a mathematical curiosity that could laboriously render the interior of an empty box

(Goral et al. [1984]). Today, radiosity is entering the marketplace as a powerful computer graphics tool for

synthesizing photorealistic images from architectural drawings.

Despite this inherent power, radiosity has remained almost exclusively a university research topic. Each

passing year has seen the publication of more effective and ingenious radiosity-based algorithms.

Nevertheless, the number of radiosity-based rendering programs available to individual computer graphics

enthusiasts has remained almost insignificant. As of 1994, there are apparently only two public domain

packages for UNIX-based machines, both available on the Internet from their authors. (There are also

several implementations of Radiance, a superlative public domain ray tracing program with radiosity-

related effects.) None of these programs, however, explore the radiosity approach in depth.

Why is this? There is certainly no shortage of public domain ray tracing programs. DKBTrace (e.g.,

Lindley [1992]) and its successor, Persistence of Vision (Wells and Young [1993]) are two well-known

examples that can produce outstanding ray-traced imagery. These are complex programs with many

options and capabilities. The effort put into their development likely exceeds that needed to develop a fully

functional radiosity-based rendering program by an order of magnitude. If this is so, why are there no

radiosity programs available?

Perhaps the answer can be found in this quote from Shenchang Eric Chen of Apple Computer, Inc.

(Chen [1991]):

While a naive ray tracer can be implemented fairly easily and compactly (as in the case of Paul
Heckbert, who has a ray tracer printed on his business card), implementing a radiosity program is
generally regarded as an enormous task. This is evident in that there still is no public domain radiosity
code available …

This sounds reasonable; public domain programs usually begin as small weekend programming projects

that quietly grow into major undertakings. The critical factor is that first tentative release. If it has any

2 Introduction
__

merit whatsoever, a cadre of loyal users will prompt the author to fix one more bug and add another

handful of features. The project soon becomes a group effort that continues to grow until it rivals its

commercial counterparts.

A radiosity-based renderer, on the other hand, is not something you do in a weekend. It is a major

undertaking requiring many long and tedious hours of planning, design, development and testing. Worse,

there are no intermediate stages of development. The first synthesized image appears only when the entire

project nears completion.

This is saddening. The widespread availability of affordable ray tracing programs has brought us many

captivating images by talented artists, both amateur and professional. They have also captured the

imagination of many young students, encouraging them to pursue their interests in computer graphics and

related fields of enquiry. A capable radiosity-based rendering program could only encourage this pool of

talented individuals.

In celebration then of radiosity’s tenth anniversary: HELIOS, an affordable radiosity-based renderer,

complete with over 7,000 lines of C++ source code and 500 pages of documentation (this book).

HELIOS is both a celebration and a challenge. The celebration is two-fold: radiosity’s anniversary and

HELIOS’s own marriage of radiosity with Microsoft Windows 3.1 and Windows NT. The challenge …

well, we will get to that in a moment.

Shenchang Chen got it right–developing HELIOS was indeed “an enormous task.” As such, it deserves

more than a few pages of hastily prepared user documentation. It needs every page of the book you are

now holding to properly describe its underlying algorithms and design philosophy.

This book was written concurrently with the program’s development. Each paragraph bears with it the

immediate (and often frustrating) experience of having implemented the algorithms being discussed. The

subtitle “A Programmer’s Perspective” means precisely what it says.

The challenge in writing the program was to ensure that the code remained as generic as possible. True,

HELIOS has been implemented as an MS-Windows program. However, very little of the code is specific to

MS-Windows. This comes from the first draft specification for the program’s design:

Introduction 3
__

[The program] shall be implemented such that the display device and environment dependencies are

minimized. Wherever possible, these dependencies shall be encapsulated in clearly defined and well-

documented C++ classes.

Most of the code in this book is written in draft ANSI C++. More importantly, it was expressly

designed for ease of porting to other computer environments. It compiles without any errors or warnings

for both 16-bit (Windows 3.1) and 32-bit (Windows NT and Win32s) target environments. The goal was to

develop a radiosity renderer that could be implemented on any platform that supports bitmap graphics

displays. HELIOS explicitly supports this design philosophy.

The real challenge is to you. This book provides an abundance of radiosity algorithms and

implementations. Some features are discussed but not implemented. Others are implemented but not

incorporated in HELIOS. They range from small but significant performance enhancements to major

software development projects. While HELIOS is a fully functional program, it lacks some of the bells and

whistles we normally associate with a commercial product. Thes are opportunities; you can enhance

HELIOS and learn while you do so.

First, however, it might be a good idea to explain what radiosity is …

I.1 Capturing Reality

Think of an empty and darkened room. It has a fluorescent light fixture mounted on the ceiling and a

table sitting on the floor underneath it. The light fixture is turned off. There are no windows, open doors or

any other source of illumination. Now, turn on the light.

4 Introduction
__

Figure I.1 - Modeling the flow of light in a room

We all know what happens next. Light flows from the light fixture, filling every corner of the room at

the speed of … well, light. It directly illuminates the walls, floor and table top. The sides of the table are in

shadow, and the ceiling is not directly illuminated. Depending on the surface reflectances, some of the light

will be reflected back into the room; the rest will be absorbed. The reflected light will “bounce” from

surface to surface until it is completely absorbed. In the process, it indirectly illuminates the entire room,

including the table sides and ceiling.

Within this simple model is the realm of our visual experience. Of this light, an almost infinitesimal

portion will find its way to our eye’s retina. Converted into electrochemical signals, it provides visual

images to our brain: we perceive the room in all its visual complexity.

Note the term “perceive”. This is an important but often neglected point. We visually see light that

impinges on our retina; electrochemical reactions generate nerve impulses that travel along the optic nerves

to the visual cortex in our brain. From this, we consciously perceive the information that it conveys.

If you think about it for a moment, we are surrounded by a three-dimensional field of light that we can

never directly perceive. A flashlight beam is invisible until it is reflected by a surface, shines through

translucent glass, or passes through smoke or airborne dust. We can only experience those material objects

that direct light towards our eye; the light itself is an invisible agent in this process.

We commonly think in terms of rays of light that are emitted by a light source. Each ray follows a

straight line through space, possibly bouncing from surface to surface, until it is either completely absorbed

or enters our eye (Fig. I.2). Those rays we see are focused by the cornea onto the retina; together, they

form an image of the objects we perceive.

Introduction 5
__

Figure I.2 - Perceiving objects through rays of light

From this, it should be evident that we can look at a photograph and perceive the objects it portrays. If

each ray of light reflected from the photograph towards our eye exactly mimics those rays we see from the

original scene, then we should not be able to tell the difference between the photograph and the original

objects.

Of course, nature is rarely so kind. Our binocular vision immediately tells us that the photograph is a

two-dimensional surface with no perceptual depth. The relative positions of the objects in the photograph

remain unchanged as we move our heads. These and a thousand other visual cues tell us that a photograph

is a photograph and not the objects it portrays.

Nevertheless, we appreciate these images and value them for both their aesthetic and informational

content. They take us to places where we cannot go, remind us of past events and convey images of reality

we cannot see or otherwise imagine. More recently, they have shown us images of virtual realities–

photorealistic renditions of imaginary worlds that exist only as bits of information in the memory of our

computers.

We value these images most when they portray the world as we think it should be. A view of an

architectural interior should exhibit all the characteristics of the real world. Specular reflections from glass

and polished wood, diffuse reflections from matte finishes, fine details and textures in every object and

realistic shadows are but a few of these. Capturing these nuances is a considerable challenge to the

computer scientist and artist alike. While much progress has been made since the first crude line drawings

6 Introduction
__

were displayed on the cathode ray tube screen of MIT’s WhirlWind I computer in 1950 (Newmann and

Sproull [1979]), the current state of the art reveals that we still have far to go.

In the meantime, we have the knowledge and computing power to synthesize photorealistic images

using nothing more than our artistic sense and a personal desktop computer. We might say that these

images allow us to capture reality. It will take several hundred pages of higher mathematics and some

rather convoluted source code to explain how, but the results will be rewarding and extremely satisfying.

I.2 Rays of Light

The first attempts to capture reality in the form of photorealistic images relied on the basic principles of

geometric optics. Using Figure I.1 as an example, each ray of light emitted by the light source was

faithfully followed as it traversed the room (Whitted [1980]). At each point where it intersects a surface,

the physical properties of that surface determine how much of the ray is absorbed and the direction and

color of the remainder. A black surface will obviously reflect much less light than a white one. Similarly, a

red surface will reflect mostly red light, even though the color of the light source may have been white. A

transparent object behaves in the same manner, except that the remaining light is transmitted through its

volume rather than reflected from its surface.

The problem with this approach is that it is shockingly inefficient. Most of the rays will be fully

absorbed before they ever reach our eye. Why follow them if they cannot be seen? This leads to the

concept of backwards ray tracing. Knowing how a ray is reflected or transmitted by each object it

encounters on its path from the light source to our eye, we can trace it backwards through space and time

from our eye (Fig. I.3). We then have to consider only those rays that we can actually see.

Introduction 7
__

Figure I.3 - Backwards ray tracing

Unfortunately, this leads to a second problem. Figures I.2 and I.3 show a single ray being reflected

from the surface, but this is a gross simplification. Physical surface finishes vary from microscopically

smooth to roughly textured. A smooth and polished surface acts much like a mirror–it is a specular

reflector of light. A single ray of light incident on the surface will be reflected as a single ray. This is a

trivial event for a ray tracing program, since the angle of reflection can be calculated very easily.

More often, however, physical surfaces will act as semi-specular and diffuse reflectors (Fig. I.4). Here,

an incident ray is reflected as an infinite number of rays. The intensity of each reflected ray will vary,

depending on the angle of the incident ray, the angle of the reflected ray and the surface reflectance

properties. This makes ray tracing somewhat more difficult, to say the least.

Specular Semi-specular Diffuse

Figure I.4 - Reflection from specular and diffuse surfaces

The overall effect of light being repeatedly reflected from semi-specular and diffuse surfaces is to fill

the room with rays going in every direction. This fill light, to use the artist’s term for it, provides the soft

shadows and subtle shadings we associate with realistic images. Without it, most shadows are black and

featureless.

8 Introduction
__

It becomes computationally infeasible to trace any significant number of these diffusely-reflected rays

for complex scenes (or environments) involving hundreds or thousands of non-specular surfaces. This

highlights an important limitation of ray tracing techniques: they have difficulty in accurately modeling

semi-specular and diffuse reflections.

Most ray tracing programs do not attempt to model these reflections directly. Instead, numerous

techniques have been developed to simulate their contribution to indirect illumination. One popular

approach is to simply assume that all surfaces are evenly illuminated by a completely diffuse but hidden

light source. This ambient lighting term has no physical basis; it simply attempts to make the objects in the

environment look more realistic.

Other, more sophisticated ray tracing algorithms can be used to simulate soft shadows and diffuse

reflections. Again, however, they are often ad hoc techniques without a firm physical basis. The results are

not always satisfactory–many ray traced images exhibit the characteristic signature of plastic-looking

surfaces, and their shadows may be less than convincing.

This is not to disparage ray tracing techniques. Computer graphics practitioners have been extremely

successful in using these techniques to create an astounding assortment of images. What we need to

recognize is that they have their limitations, and to consider the possible alternatives where necessary.

These are our radiosity methods, a fundamentally different approach to photorealistic image synthesis.

I.3 Radiosity Explained

Figure I.5 shows our empty room again, but with three significant refinements: 1) all surfaces are

assumed to be ideal diffuse and opaque reflectors; 2) the light source is an ideal diffuse emitter of light, and

3) each surface is subdivided into a mesh of elements called patches.

Introduction 9
__

Figure I.5 - A room with subdivided surfaces

The assumption that all surfaces are ideal diffuse (or Lambertian) reflectors is important. These

reflectors have a unique and very interesting property: they reflect light equally in all directions, regardless

of the angle of the incident ray or rays of light illuminating the surface.

Look at the paper this page is printed on–it is a reasonable approximation of an ideal diffuse reflector.

Try holding it under an incandescent desk lamp and tilting the book back and forth. If you keep it at a

constant distance from the lamp, the visual “brightness” of the paper will not change significantly. A spot

light meter will tell you the same thing; the amount of light reflected in any direction is independent of the

angle of the incident light.

This will prove extremely useful to us. The total quantity of light reflected from a Lambertian surface is

equal to the quantity of the incident light times the surface reflectance. Period. A grey Lambertian surface

with a surface reflectance of 20 percent reflects precisely 20 percent of any incident light, and distributes it

equally in all directions.

An ideal diffuse emitter is identical to a Lambertian reflector, except that it emits light equally in all

directions. Some fluorescent light fixtures are reasonable approximations of ideal diffuse emitters. Most

light sources, however, are not. Neverthless, it is a useful concept that will help us understand the radiosity

approach.

So what does this give us? Well, consider that it is very easy to calculate how much light is emitted in

any given direction by a Lambertian emitter or reflector. (The details are presented in Chapter One.) If we

know the geometry of the room and the constituent elements of its surfaces, we can determine how much

light each element receives from the light source. Note that we do not have to trace individual rays, since

10 Introduction
__

all the information we need is contained in the room and element geometry. (See Chapter Five for a

detailed exposition.) Most of the elements will receive some light. A few, however, will be hidden from

view (as seen from the light source) by other elements, and so they receive no direct illumination.

So far, so good. Now, each of these elements will absorb some of the light it receives and reflect the

remainder back into the room. If we know the reflectance of each surface, we can calculate the precise

amount. Each illuminated element now become a secondary ideal diffuse emitter that “sends” its light to

those elements visible to it.

This process is clearly iterative, and proceeds until all of the reflected light from all of the elements is

finally absorbed. If we keep a tally of how much light each element reflects and/or emits, we end up

knowing how “bright” it will appear when viewed from any direction. Loosely speaking, this is the

element’s radiosity.

Finally, we know the geometry of each element in the room–in computer graphics parlance, it is a

three-dimensional polygon. If we know its brightness, we can use a 3-D graphics package to directly render

a photorealistic image of the room (as a collection of 3-D polygons) from any viewpoint.

That’s all there is to it! Radiosity explained in five hundred words or less. Mark this section for future

reference.

I.4 Ray Tracing Versus Radiosity

There are both obvious and subtle differences between ray tracing and radiosity. In ray tracing, the

viewer is paramount. All rays are traced from the view position into the environment. Changing the view

position or orientation by more than a small amount usually requires repeating the entire ray tracing

process from scratch. As such, most ray tracing techniques represent a view-dependent process.

Radiosity is the exact opposite. Our light transfer calculations are based solely on the geometry of the

environment. There is no view position or viewer. Radiosity considers only the interaction of light with

surfaces in the environment.

This has an important consequence. Given an environment, we can calculate the visual brightness of

each of its surface elements. These calculations may take some time, but we only need to perform them

once. After that, we can position and orient ourselves anywhere in the environment and synthesize a

Introduction 11
__

photorealistic image almost as quickly as we can draw and shade 3-D polygons on our computer screen.

Radiosity methods therefore represent a view-independent process.

On the other side of the coin, efficient radiosity methods are limited to modeling Lambertian surfaces.

They can model semi-specular surfaces, but only with roughly the same amount of effort as is required by

ray tracing techniques. Also, radiosity methods fail completely to model those specular reflections that are

ray tracing’s forte.

In short, we should consider ray tracing and radiosity as two complementary approaches to

photorealistic image synthesis. Researchers are still refining existing algorithms and developing new ones.

In the future, we will likely rely on a hybrid approach that combines the best features of both–radiosity for

diffuse reflections and ray tracing for specular highlights. Here, our interest is in radiosity–its theory and

implementation.

I.5 Radiosity Models Light

There is a fundamental aspect of the radiosity approach that has been so far overlooked in the computer

graphics literature. Consider that ray tracing techniques model objects. An individual ray must interact with

objects in the environment before it can convey any information. Without detailed knowledge of these

objects, their geometry and physical properties, we cannot create an image.

Radiosity is different. Yes, we still need to know the geometry and physical properties of the objects.

However, radiosity allows us to render an image of the environment from any viewpoint. Seen thus, it is

evident that radiosity is not modelling the objects within the environment. Instead, it is modelling the three-

dimensional field of light that permeates the environment. More to the point, we will see in Chapter One

that it can in theory model this field exactly and completely. This then becomes a central theme of this

book: radiosity models light.

I.6 A Programmer’s Perspective

In explaining the radiosity approach, we necessarily had to gloss over a few minor implementation

details ... well, maybe not so minor. In fact, it will take the remainder of this book to discuss them. It will

involve the occasional excursion into higher mathematics, including analytic geometry, elementary

calculus, matrix theory, four dimensional … come back here! It will not be as difficult as you might think.

12 Introduction
__

If anything, the sheer volume of C++ source code will prove to be more of challenge. Implementing a

functional radiosity-based renderer is no easy task, as the size of this book attests. Besides, all of the key

mathematical concepts and terminology are explained in strategically positioned text boxes.

The radiosity approach is firmly based on simple geometrical concepts that can be explained without

the aid of mathematics. The mathematics are there because we have to explain these simple concepts to

some very stupid acquaintances: our computers. Read the text first so that you understand the principles

involved. The reasoning behind the mathematics should readily follow.

Enough however of generalities; it is time to begin.

References

Arvo, J., Ed. [1991]. Graphics Gems II, Academic Press, San Diego, CA.

Chen, S.E. [1991]. “Implementing Progressive Radiosity with User-Provided Polygon Display Routines”,

in Arvo [1991], 295 - 298, 583 - 597.

Goral, C. M., K.E. Torrance, D.P. Greenberg and B. Battaile [1984]. “Modeling the Interaction of Light

Between Diffuse Surfaces”, Computer Graphics 18:3 (Proc. ACM SIGGRAPH ‘84), 213 - 222.

Lindley, C.A. [1992]. Practical Ray Tracing in C, John Wiley & Sons, New York, NY.

Newmann, W.M. and R.F. Sproull [1979]. Principles of Interactive Computer Graphics, 2nd Ed.,

McGraw-Hill, New York, NY.

Wells, D. and C. Young [1993]. Ray Tracing Creations, Waite Group Press, Corte Madera, CA.

Whitted, T. [1980]. “An Improved Illumination Model for Shaded Display”, Comm. ACM 23:6, 343 - 349.

 P A R T

I
Radiosity Models Light

.
Here there be dragons. Beware!

Radiosity models light. To fully appreciate the significance of this contention, we first need to

understand what light is and how it is measured. Chapter One examines the concepts of radiometry and

photometry, with a brief excursion into radiometric field theory. These concepts provide a foundation for

Chapter Two, which explains radiosity in terms of the geometrical nature of light.

For some readers, there may indeed be dragons here. Differential equations, area integrals and other

topics from college-level mathematics are not everyday fare for most programmers. Fear not, however. The

accompanying text boxes tame them with high school algebra and trigonometry.

Chapter 1
Measuring Light

1.0 Introduction

light, n. 1. The natural agent that stimulates the sense of sight. 2. Medium or condition of space in
which sight is possible.

The Concise Oxford English Dictionary
Oxford University Press, 1964

There have been many theories concerning the nature of light. Aristotle [384-322 BC] believed

that it consisted of “corpuscles” that emanated from the eye to illuminate the world. Today, we favor

the theory of quantum mechanics (e.g., Hecht and Zajac [1987]), or perhaps the possibility that light

may be vibrations in the fifth dimension of ten-dimensional hyperspace (e.g., Kaku [1994]). Even so,

the true nature of light remains a mystery. It is perhaps appropriate that the pre-eminent dictionary of

the English language describes light so loosely: “the natural agent that stimulates the sense of sight.”

Whatever it may be, our interest in light is much more parochial. We simply want to model what

we see and perceive. While we may think in terms of objects, what we see is light. Ray tracing models

objects; radiosity models light. The distinction is subtle but important. If we are to understand

radiosity, we must first understand the basics. What is light and how do we measure it?

The material in this chapter is somewhat removed from the computer graphics mainstream.

Nevertheless, it is vitally important to understand what it is we are trying to model. The key concepts

in radiosity are radiant exitance (also known as radiosity) and luminance. Unfortunately, these

concepts must be carefully described in fairly rigorous terms using a variety of arcane definitions. So,

grab a cup of coffee or another mental stimulant and we can begin.

1.1 What Is Light?

Light is electromagnetic radiation. What we see as visible light is only a tiny fraction of the

electromagnetic spectrum, extending from very low frequency radio waves through microwaves,

Measuring Light 15
__

infrared, visible and ultraviolet light to x-rays and ultra-energetic gamma rays. Our eyes respond to

visible light; detecting the rest of the spectrum requires an arsenal of scientific instruments ranging

from radio receivers to scintillation counters.

A rigorous and exact description of electromagnetic radiation and its behavior requires a thorough

knowledge of quantum electrodynamics and Maxwell’s electromagnetic field equations. Similarly, a

complete understanding of how we peceive the light our eyes see delves deeply into the physiology

and psychology of the human visual system. There is an enormous body of literature related to the

physical aspects of light as electromagnetic radiation (e.g., Hecht and Zajac [1987]) and an equally

enormous amount devoted to how we perceive it (e.g., Cornsweet [1977]). Fortunately, our interests

are extremely modest. We simply want to measure what we see and perceive.

1.2 Radiometry

Radiometry is the science of measuring light in any portion of the electromagnetic spectrum. In

practice, the term is usually limited to the measurement of infrared, visible and ultraviolet light using

optical instruments.

There are two aspects of radiometry: theory and practice. The practice involves the scientific

instruments and materials used in measuring light, including radiation thermocouples, bolometers,

photodiodes, photosensitive dyes and emulsions, vacuum phototubes, charge-coupled devices and a

plethora of others. What we are interested in, however, is the theory.

Radiometric theory is such a simple topic that most texts on physics and optics discuss it in a few

paragraphs. Unfortunately, a certain historical bias has left us with a theory that is conceptually simple

but sometimes difficult to understand. In essence, the problem is one of separating light from objects.

To appreciate this bias, we first need to review the fundamental radiometric concepts.

1.2.1 Radiant Energy

Light is radiant energy. Electromagnetic radiation (which can be considered both a wave and a

particle, depending on how you measure it) transports energy through space. When light is absorbed

by a physical object, its energy is converted into some other form. A microwave oven, for example,

heats a glass of water when its microwave radiation is absorbed by the water molecules. The radiant

16 Measuring Light

energy of the microwaves is converted into thermal energy (heat). Similarly, visible light causes an

electric current to flow in a photographic light meter when its radiant energy is transferred to the

electrons as kinetic energy.

Radiant energy is measured in joules.

1.2.2 Radiant Flux (Radiant Power)

Energy per unit time is power, which we measure in joules per second, or watts. A laser beam, for

example, has so many milliwatts or watts of radiant power. Light “flows” through space, and so

radiant power is more commonly referred to as the “time rate of flow of radiant energy”, or radiant

flux. It is defined as:

dtdQ=Φ (1.1)

where Q is radiant energy and t is time.

If your background doesn’t include college-level calculus, think of the above differential equation

as follows. You might walk m meters in t minutes. The velocity v at which you walk may vary, but

your average velocity is the distance m divided by the time t, or: avgv

tmvavg =

In each minute, you may walk meters, where m∆ m∆ varies from minute to minute. Your average

velocity for each minute is given by:

tmvavg ∆∆=

where ∆ is the interval of time over which t m∆ is measured. We can clearly shorten the interval of

time (seconds, milliseconds, etc.) until it is infinitesimally small. The distance traveled is then

infinitesimally short. If we denote the time interval as (indicating a differential interval of time) dt

and the distance as dm , we have the instantaneous velocity v:

dtdmv =

Looking again at Equation 1.1, the radiant energy Q is the total “amount of work done” (the

definition of energy). The radiant flux Φ is the infinitesimal amount of work done () in an dQ

differential amount of time (). dt

Measuring Light 17
__

In terms of a photographic light meter measuring visible light, the instantaneous magnitude of the

electric current is directly proportional to the radiant flux. The total amount of current measured over a

period of time is directly proportional to the radiant energy absorbed by the light meter during that

time. This is how a photographic flash meter works–it measures the total amount of radiant energy

received from a camera flash.

The flow of light through space is often represented by geometrical rays of light such as those used

in computer graphics ray tracing. They can be thought of as infinitesimally thin lines drawn through

space that indicate the direction of flow of radiant energy (light). They are also mathematical

abstractions–even the thinnest laser beam has a finite cross-section. Nonetheless, they provide a useful

aid to understanding radiometric theory.

1.2.3 Radiant Flux Density (Irradiance and Radiant Exitance)

Radiant flux density is the radiant flux per unit area at a point on a surface, where the surface can

be real or imaginary (i.e., a mathematical plane). There are two possible conditions. The flux can be

arriving at the surface (Fig. 1.1a), in which case the radiant flux density is referred to as irradiance.

The flux can arrive from any direction above the surface, as indicated by the rays. Irradiance is

defined as:

dAdE Φ= (1.2)

where is the radiant flux arriving at the point and dA is the differential area surrounding the point. Φ

The flux can also be leaving the surface due to emission and/or reflection (Fig. 1.1b). The radiant

flux density is then referred to as radiant exitance. As with irradiance, the flux can leave in any

direction above the surface. The definition of radiant exitance is:

dAdM Φ= (1.3)

where is the radiant flux leaving the point and dA is the differential area surrounding the point. Φ

18 Measuring Light

dA dA
Figure 1.1a - Irradiance Figure 1.1b - Radiant exitance

The importance of a “real or imaginary” surface cannot be overstated. It means that radiant flux

density can be measured anywhere in three-dimensional space. This includes on the surface of

physical objects, in the space between them (e.g., in air or a vacuum) and inside transparent media

such as water and glass.

Radiant flux density is measured in watts per square meter.

1.2.4 Radiance

Radiance is best understood by first visualizing it. Imagine a ray of light arriving at or leaving a

point on a surface in a given direction. Radiance is simply the amount of radiant flux contained in this

ray. Period.

A more formal definition of radiance requires that we think of the ray as being an infinitesimally

narrow (“elemental”) cone with its apex at a point on a real or imaginary surface. This cone has a

differential solid angle ωd that is measured in steradians.

A solid angle is the 3-D analog of a two-dimensional angle. Figure 1.2a shows two lines radiating

from the center of a circle of radius r. The angle θ between the lines can measured in terms of the

length of the chord c between them. If c = r, then the angle is one radian. The circumference of a

circle is 2πr.; therefore, there are 2π radians in a circle.

Similarly, Figure 1.2b shows a cone radiating from the center of a sphere of radius r. The solid

angle ω of the cone (which can have any cross-sectional shape) can be measured in terms of the

surface area A of the sphere it intersects as 2rA=ω . If 2rA = , then the solid angle is one

steradian. The area of a sphere is ; therefore, there are 4π steradians in a sphere. 24 rπ

Measuring Light 19
__

r

c
θ

r

Α
ω

Figure 1.2a - 2-D angle Figure 1.2b - 3-D solid angle

We must also note that the ray is intersecting the surface at an angle. If the area of intersection

with the surface has an differential cross-sectional area dA, the cross-sectional area of the ray is

θcosdA , where θ is the angle of between the ray and the surface normal, as shown in Figure 1.3. (The

ray cross-sectional area θcosdA is called the projected area of the ray-surface intersection area dA.

The same term is used when referring to finite areas ∆A.)

Φ

dA cos θ

θ

dA

n

Projected area

Figure 1.3 - A ray of light intersecting a surface

With these preliminaries in mind, we can imagine an elemental cone ωd containing a ray of light

that is arriving at or leaving a surface (Figs. 1.4a and 1.4b). The definition of radiance is then:

([)]θω cos2 ddAdL Φ= (1.4)

where Φ is the radiant flux, is the differential area surrounding the point, dA ωd is the differential

solid angle of the elemental cone and θ is the angle between the ray and the surface normal n at the

point.

The superscript ‘2’ in Equation 1.4 doesn’t mean that anything is being squared. Rather, it

indicates that the infinitesimal amount of flux Φd is divided by the differential area and the dA

differential solid angle ωd .

20 Measuring Light

 dA

dω

Φ n

θ

 dA

dω

Φ n

θ

Figure 1.4a - Radiance (arriving) Figure 1.4b - Radiance (leaving)

Unlike radiant flux density, the definition of radiance does not distinguish between flux arriving at

or leaving the surface. In fact, the formal definition of radiance (ANSI/IES [1986]) states that it can be

“leaving, passing through or arriving at” the surface.

Another way of looking at radiance is to note that the radiant flux density at a point on a surface

due to a single ray of light arriving (or leaving) at an angle θ to the surface normal is ()θcosdAdΦ .

The radiance at that point for the same angle is then ()[]θω cos2 dAdd Φ , or radiant flux density per

unit solid angle.

Radiance is measured in watts per square meter per steradian.

1.2.5 Radiant Intensity

We can imagine an infinitesimally small point source of light that emits radiant flux in every

direction. The amount of radiant flux emitted in a given direction can be represented by a ray of light

contained in an elemental cone. This gives us the definition of radiant intensity:

ωddI Φ= (1.5)

where dω is the differential solid angle of the elemental cone containing the given direction. From the

definition of a differential solid angle (2rdA=ωd), we get:

22 rIdrddAdE =Φ=Φ= ω (1.6)

where the differential surface area dA is on the surface of a sphere centered on and at a distance r from

the source and E is the irradiance at that surface. More generally, the radiant flux will intercept dA at

an angle θ (Fig. 1.5). This gives us the inverse square law for point sources:

2cos dIE θ= (1.7)

Measuring Light 21
__

where I is the intensity of the source in the given direction and d is the distance from the source to the

surface element dA.

θd

n

dA

Figure 1.5 - Inverse square law for point sources

We can further imagine a real or imaginary surface as being a continuum of point sources, where

each source occupies a differential area dA (Fig. 1.6). Viewed at an angle θ from the surface normal n,

the source has a projected area of θcosdA . Combining the definitions of radiance (Eqn. 1.4) and

radiant intensity (Eqn. 1.5) gives us an alternative definition of radiance:

()θcosdAdIL = (1.8)

where dI is the differential intensity of the point source in the given direction.

θ

n

dA

dI

Figure 1.6 - Radiance of a point source

Radiant intensity is measured in watts per steradian.

1.3 Illumination Versus Thermal Engineering

The above definitions are those commonly used in illumination engineering, and are in accordance

with the American National Standard Institute publication “Nomenclature and Definitions for

Illuminating Engineering” (ANSI/IES [1986]). Unfortunately, these definitions differ somewhat from

those used in thermal engineering (e.g., Siegel and Howell [1981]). Radiative heat transfer theory (i.e.,

infrared light) does not use the point source concept. Thermal engineers instead use the term “radiant

intensity ” to describe radiance (watts per unit area per unit solid angle).

22 Measuring Light

The different terminology was of little consequence until the computer graphics community

adapted the concepts of radiative heat transfer to create radiosity theory. In the process of doing so it

adopted thermal engineering’s terminology. This is an unfortunate situation, since computer graphics

also relies on the point source concept for ray tracing.

This book defines radiant intensity as “watts per unit solid angle” and radiance as “watts per unit

area per unit solid angle” to maintain consistency between radiosity and ray tracing theory. You

should remember, however, that many papers and texts on radiosity theory and some computer

graphics texts instead define “radiant intensity” as “watts per unit area per unit solid angle”.

1.4 Photometry

Photometry is the science of measuring visible light in units that are weighted according to the

sensitivity of the human eye. It is a quantitative science based on a statistical model of the human

visual response to light–that is, our perception of light under carefully controlled conditions..

The human visual system is a marvelously complex and highly nonlinear detector of

electromagnetic radiation with wavelengths ranging from about 380 to 770 nanometers (nm). We see

light of different wavelengths as a continuum of colors ranging through the visible spectrum: 650 nm

is red, 540 nm is green, 450 nm is blue, and so on.

The sensitivity of the human eye to light varies with wavelength. A light source with a radiance of

one watt/m2-steradian of green light, for example, appear much brighter than the same source with a

radiance of one watt/m2-steradian of red or blue light. In photometry, we do not measure watts of

radiant energy. Rather, we attempt to measure the subjective impression produced by stimulating the

human eye-brain visual system with radiant energy.

This task is complicated immensely by the eye’s nonlinear response to light. It varies not only with

wavelength, but also with the amount of radiant flux, whether the light is constant or flickering, the

spatial complexity of the scene being perceived, the adaptation of the iris and retina, the psychological

and physiological state of the observer, and a host of other variables.

Nevertheless, the subjective impression of seeing can be quantified for “normal” viewing

conditions. In 1924, the Commission Internationale d’Eclairage (International Commission on

Measuring Light 23
__

Illumination, or CIE) asked over one hundred observers to visually match the “brightness” of

monochromatic light sources with different wavelengths under controlled conditions. The statistical

result–the so-called “CIE photometric curve” shown in Figure 1.7–shows the photopic luminous

efficiency of the human visual system as a function of wavelength. It provides a weighting function

that can be used to convert radiometric into photometric measurements.

Wavelength (nm)

Photopic
luminous
efficiency

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

390 440 490 540 590 640 690 740

Figure 1.7 - CIE photometric curve

Photometric theory does not address how we perceive colors. The light being measured can be

monochromatic or a combination or continuum of wavelengths; the eye’s response is determined by

the CIE weighting function. This underlines a crucial point: the only difference between radiometric

and photometric theory is in their units of measurement. With this thought firmly in mind, we can

quickly review the fundamental concepts of photometry.

1.4.1 Luminous Intensity

The foundations of photometry were laid in 1729 by Pierre Bouguer. In his “L’Essai d’Optique”,

Bouguer discussed photometric principles in terms of the convenient light source of his time: a wax

candle. This became the basis of the point source concept in photometric theory.

Wax candles were used as national light source standards in the 18th and 19th centuries. England,

for example, used spermaceti (a wax derived from sperm whale oil). These were replaced in 1909 by

an international standard based on a group of carbon filament vacuum lamps, and again in 1948 by a

crucible containing liquid platinum at its freezing point. Today, the international standard is a

theoretical point source that has a luminous intensity of one candela (the Latin word for candle). It

emits monochromatic radiation with a frequency of 540 × 1012 Hertz (or approximately 555 nm,

24 Measuring Light

corresponding with the wavelength of maximum photopic luminous efficiency) and has a radiant

intensity (in the direction of measurement) of 1/683 watts per steradian.

Together with the CIE photometric curve, the candela provides the weighting factor needed to

convert between radiometric and photometric measurements. Consider for example a monochromatic

point source with a wavelength of 510 nm and a radiant intensity of 1/683 watts per steradian. The

photopic luminous efficiency at 510 nm is 0.503. The source therefore has a luminous intensity of

0.503 candela.

1.4.2 Luminous Flux (Luminous Power)

Luminous flux is photometrically weighted radiant flux (power). Its unit of measurement is the

lumen, defined as 1/683 watts of radiant power at a frequency of 540 × 1012 Hertz. As with luminous

intensity, the luminous flux of light with other wavelengths can be calculated using the CIE

photometric curve.

A point source having a uniform (isotropic) luminous intensity of one candela in all directions

(i.e., a uniform intensity distribution) emits one lumen of luminous flux per unit solid angle

(steradian).

1.4.3 Luminous Energy

Luminous energy is photometrically weighted radiant energy. It is measured in lumen-seconds.

1.4.4 Luminous Flux Density (Illuminance and Luminous Exitance)

Luminous flux density is photometrically weighted radiant flux density. Illuminance is the

photometric equivalent of irradiance, while luminous exitance is the photometric equivalent of radiant

exitance.

Luminous flux density is measured in lumens per square meter.

1.4.5 Luminance

Luminance is photometrically weighted radiance. In terms of visual perception, we perceive

luminance. It is an approximate measure of how “bright” a surface appears when we view it from a

given direction. Luminance used to be called “photometric brightness”. This term is no longer used in

Measuring Light 25
__

illumination engineering, since the subjective sensation of visual brightness is influenced by many

other physical, physiological and psychological factors.

Luminance is measured in lumens per square meter per steradian.

1.5 Lambertian Surfaces

A Lambertian surface is a surface that has a constant radiance or luminance that is independent of

the viewing direction. In accordance with the definition of radiance (luminance), the radiant

(luminous) flux may be emitted, transmitted and/or reflected by the surface.

A Lambertian surface is also referred to as an ideal diffuse emitter or reflector. In practice there are

no true Lambertian surfaces. Most matte surfaces approximate an ideal diffuse reflector, but typically

exhibit semispecular reflection characteristics at oblique viewing angles. Nevertheless, the Lambertian

surface concept will prove useful in our development of radiosity theory.

Lambertian surfaces are unique in that they reflect incident flux in a completely diffuse manner

(Fig. 1.8). It does not matter what the angle of incidence θ of an incoming geometrical ray is–the

distribution of light leaving the surface remains unchanged.

We can imagine a differential area dA of a Lambertian surface. Being infinitesimally small, it is

equivalent to a point source and so the flux leaving the surface can be modeled as geometrical rays.

The intensity of each ray leaving the surface at an angle θ from the surface normal is given by

Lambert’s Cosine Law:

θI

θθ cosnII = (1.9)

where is the intensity of the ray leaving in a direction perpendicular to the surface. nI

26 Measuring Light

θ

n

dA
Figure 1.8 - Reflection from a Lambertian surface

The derivation of equation 1.9 becomes clear when we remember that we are viewing dA from an

angle θ. For a differential area dA with a constant radiance or luminance, its intensity must vary in

accordance with its projected area, which is θcosdA . This give us:

() dAdIdAdIL n== θcos (1.10)

for any Lambertian surface.

There is a very simple relation between radiant (luminous) exitance and radiance (luminance) for

flux leaving a Lambertian surface:

LM π= (1.11)

where the factor of π is a source of endless confusion to students of radiometry and photometry.

Fortunately, there is an intuitive explanation. Suppose we place a differential Lambertian emitter dA

on the inside surface of an imaginary sphere S (Fig. 1.9). The inverse square law (Eqn. 1.6) provides

the irradiance E at any point P on the inside surface of the sphere. However, θcosDd = , where D is

the diameter of the sphere. Thus:

() θθθ θθ coscoscos 22 DIDIE == (1.12)

and from Lambert’s Cosine Law (Eqn. 1.9), we have:

22 coscos DIDIE nn == θθ (1.13)

which simply says that the irradiance (radiant flux density) of any point P on the inside surface of S is

a constant.

Measuring Light 27
__

dθ

P

Sphere S
n

θ
D

dA

Figure 1.9 - A Lambertian emitter illuminating the interior of a sphere

This is interesting. From the definition of irradiance (Eqn. 1.2), we know that for

constant flux density across a finite surface area A. Since the area A of the surface of a sphere with

radius r is given by:

EA=Φ

224 DrA ππ == (1.14)

we have:

nn IDDIEA ππ ===Φ 22 (1.15)

Given the definitions of radiant exitance (Eqn. 1.3) and radiance for a Lambertian surface (Eqn.

1.10), we have:

LdAdIdAdM n ππ ==Φ= (1.16)

This explains, clearly and without resorting to integral calculus, where the factor of π comes from.

1.6 Volume Light Sources

We see light only through its effects on physical objects. In looking at the world, we “see”

physical objects. More precisely, we perceive the luminance of their surfaces. Bouguer and other early

investigators made this apparent truism an integral part of photometric theory by defining illuminance,

luminous exitance and luminance in terms of physical surfaces.

Physicists later became interested in other aspects of light, including that emitted by plasmas.

What is the luminous exitance or luminance of an electric arc? The glowing gas has no definable

surface! The same goes for the sky overhead, where the blue light we see is due to sunlight scattered

by air and dust molecules from the ground to the outer reaches of the atmosphere. These are clearly

volume sources of light. The definitions of luminous flux density and luminance do not seem to apply.

28 Measuring Light

This problem was overcome by introducing the concept of an imaginary surface, a mathematical

plane drawn in space. It can be positioned and oriented in 3-D space as required, including inside a

volume light source. The traditional photometric definitions were thus retained intact.

The question is, why? Photometric and radiometric theory does not address the properties of any

surface, real or imaginary. Is it necessary to consider surfaces at all? The answer is simple and

unequivocal: no.

1.7 Radiometric Field Theory

Field theory is one of the most powerful mathematical methods used in physics today. At the time

of its development however, most of our present-day radiometric and photometric theory was already

firmly established. Based mainly on the work of Johann Heinrich Lambert [1760] and geometrical

optics, radiometry and photometry make no use of field theory.

Mehmke [1898] was the first to suggest that field theory might have applications in illumination

engineering. His suggestion was later developed into a formal theoretical framework for radiometric

field theory by Yamauti [1932] and Gershun [1936]. Moon and Spencer continued to develop this

theory for another forty-odd years, culminating in their publication of “The Photic Field” (Moon and

Spencer [1981]).

Radiometric field theory does not address light coming from point sources. Rather, it considers a

field of light that permeates three-dimensional space. Yamauti and Gershun referred to this field as a

“light field”, while Moon and Spencer [1981] called it a “photic” field. Photic fields are rigorously

described by Maxwell’s electromagnetic field equations for the special case of zero wavelength

(Moon and Spencer [1981]). They are also 5-D scalar fields, where scalar measurements (irradiance

and radiance) are made in five dimensions: three axes for position (x, y, and z) and two axes for

orientation (vertical and horizontal).

As you might have guessed, the full mathematical details of radiometric field theory are complex

and abstract. This complexity has made it more of a curiosity than a useful tool for everyday

illumination engineering. Very few illumination engineers are even aware of its existence.

Measuring Light 29
__

Nevertheless, radiometric field theory has something to offer: a different view of radiometry and

photometry. This becomes evident when we reconsider radiometry (and by extension photometry)

from first principles.

1.8 Radiometry Reconsidered

The validity of radiant energy and radiant flux is self-evident, since they do not refer to surfaces.

Electromagnetic radiation transports energy through space. We can therefore imagine a field of light–a

photic field–in three-dimensional space, with geometrical rays indicating its direction of flow.

We can monitor this flow with an instrument that detects the radiant flux incident on a small

surface area (its “active surface”). The flux is converted into an electric current I that we can measure

with an ammeter M (Fig. 1.10). By dividing the measured flux by the surface area, we can calculate

the average irradiance at the surface.

Our instrument can be placed anywhere in space; the amount of radiant flux it receives it measures

clearly depends on its position and orientation. If we make the active surface area infinitesimally

small, we can in theory measure irradiance at a mathematical point.

M
I

Figure 1.10 - An irradiance meter

The radiant flux must come from physical objects, either directly from emissive sources or

indirectly through reflection, refraction, diffraction or scattering. Remember however that we are

measuring light; where it comes from is immaterial. We are only interested in measuring radiant flux

and irradiance at a point in space.

In measuring irradiance, our instrument “sees” an entire hemisphere of space. That is, it is

sensitive to rays of light arriving from any direction above the surface of the imaginary plane defined

30 Measuring Light

by the position and orientation of the instrument’s active surface. However, we are measuring

irradiance as a property of a photic field. We do not need to relate this measurement to any surface,

real or imaginary.

This is a subtle but very important point. Radiometric field theory does not change the definition

of radiant flux density (irradiance and radiant exitance). Instead, it changes the way we interpret it.

Radiant flux density is an intrinsic property of a photic field. Its relation to any physical surface is

almost coincidental. We should therefore refer to irradiance or radiant exitance at a surface rather than

of a surface.

1.9 Radiance Redefined

This interpretation of radiant flux density can be extended to the definition of radiance with

interesting results. Suppose we use an opaque shield (oriented perpendicular to the active surface) to

restrict our irradiance meter’s field of view to a finite solid angle ω (Fig. 1.11). It then measures the

average radiance at the active surface for the directions contained within the field of view.

ω

ΦOpaque shieldM

Figure 1.11 - A radiance meter

By using a differential solid angle dω and a differential active surface area dA, we can in theory

measure the radiance at a mathematical point for radiant flux arriving from directly above the surface.

Since the solid angle dω defines a geometrical ray of light that is perpendicular to the active surface,

the area dA coincides with the differential cross-sectional area of the ray. In other words, our

instrument measures the radiance of a ray of light at a point in space. The interpretation is clear:

radiance is an intrinsic property of a geometrical ray of light. It is not a property of any surface, real or

imaginary.

Radiometric field theory simplifies the definition of radiance. It becomes:

1.9.1 Radiance (of a geometrical ray)

The radiance of a geometrical ray at a point in space is defined as:

Measuring Light 31
__

ωdAddL Φ= 2 (1.17)

where Φ is the radiant flux of the ray at the point, dA is the differential cross-sectional area of the ray

and dω is the differential solid angle of an elemental cone containing the ray.

Moon [1942] referred to this definition of radiance as helios. However, it is merely a special case

of the more general definition of radiance (Eqn. 1.4). In particular, it only considers radiant flux

arriving at a point, and it has an implicit divisor of θcos (where the angle θ is zero).

To answer the obvious question, the name of the radiosity rendering program presented in this

book–HELIOS–is in honor of the pioneering work done by Moon and Spencer in the fields of

photometry and radiometry.

1.10 Field Theory and Radiosity

If nothing else, radiometric field theory clearly demonstrates the following axiom:

Radiometry and photometry measure intrinsic properties of a field of light in space. These

measurements are independent of any surface, real or imaginary.

There is an interesting corollary to this axiom: radiometric and photometric theory does not

require a point source. This was implicitly demonstrated in the order of presentation of the

radiometric definitions, where radiant intensity was presented almost as an afterthought. Without a

point source, we would not need to define radiant intensity at all.

The photometric definitions began with luminous intensity only because photometric theory

defines the candela as a basic unit of measurement and derives the definition of lumens from it. This is

a historical artifact from the time of Pierre Bouguer and his wax candles. (We still draw point sources

as a candle with geometrical rays radiating from the flame!) The lumen can be defined from first

principles without resorting to point sources; the candela is just another name for lumens per

steradian.

The inconsequential nature of the point source is important for two reasons. First, there are no

point sources in nature. Even the distant stars have a finite width that can be measured if the telescope

32 Measuring Light

aperture is large enough. We will see in the next chapter that radiosity theory does not require a point

source. In this sense, radiometric field theory provides a clearer understanding of radiosity.

Second, point sources are objects. Ray tracing techniques rely on point sources as the ultimate

source of radiant flux within an environment. The illuminance at a surface due to a point source can

be determined using Lambert’s inverse square law, but only if we know the exact distance from the

surface to the source. This is simple enough for single point sources, but becomes difficult for

extended line and area sources and intractable for volume sources if they are modeled as an array or

continuum of point sources.

The radiosity approach emphasizes light over objects. As we see in the next chapter, the

geometrical relations between objects in an environment are required only to determine their mutual

“form factors”. Radiosity then models the photic field within the environment with no further

reference to these objects. This is the proof of our contention: radiosity models light.

1.11 What is Radiosity?

ANSI/IES [1986] does not define or even mention “radiosity”. This is not unusual–there are many

photometric and radiometric terms whose use is no longer encouraged. Illuminance, for example, used

to be called “illumination”. It was changed to illuminance to avoid confusion with “the act of

illuminating or the state of being illuminated” (ANSI/IES [1986]).

When Moon wrote “The Scientific Basis of Illumination Engineering” in 1936, luminous exitance

was called “luminosity”. Curiously, there was no equivalent term for radiant exitance, so he coined the

term “radiosity” to describe the density of radiant flux leaving a surface.

The illumination engineering community ignored Moon’s proposal. Luminosity was changed to

“luminous emittance” and later to luminous exitance, with radiant exitance following as a consequent.

Meanwhile, the thermal engineering community adopted radiosity (e.g., Siegel and Howell [1981]).

It’s all very confusing. Fortunately, we only need to remember that:

 Radiosity is radiant exitance.

This book takes exception, perhaps unwisely, to the computer graphics community’s use of the

term “radiosity” to describe radiant exitance. While it is an accepted term within the thermal

Measuring Light 33
__

engineering community, it is not acceptable to illumination engineers for a variety of historical

reasons. The computer graphics and illumination engineering communities have many common

interests. If we are to communicate effectively, we must use a common lexicon of definitions. That

lexicon is ANSI/IES [1986].

1.12 Measuring and Perceiving Color

An irradiance or radiance meter is carefully designed to respond equally to light of any wavelength

within the visible spectrum. As such, the meter measures radiant flux, regardless of whether we are

measuring sunlight, monochromatic laser radiation or any other source of visible light.

Suppose that we are using a radiance meter to measure sunlight reflected from a surface, where the

radiant flux consists of a continuum of wavelengths across the visible spectrum (e.g., Fig. 1.12). We

can filter this light such that it has a very narrow bandwidth. For example, we can use a “multilayer

interference” filter that is only transparent to light with wavelengths between 632 nm and 633 nm. If

we could make the filter bandwidth infinitesimally narrow (a physical impossibility), we could

measure spectral radiance, which is expressed in watts per square meter per steradian per nanometer

(ANSI/IES [1986). Following Equation 1.4, spectral radiance is expressed mathematically as:

()[]λθωλ dddAdL cos3Φ= (1.18)

where λ is the wavelength. (On second thought, it might be better to remember the concept rather than

the equation!)

The sum of spectral radiance for each infinitesimally narrow band across the visible spectrum is of

course equal to the radiance we would measure without a filter. In practice, we can divide the

spectrum into bands of finite width and achieve approximately the same result. Suppose we measure

average spectral radiance through red, green and blue filters, where each filter is almost transparent

within its bandwidth and the amount of overlap between the color bands is minimized. The sum of

these averages will closely approximate the measured radiance.

In measuring the distribution of spectral radiance across the visible spectrum, we are measuring

the physical “color” of the radiant flux. The relative amounts of spectral radiance determine what we

perceive as the color of the surface. Red, for example, indicates a preponderance of spectral radiance

34 Measuring Light

at wavelengths between 580 nm and 700 nm, while blue indicates a preponderance of spectral

radiance between 400 nm and 480 nm. According to Figure 1.12, our surface will appear to be

distinctly reddish.

Measuring the color of radiant flux is a relatively straightforward task. However, it is often

difficult to determine what our perception of the color will be. As with photometric quantities, our

response to spectral radiance distribution (color) depends on a host of physical and psychological

variables. The subjective impression of color perception can only be quantified (in a statistical sense)

for carefully controlled “normal” viewing conditions.

Wavelength (nm)

Sp
ec

tr
al

 R
ad

ia
nc

e

0

0.2

0.4

0.6

0.8

1

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680

Figure 1.12 - Spectral radiance distribution

A full discussion of how we perceive color requires at least a book in itself (e.g., Judd and

Wyszecki [1975] or Burnham et al. [1963]). For the purposes of photorealism, however, our viewing

environment is somewhat controlled–typically a color monitor, a photographic print or a color

transparency. Foley et al. [1990], Hill [1990], Watt [1990] and other tutorial and reference texts offer

informative overviews of color theory for the computer graphics enthusiast. Perhaps the best reference

on the subject, however, is Hall [1989].

You might question the brevity of this discussion on color theory, especially since this book is

devoted to the subject of photorealistic images. If so, you are absolutely correct. Unfortunately, the

topic of radiosity and its implementation fills a book in itself. As interesting and important as the topic

of color theory is, there is simply no space to discuss it in any greater depth.

1.13 Spectral Radiant Exitance

Given the definition of spectral radiance, we can compare it with the definition of radiant exitance

and derive the definition of spectral radiant exitance as:

Measuring Light 35
__

()λλ dAddM Φ= 2 (1.19)

which is measured in watts per square meter per nanometer.

This is one of the two key concepts in radiosity theory (the other is luminance). More specifically,

it is the concept of an average spectral radiant exitance that is measured through a red, green or blue

filter. The importance of these concepts will become evident in the next chapter.

We can remember this concept in a colloquial sense: the average spectral radiant exitance of a real

or imaginary surface is simply the amount of radiant flux–visible light–per square meter leaving the

surface, where the light is within a given band of colors (e.g., red, green or blue).

1.14 Reflectance and Transmittance

Having seen that radiometric and photometric quantities are intrinsic properties of a field of light

in space, we must remind ourselves that:

Reflectance and transmittance are intrinsic properties of physical objects. They are independent of

any surrounding field of light.

In the simplest case, we have opaque objects with ideal diffuse or ideal specular surfaces. Here,

reflectance is a dimensionless number that indicates the percentage of incident radiant flux reflected

from each surface.

The reflectance of any given surface typically varies with wavelength. Thus, we can refer to

inherent spectral reflectance as the reflectance of a surface within an infinitesimally narrow band of

wavelengths. We can further refer to the spectral reflectance distribution as the “color” of the surface.

Defined in this manner, color is an intrinsic property of physical surfaces that is independent of any

surrounding field of light. We know from experience that the perceived color of an object can vary,

depending on the spectral irradiance distribution of the light illuminating it. For example, an object

that appears blue in sunlight will be jet black when viewed under a monochromatic red light. This,

however, is a consequence of the surrounding photic field, not the object itself.

There is more to reflectance than this, of course. In general, the reflectance of an opaque object

with semispecular surfaces is a function of the angle of incidence of the illuminating flux and the

36 Measuring Light

viewing angle. This must be expressed as a multidimensional bidirectional reflectance distribution

function, or BRDF.

Transparent and translucent objects complicate matters even further, especially when the objects

are inhomogeneous. We can easily measure and express the transmittance of an ideal transparent

object with specular surfaces. For ideal transparent objects with semispecular surfaces, we can express

transmittance as a multidimensional bidirectional transmittance distribution function. In real life, the

problem becomes more intractable. Reflection, refraction, diffraction, scattering and polarization

effects all contribute to the distribution of radiant flux within and through transparent and translucent

objects. Accurately modeling these effects typically requires a physically accurate model of the object

being illuminated.

We shall find in the next chapter, however, that the radiosity approach is best suited to modeling

environments with opaque and ideally diffuse surfaces. Thus, while we should be aware of the

reflectance and transmittance of physical objects, we can consider reflectance in its simplest form: the

percentage of (spectral) radiant flux reflected from an ideal diffuse surface.

1.15 Conclusions

The material presented in this chapter is unquestionably tedious reading for someone interested

solely in computer programming. Clearly though, the fundamental definitions of radiometry and

photometry are required reading if we are to fully understand radiosity theory.

The very brief introduction to radiometric field theory is recommended reading. Defining

radiometric and photometric theory in terms of a photic field is more than mere semantic juggling; it

offers a new paradigm for lighting research and radiosity studies. More importantly, it clarifies the

contention that “radiosity models light.”

References

ANSI/IES [1986]. American National Standard Nomenclature and Definitions for Illuminating

Engineering, ANSI/IES RP-16-1986, Illuminating Engineering Society of North America, New York,

NY.

Bouguer, P. [1729]. L’Essai d’Optique, Paris.

Measuring Light 37
__

Burnham, R.W., R.M. Hanes and C.J. Bartleson [1963]. Color: A Guide To Basic Facts and Concepts,

Wiley, New York, NY.

Cornsweet, T.N. [1977]. Visual Perception, Academic Press, New York, NY.

Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes [1990]. Computer Graphics: Principles and

Practice (Second Edition), Addison-Wesley, Reading, MA.

Gershun, A. [1936]. Svetovoe Pole (The Light Field), Moscow. Translated by P. Moon and G.

Timoshenko in J. Mathematics and Physics Vol. XVIII (1939), Massachusetts Institute of

Technology, 51 - 151.

Hall, R. [1989]. Illumination and Color in Computer Generated Imagery, Springer-Verlag, New

York, NY.

Hecht, E. and A. Zajac [1987]. Optics, 2nd edition, Addison-Wesley, Reading, MA.

Hill, F.S., Jr. [1990]. Computer Graphics, Macmillan, New York, NY.

Judd, D. and G. Wyszecki [1975]. Color in Business, Science and Industry, Wiley, New York, NY.

Kaku, M. [1994]. Hyperspace, Oxford University Press, Oxford, UK.

Lambert, J.H. [1760]. Photometria sive de mensura et gradibus luminus, colorum et umbrae. German

translation with annotations by E. Anding [1892], Ostwald’s Klassiker der Exakten Wissenschaften

Nos. 31 - 33, Leipzig.

Mehmke, R. [1898]. “Über die mathematische bestimmung der helligkeit in räumen mit

tagesbeleuchtung, insbesondere gemäldesälen mit deckenlict”, Zs. für Math. u. Phys. 43, 41 - 57.

Moon, P. [1936]. The Scientific Basis of Illumination Engineering, McGraw-Hill, New York, NY.

Moon, P. [1942]. “A System of Photometric Concepts”, J. Optical Society of America 32 (June), 348 -

362.

Moon, P. and D.E. Spencer [1981]. The Photic Field, MIT Press, Cambridge, MA.

Siegel, R. and J.R. Howell [1981]. Thermal Radiation Heat Transfer, Hemisphere Publishing,

Washington, DC.

Yamauti, Z. [1932]. “Theory of Field of Illumination” (in English), Researches of the Electrotechnical

Laboratory No. 339 (October), Ministry of Communications, Tokyo, Japan.

38 Measuring Light

Watt, A. [1989]. Fundamentals of Three-Dimensional Computer Graphics, Addison-Wesley,

Reading, MA.

Chapter 2
Radiosity Theory

2.0 Introduction

Radiosity models light. More specifically, the radiosity approach models the field of light–the photic

field–within an environment. We saw this on an informal basis in the introduction; it is now time to

develop a firm mathematical foundation for our intuition.

Our understanding of how light is measured allows us to consider both ray tracing and radiosity in

greater detail. Returning to our empty room (Fig. 2.1), we can now ask how we might model both the flow

of light and the photic field within it.

Figure 2.1 - Modeling the flow and field of light in an empty room

2.1 Ray Tracing Techniques

Light flows through space and optically homogeneous media (air, water, glass, and so forth) in a

straight line, which we model as a geometrical ray. This is the essence of the ray tracing approach.

We can model the direct illumination in an environment using conventional ray tracing techniques. We

know that the illuminance at a point on any surface due to a single point source can be calculated using the

inverse square law (Eqn. 1.7). We can model the light fixture (an area source) as a finite 2-D array of n

point sources (e.g., Verbeck and Greenberg [1984]).

40 Radiosity Theory
__

Si

θi

d i

Area source

Figure 2.2 - Modeling an area source as an array of point sources

The illuminance at a point on a surface is then given by:

(∑
=

=
n

i
iii dIE

1

2cosθ) (2.1)

where Ii is the luminous intensity of point source Si in its given direction. In other words, we simply add

together the contributions of the n point sources to determine the illuminance E.

Another quick note on mathematical terminology. The “Σ” symbol (pronounced “sigma”) indicates

summation. If, for example, we have n variables xi, where 1 ≤ i ≤ n, then the expression:

∑
=

=
n

i
ixy

1

means that y is equal to the sum of the variables xi, or y = x1 + x2 + x3 + ... + xn. The lower and upper

subscripts correspond to the lower and upper limits of the summation.

You may sometimes see the sigma symbol without these limits, but only when they are obvious and

therefore implied.

There are a few complications, of course. We need to determine whether each point source i is visible

from the surface being illuminated (that is, its visibility), and we need to know its distance from the

point on the surface. We also need to know the luminous intensity for each source in its given direction.

Modeling an area source as a 2-D array of point sources is a straightforward but computationally expensive

technique.

id

iI

Radiosity Theory 41
__

Modeling the indirect illumination is more challenging. A ray of light reflected from an ideal specular

surface remains a single ray. In general however, most physical surfaces are semispecular or diffuse

reflectors. This means that a single ray of light will be reflected as an infinite number of rays (Fig. 2.3).

Specular Semi-specular Diffuse

Figure 2.3 - Reflection from specular and diffuse surfaces

We saw in the introduction that this represents a nearly intractable computation problem. We can trace

as many rays as we want or have time for, but this will still represent a vanishingly small portion of the

number of rays actually in the environment. Yes, ray tracing accurately models the flow of light in an

environment. However, it provides at best an almost insignificant sampling of the field of light that

permeates it.

Backwards ray tracing (e.g., Glassner [1989) provides a partial solution by tracing a finite number of

rays from the eye to the objects being modeled. As such, it attempts to sample the photic field at a specific

point in space. Consider, however, what this means. A ray of light is traced backwards from the eye to the

object is originated from. In Figure I.2, the ray luminance at the point of intersection was due to two rays

from the point source and a specular surface. In reality, however, life is more complex. The ray luminance

at the point of intersection is due to the direct illuminance from the source (which is in general an area or

volume source) and the indirect illuminance due to multiple reflections from many semi-specular and

diffuse objects in the environment (Fig. 2.4).

42 Radiosity Theory
__

Figure 2.4 - Backward ray tracing through multiple reflections

This is the dilemma of ray tracing techniques. Each and every reflection from a diffuse or semi-specular

surface results in an infinity of rays from a single incident ray. The ray tracing approach can only sample

these rays at each surface. Each reflection results in a geometric decrease in the overall size of the sample

(infinity, infinity square, infinity cubed, …). As such, it cannot accurately model the photic field at a

specific point in space, since in general the entire field contributes to its value at any point in space.

This explains the inability of ray tracing techniques to accurately model soft shadows and other subtle

effects of lighting (such as color bleeding). These effects can only be achieved through the use of ad hoc

techniques that are better at generating visually appealing imagery than they are at modeling the physical

reality of light.

Once again, this is not to disparage ray tracing techniques. The dual of the above argument is that

specular highlights are essential to truly photorealistic images. In a sense, however, they represent the

luminance of individual rays of light. Considering Figure 2.2 and Equation 2.1, the illuminance at a point

in space (i.e., our eye) is due to the sum of many of rays. The contribution of any single ray is minuscule.

Nevertheless, we may perceive one or more individual rays as being dazzlingly luminous against a muted

background.

This is where the ray tracing approach excels. We see–at least to within the limits of resolution of the

human eye–the luminance of individual rays of light; we do not see or perceive the illuminance of our

Radiosity Theory 43
__

retinae. The ray tracing approach is essential if we are to accurately model the luminance of specularly-

reflected rays.

In summary, ray tracing accurately models the flow of light in an environment. Unfortunately, it does

not and cannot model the field of light with the same degree of accuracy. For this, we need a fundamentally

different approach.

2.2 The Radiosity Approach

… and so we return again to our empty room, with each surface neatly divided into a mesh of elements

that we shall call patches (Fig. 2.5). We also assume that each surface is a Lambertian reflector, and that

the light source is a Lambertian emitter.

Figure 2.5 - An empty room with surfaces subdivided into patches

The assumption that all surfaces are Lambertian is important–remember that these surfaces have a

constant luminance (or, more generally, radiance) that is independent of the viewing direction. For a

Lambertian reflector, the reflected luminous (radiant) flux is independent of the angle of the incident flux.

From the point of view of a single patch, it does not matter where the light is coming from–if we know its

illuminance (irradiance) and reflectance, we can calculate its luminous (radiant) exitance and luminance

(radiance). For the sake of convenience, we shall henceforth discuss radiosity in radiometric terms; the

substitution of photometric quantities is inconsequential.

We know that the distribution of flux leaving a Lambertian surface is given by Lambert’s Cosine Law

(Eqn. 1.9). We can therefore calculate the flux emitted in any given direction by the light source patch.

Simple geometry allows us to determine which patches are visible from each light source patch; this allows

44 Radiosity Theory
__

us to determine their irradiances. Each irradiated patch in turn reflects some of its incident flux back into

the room. Again using Lambert’s Cosine Law, we can determine the irradiances of all the patches visible to

it.

This process is clearly iterative, and proceeds until all of the reflected flux is finally absorbed. If we

keep a record of how much flux each patch reflects and/or emits, we end up knowing its radiant exitance

M. Since the patch is Lambertian, we can divide M by π to determine its radiance L (from Equation 1.11).

Confused? Read “Radiosity Explained” in the introduction and try again. The two explanations are

equivalent, except that the above uses the more rigorous terminology we developed in the previous chapter.

Finally, we know the geometry of each patch in the room. If we know its radiance (and consequently its

luminance), we can use a 3-D graphics package to directly render a photorealistic image of the room (as a

collection of shaded 3-D polygons) from any viewpoint.

The restriction of Lambertian surfaces is not fundamental. As presented above, it simply allows us to

employ Lambert’s Cosine Law as a computational convenience. Suppose, for example, that we have a non-

Lambertian light source whose spatial flux distribution characteristics are known. Again using the room

geometry, we can determine the flux (i.e., the direct illumination) incident on any given patch. If the

projected width of the patch as seen from the source is small enough in comparison to the distance between

then, we can “shoot” a ray from the source to the center of the patch. The luminance of this ray will be

approximately the same as the infinite number of other source rays which directly illuminate the patch, and

so we can approximate the incident flux as the ray luminance times the patch’s projected area (with

appropriate allowances for occluding objects). By considering any non-emitting patch that reflects flux as a

“secondary light source”, we can generalize this concept to any semi-specular or specular surface.

That’s all there is to it! We have exactly paraphrased our discussion in the introduction, this time

adding the proper radiometric/photometric terminology and a few explanatory comments. True, we have

necessarily glossed over a few minor implementation details ... well, maybe not so minor. We will examine

these details in depth in the following chapters.

Summarizing once again, it is evident that radiosity accurately models the field of light within an

environment. The contribution of the entire photic field is taken into account at every point in space, and so

Radiosity Theory 45
__

the subtle lighting effects of soft shadows and color bleeding are naturally accounted for. Moreover, the

radiosity approach solves for the entire photic field at all points in space. We can choose any point and

direction in the environment and generate a photorealistic view without having to repeat the radiosity

calculations.

In that ray tracing techniques model the flow of light in an environment, we might visualize ray tracing

as a dynamic process that follows photons of light as they interact with objects in the environment. In

contrast, radiosity is a static process. The incessant generation and flow of photons results in a static field

that permeates the environment. Radiosity models the intrinsic nature of this photic field.

Radiosity and ray tracing are in a sense dual processes (Smits et al. [1992]). In practical terms, radiosity

models the field of light that determines the wide brush of lighting and its subtle nuances. Ray tracing, its

indispensable complement, is needed to provide the specular highlights as finishing touches. Only together

are they are capable of providing truly photorealistic images … with a few exceptions.

2.3 What Radiosity Cannot Do

To be honest, existing radiosity methods model the field of light in a purely reflective environment.

Nowhere in the above discussion is there any mention of the refraction of light through transparent objects.

There is also no mention of scattering, diffraction or other optical phenomena that are easily modeled with

ray tracing techniques.

If you think about it, these phenomena are most often localized to the objects and their immediate

environs. A prism casts a rainbow of light on a surface; a glass sphere projects a circle of light on a

tabletop and presents a topsy-turvy view of the environment seen through it. While we see and perceive

these phenomena as prominent visual effects, they rarely influence the surrounding photic field to any

significant extent. Their effect on the global environment is localized to those ray of light that directly

interact with them.

There are hybrid techniques that combine radiosity methods with ray tracing techniques to accurately

model these phenomena (e.g., Wallace et al. [1987], Rushmeier and Torrance [1990] and Chen et al.

[1991]). Once you understand both approaches, it is not difficult to create a hybrid rendering program.

46 Radiosity Theory
__

These, however, are future challenges for the motivated reader. In this book, our concern will be

understanding and implementing the radiosity approach.

2.4 An Aside: Local Versus Global Illumination

The computer graphics community has traditionally divided the problem of modeling the flow of light

into two separate subproblems: local and global illumination. Local illumination is that light which travels

directly from the source to the surface being illuminated. In other words, direct illumination. Global

illumination is light that has been reflected, refracted, scattered, diffracted or whatever by one or more

objects. In other words, indirect illumination.

To some extent, this division reflects the viewpoint and heritage of ray tracing techniques and their

emphasis on point sources and objects. If we approach the problem in terms of a photic field, the division

between local and global illumination becomes less important.

The radiosity approach is often characterized in the literature as a solution to the global illumination

problem. In a sense, it is. However, it is more productive to remember that ray tracing models objects,

while radiosity models light.

2.5 Form Factors

Perhaps the greatest surprise in developing a radiosity rendering program comes from realizing that its

most difficult aspect has nothing whatsoever to do with light per se. The claim in Section 2.2 that “simple

geometry allows us to determine which patches are visible from each patch” is true, but only in an intuitive

sense. Solving this problem analytically is anything but!

Stated in more formal terms, the problem is this: knowing the radiant exitance of one Lambertian patch,

what portion of its flux will be received by a second patch in an environment?

Figure 2.6 shows this problem in its simplest form. The relative position and orientation of the two

patches and is entirely arbitrary. Patch is a Lambertian emitter that is emitting some quantity of

flux , while patch is receiving a portion of its emitted flux,

iE jE iE

iΦ jE ijΦ . The dimensionless fraction

iΦijΦ is called the form factor from to , and is denoted as either or, more compactly, . iE jE EjEiF − ijF

Radiosity Theory 47
__

Φ ij
ni

nj

Ei

Ej

Figure 2.6 - Patch receiving flux from patch jE ijΦ iE

The problem is deceptively simple. The total flux emitted by patch is iE iii AM=Φ , where is its

radiant exitance and is its area. The flux received by is

iM

iA jE iij ijF Φ=Φ . Unfortunately, calculating

, can be an extremely difficult problem in analytic geometry. It is so difficult, in fact, that a general

solution was not found until 1993 (Schröder and Hanrahan [1993]), over 260 years after the problem was

first formulated by Johann Lambert!

ijF

We will devote all of Chapter Five to calculating the form factor between two patches in an

environment. In the following section, we will develop the underlying mathematics that we will later need.

2.5.1 Form Factor Geometry

A word of encouragement. While the following equations involve rudimentary calculus, you do not

need any knowledge of this subject to understand them. Look carefully: the terms of these equations are

treated no differently than any others in algebra.

Remember also that these equations describe physical concepts. As long as you understand these

concepts, the formal mathematics are of secondary importance.

Consider the two differential area (that is, infinitesimally small) patches dE and shown in Figure

2.7, where is a Lambertian emitter. The fraction of flux emitted by that is received by is the

differential form factor from to , denoted as .

i

i

jdE

idE dE jdE

idE jdE dEjdEidF −

48 Radiosity Theory
__

dEi

dEj

dω
r

θ

θ

i

j

nj

ni

Figure 2.7 - Form factor geometry between two differential elements

Recalling the discussion of solid angles and projected areas from the previous chapter, the solid angle

ωd subtended by as seen from dE is: jdE i

d dAj j rω θ= cos 2 (2.2)

where dA is the differential area of . From Equation 1.4, the differential flux j jdE ()iθΦ leaving in

the direction

idE

iθ is:

() () ijiiii ddAL Φ==Φ ωθθθ cos (2.3)

where ()iL θ is the radiance of in the direction idE iθ . Since is a Lambertian emitter, idE () ii LL =θ (a

constant) for all directions iθ . Substituting this and Equation 2.2 for ωd gives:

2coscos rdAdAL jijiiij θθ=Φ (2.4)

Since is a Lambertian emitter, the total emitted flux idE iΦ is given by Equation 1.16, or:

Φ i i i i iM dA L dA= = π (2.5)

The form factor for two differential area patches is thus: dEjdEidF −

dF
L dA dA

L dA r
dA rdEi dEj

i i j i j

i i
i j j− = =

cos cos
cos cos

θ θ
π

θ θ π2
2 (2.6)

which is a satisfying simple result.

Now, suppose that is the Lambertian emitter and is receiving its flux, namely . We can

determine the reciprocal differential form factor by simply reversing the patch subscripts in

jdE idE jiΦ

dEidEjdF −

Radiosity Theory 49
__

Equation 2.6. Doing so illustrates the reciprocity relation for form factors between any two differential

areas dE and : i

idFdA

jdE

dEj dA=

dEidF
j

∫EjdEi−

Ej

EjdEi− ∑
∞

=1

cos

jE

r

dEi

dEjn

dEidEjjdEi dF −− (2.7)

This is an extremely important result for radiosity theory. Why this is so will be seen in the next section and

again in Chapter Six.

Now the fun begins. We can compute the form factor from a differential Lambertian emitter

 to a finite area by integrating over the area of :

EjdEiF −

jidE jE E

j
A

ji

A
dEj dA

r
F

j

∫== − 2

coscos

π

θθ
 (2.8)

Equation 2.8 is an area integral equation. What it says is this: divide the finite area into an infinite jE

number of differential areas, calculate their differential form factors, and add the results together to obtain

dEiF − for the finite area (Fig. 2.8). It is equivalent to: jE

jn
jn jn

jnin dA
r

F = 2

cos

π

θθ

where is divided into an infinite number of infinitesimal areas , each with its own angles jndE inθ and

jnθ , and distance . jn

This is all you need to know about integral calculus in order to understand radiosity theory!

Ej

Figure 2.8 - Determining the form factor by area integration over EjdEiF − jE

50 Radiosity Theory
__

Next, we need to determine the form factor from a finite area Lambertian emitter with a

uniform radiance distribution across its surface to a differential area patch . We note that the total flux

 emitted by is:

dEjEiF − iE

jdE

iΦ iE

Φ i i iM A= (2.9)

while the flux Φ received by is: ij jdE

i
A

dEjdEiiij dAdFM
i

∫ −=Φ (2.10)

(Note that we are now integrating over the area of rather than .) iE jE

From our definition of a form factor, we then have:

∫
∫

−

−

− ==
Φ

Φ
=

i

i

A
idEjdEi

iii

A
idEjdEii

i

ij
dEjEi dAdF

AAM

dAdFM

F 1 (2.11)

which yields:

i
A

ji

i

j
dEjEi dA

rA
dA

F
i

∫=− 2

coscos

π

θθ
 (2.12)

Of course, our interest is in patch-to-patch form factors, or the form factor from a finite area to

another finite area . For this, we need to integrate over the areas of and . (In physical terms, we

need to consider the contribution of each differential area of to the illuminance of). The flux

received by is then:

iE

jE iE jE

iE jE

jE

i
A

EjdEiiij dAFM
i

∫ −=Φ (2.13)

so that the form factor is: EjEiF −

∫
∫

−

−

− ==
i

i

A
iEjdEi

iii

A
iEjdEii

EjEi dAF
AAM

dAFM

F 1 (2.14)

From Equation 2.8, this yields the double area integral equation:

Radiosity Theory 51
__

ij
A A

ji

i
EjEi dAdA

rA
F

i j

∫ ∫=− 2

coscos1
π

θθ
 (2.15)

The reciprocal form factor is obtained by reversing the patch subscripts. This demonstrates that

the reciprocity relation (Equation 2.7) also holds true for finite area patches. In other words:

EiEjF −

jijiji FAFA = (2.16)

The importance of the reciprocity relation cannot be overstated. It says that if we can somehow

calculate the form factor from an patch to another patch , then we can trivially calculate the

reciprocal form factor . This is a key concept in radiosity theory.

ijF

ji

iE jE

F

The above equations implicitly assume that the two patches and are fully visible to each other.

In a complex environment, two patches may be partially hidden by one or more occluding objects. If so,

then a suitable term must be added to account for the occlusions, such as:

iE jE

ijij
A A

ji

i
EjEi dAdAHID

rA
F

i j

∫ ∫=− 2

coscos1
π

θθ
 (2.17)

where the term accounts for the possible occlusion of each point of patch as seen from each

point of patch .

ijHID

iE

jE

We now know the relation between the geometry of two patches and their form factors. However,

equations involving double integration are often difficult to solve, and Equation 2.17 is no exception, with

or without occlusion. For our needs, there are no practical analytic solutions for this equation. This leaves

us with numerical integration, which will be the primary topic of Chapter Five.

As a final comment, Equation 2.17 does not consider the medium separating the two patches. In the

example of our empty room, the medium is air. Each ray of light traveling from patch to patch does so in a

straight line without absorption, refraction or scattering. In other words, the medium is considered to be

non-participating. This is not always the case; airborne dust, smoke and fog are a few examples of

participating media. These introduce complications that the radiosity approach can handle only with severe

computational difficulty (e.g., Rushmeier and Torrance [1987]). The issues involved are unfortunately well

beyond the scope of this book.

52 Radiosity Theory
__

To summarize:

1. The form factor from a differential area to another differential area is given by: idE jdE

 2coscos rdAdF jjidEjdEi πθθ=−

 where iθ and jθ are the angles between a line connecting and and their respective surface idE jdE

normals (Fig. 2.7), and is the differential area of . jdA jdE

2. The form factor from a finite area patch to another finite area patch is given by: iE jE

 ij
A A

ji

i
ij dAdA

rA
F

i j

∫ ∫= 2

coscos1
π

θθ

 There are no practical analytic solutions for this equation. It must typically be solved using numerical

methods (see Chapter Five).

3. The reciprocity relation states that:

 jijiji FAFA =

 applies for both differential and finite area patches and . iE jE

4. The form factor concept assumes that the medium separating the patches does not absorb, refract or

scatter light. In other words, it is a non-participating medium.

2.5.2 Form Factor Properties

A form factor is a dimensionless constant representing the fraction of flux emitted by one surface patch

that is received by another–and no more. It takes into account the shape and relative orientation of both

surfaces and the presence of any obstructions, but is otherwise independent of any surface properties.

Form factors were first developed for use in thermal and illumination engineering (see Section 2.7),

where they have been variously called shape, configuration, angle and view factors. The thermal

engineering literature is filled with discussions of form factor algebra, of which the reciprocity relation is

only one example. Most of these discussions relate to a time when form factors were calculated by hand.

Some properties, however, are still useful. For example, the summation relation states that:

Radiosity Theory 53
__

Fij
j

n

=
∑ =

1

1 (2.18)

for any patch in a closed environment with n patches. (A closed environment is one where all of the

flux emitted by any one patch must be received by one or more patches in the environment. In other words,

none of it can escape into space.) This summation includes the form factor , which is defined as the

fraction of flux emitted by that is also directly received by . Clearly, can only be nonzero if

is concave. Thus:

iE

iiF

iiFiE iE iE

Fii = 0 if E is planar (i.e., flat) or convex, and i

Fii ≠ 0 if E is concave i

Most radiosity methods model surfaces as two-dimensional grids of planar polygons (see Chapter

Three), so that is always zero. iiF

2.6 The Radiosity Equation

If patches E and are both Lambertian surfaces, the form factor indicates the fraction of flux

emitted by that is received by . Similarly, the reciprocal form factor indicates the fraction of

flux emitted by that is received by . However, form factors in themselves do not consider the flux

that is subsequently reflected from these receiving patches.

i jE ijF

iE jE jiF

jE iE

Remember that we are trying to determine the radiant exitance of each patch in an n-patch

environment. This exitance is clearly due to the flux initially emitted by the patch plus that reflected by it.

The reflected flux comes from all of the other patches visible to in the environment.

iM

iE

iE

jE

Consider any patch that is fully visible to . The flux leaving patch is . The

fraction of this flux received by patch is

jE iE

M

jE jjj AM=Φ

iE jijjji FA=Φ . Of this, the flux subsequently reflected by

 is iE jijji FAMρ , where iρ is the reflectance of . This gives us: iE

M M A F Aij i j j ji i= ρ (2.19)

where is defined as the exitance of due to the flux received from . Using the reciprocity

relation, we can rewrite this as:

ijM iE jE

54 Radiosity Theory
__

M M Fij i j ij= ρ (2.20)

To calculate the final exitance of patch , we must consider the flux received by from all

other patches . Thus:

iM iE iE

jE

M M M Fi oi i j
j

n

ij= +
=
∑ρ

1

 (2.21)

where is the initial exitance of patch due to its emitted flux only. Rearranging terms results in: oiM iE

∑
=

−=
n

j
ijjiioi FMMM

1
ρ (2.22)

We can express this equation for all the patches through as a set of n simultaneous linear

equations:

1E nE

()
()

()nnnnnnnnnn

nn

nnn

FMFMFMMM

FMFMFMMM
FMFMFMMM

ρρρ

ρρρ
ρρρ

+++−=

+++−=
+++−=

K

K

K

K

22110

2222222112202

112211111101

 (2.23)

which we can write in matrix form as:







































−−−

−−−
−−−

=





















nnnnnnnn

n

n

on

o

o

M

M
M

FFF

FFF
FFF

M

M
M

K

K

KKKK

K

K

K

2

1

21

22222212

11121111

2

1

1

1
1

ρρρ

ρρρ
ρρρ

 (2.24)

In matrix notation, this can be succinctly expressed as:

()MTIM −=o (2.25)

where I is the identity matrix, M is the final nn× 1×n exitance vector, is the initial exitance

vector, and T is an matrix whose (i,j)th element is . (If you find this terminology confusing, see

Section 3.10 for a quick review of elementary matrix theory.)

oM 1×n

n×n iji Fρ

Radiosity Theory 55
__

This is the elegantly simple radiosity equation: a set of simultaneous linear equations involving only

surface reflectances1, patch form factors and patch exitances. Solving these equations provides us with the

radiant exitance, radiance and ultimately luminance of every patch in the environment it describes.

It is evident that we first require the initial patch exitances . Clearly, only those patches that emit

radiant flux will have non-zero values, which we can obtain from the description of the light sources.

oiM

Second, we must determine the form factors for each pair of patches in the environment. Equation

2.22 implies that we must determine form factors for an environment with n patches. However, the

reciprocal form factors can be trivially determined using the reciprocity relation, thus providing n(n-

1)/2 factors. Also, if the patches are flat or convex, the form factors are zero. We are then left with:

ijF

2n

jiF

iiF

() () 22321 22 nnnnnnn ≈−=−−− (2.26)

form factors that must be determined from the patch geometries. To put this into perspective, a reasonably

complex environment with 10,000 patches requires some fifty million form factor determinations.

This is a very big number for desktop computers. Allowing four bytes per floating point number for

each form factor means we need some 190 megabytes of random access memory. Even if we had this

amount of memory, it would take a very long time to calculate 50 million numbers.

Fortunately, there are a variety of acceleration techniques for form factor determination that allow us to

circumvent these time and memory constraints. We will closely examine several of these techniques in

1The reflectance of a surface generally varies according to the wavelength of light–this is what gives a

surface its color when viewed under “white light” illumination. Recalling the discussion of spectral

reflectance distribution from the previous chapter, we can divide the spectrum into three component

bands–red, green and blue–and determine an average spectral reflectance value for each band. (This

approach maps directly onto the familiar red-green-blue [RGB] color model of computer graphics. Other,

more sophisticated color models may use four or more spectral bands.) The radiosity equation can then be

solved independently for each color band.

56 Radiosity Theory
__

Chapter Five. Even so, you should be aware that form factor determination typically consumes some ninety

percent of the CPU time required to render a radiosity-based image.

On the other hand, there is no reason to be discouraged by these numbers. A personal desktop computer

with four megabytes of RAM is more than adequate for producing photorealistic images in a few minutes

or less. The image shown in Color Plate 1 took 40 seconds to render on a 66 MHz ‘486 IBM PC-AT clone.

Compare this to the hours of computation time often needed to render a single ray traced image!

Our problem then is to solve the radiosity equation for the final patch exitances . The matrix is

typically too large for direct methods such as Gaussian elimination. However, it is ideally suited for

iterative techniques such as the Jacobi and Gauss-Seidel methods (e.g., Golub and Van Loan [1983], Varga

[1962]). These methods are guaranteed to converge to a solution, since the matrix is always strictly

diagonally dominant for flat and convex patches. That is, is always less than one, while is

always zero. Furthermore, they converge very quickly, typically in six to eight iterations (Cohen and

Greenberg [1985]). We will examine these methods and a more powerful and useful variation called

progressive refinement in Chapter Six.

iM

iji Fρ iiF

This then is our basic radiosity algorithm: any one of several iterative techniques that solve the

radiosity equation. There are strong connections between these techniques and the physical flow of light in

an environment. Again, however, we will have to wait until Chapter Six before we can examine them in

detail.

2.6.1 Understanding the Radiosity Equation

Solving the radiosity equation for an environment is equivalent to determining its “energy balance”.

The amount of radiant flux reflected and absorbed by a patch must equal the amount of flux incident on its

surface. Flux is energy per unit time. If this balance is not maintained, the patch will steadily accumulate or

lose energy over time. The final solution to the radiosity equation therefore ensures that the flow of energy

is balanced for all patches in the environment.

The radiosity equation reveals why most radiosity methods are view-independent. Once we have

determined the form factors for an environment and solved for the final patch exitances, we can quickly

render a photorealistic image of the environment as a collection of 3-D polygons from any viewpoint. The

Radiosity Theory 57
__

solution to the radiosity equation thus describes the photic field permeating the environment. In doing so, it

allows us to move anywhere within this field and visualize it in any direction.

Equation 2.24 also shows that radiosity methods model light rather than objects. The radiosity equation

solves for the field of light–the photic field–within an environment. The only contribution made by the

objects comprising the environment is in defining the form factors and surface reflectances.

Recall from Section 1.9 that we can place an irradiance meter (Fig. 1.10) anywhere in physical space

and orient it in any direction. We can then measure the irradiance at that point in space. Here, we have a

virtual space defined by the description of patches in a computer file. Virtual or not, we can place a

differential patch with zero reflectance anywhere in this space and orient as we please. By determining the

form factors from the surrounding environment to this patch, we can calculate its irradiance.

We can similarly calculate the radiance at any point P in any direction in a virtual space with the

mathematical analogue of a radiance meter (Fig. 1.11). If we assume that the normal of our differential

patch intersects a point Q on some surface in the environment, the radiance at the point P in the given

direction is equal to the radiance of the ray of light emanating from the point Q and intersecting our patch.

A photic field is completely characterized by its radiance at any point and direction in the space

containing the field. In physical space, we can measure irradiance and radiance. In virtual space, we can

calculate these properties by solving the radiosity equation. Clearly then, radiosity models light.

One problem with the radiosity approach in general is that each patch must necessarily have a finite

area. An implicit assumption of the radiosity equation is that each patch then has a uniform irradiance and

radiant exitance distribution across its surface. This is not true in real life–illuminated surfaces exhibit

continuous gradations of radiance. Accurately modeling these smooth changes within the radiosity

equation requires the use of extremely small patches–and an ever larger matrix to solve. (There are a

number of elegant solutions to this problem. However, they are at the forefront of current radiosity research

and so beyond the scope of this book. The best that can be done is to provide a brief survey in Chapter

Eight.)

On a more positive note, it is evident that we need to determine the form factors for a particular

environment only once. The radiosity equation then allows us to quickly change the patch reflectances and

initial patch exitances without any further calculations other than solving the equation. In more colloquial

58 Radiosity Theory
__

terms, we can quickly dim, brighten and turn off lights, change the light source colors, change the surface

reflectance and color of any object in the environment, and even redefine which objects emit light. The

details of this magic–which can be difficult at best using ray tracing techniques–are also discussed in

Chapter Eight.

2.6.2 Time and Space Considerations

We need to discuss one more concept regarding radiosity theory, this time from computer science.

Actually, there are two closely related concepts to consider: time and space complexity.

Time complexity is a measure of how long it will take a computer to solve a problem using a specific

algorithm. It is not a measure of time per se, but rather a measure of how many elementary CPU operations

(add, multiply, divide and so forth) that must be performed to solve the problem. Similarly, space

complexity is a measure of the maximum amount of memory the algorithm requires in order to solve the

problem.

The radiosity equation solves for the final exitances of n patches. Solving this equation using (for

example) Gaussian elimination would require operations, where c is a constant. However, constant

factors are not considered in complexity calculations. This ensures that the time and space complexity

measures are independent of the CPU or compiled program used to implement the algorithm. The time

complexity of Gaussian elimination is thus expressed as O . This so-called “big-O” notation is thus a

measure of how much time is required to solve the problem relative to the number of patches n.

3cn

)(3n

This also demonstrates one reason why Gaussian elimination is ill-suited to solving the radiosity

equation. If an environment with 10,000 patches requires t minutes to solve its corresponding radiosity

equation, an environment with 100,000 patches (which is a large but not unreasonable number for complex

architectural scenes) will require approximately one thousand times as long to solve. We might with clever

programming reduce this to five hundred times, but the basic issue remains–the Gaussian elimination

method does not “scale well” to larger problems.

The Gauss-Seidel method is somewhat better in that its time complexity is for one iteration (see

Chapter Six for details). However, its space complexity is determined by the number of form factors that

must be stored in memory, which is approximately

)(2nO

22n . Ignoring the constant factor, this is a space

Radiosity Theory 59
__

complexity of O . Clearly, the Gauss-Seidel method also does not scale well to problems involving

complex environments with many thousands of patches.

)(2n

How bad is this? Given an environment with 100,000 patches, solving the corresponding radiosity

equation using Gauss-Seidel iteration would require the solution of one billion floating point equations and

four gigabytes of memory. At least one iteration is required before an initial approximation of the final

exitance values becomes available. Without these, we cannot generate an image.

The good news is that there are progressive refinement algorithms that solve the radiosity equation in

reasonable time. Those we will examine in Chapter Six have time and space complexities of O . That is,

they need memory to store at most n form factors at any one time, and they can generate an initial image in

 time. Subsequent images become progressively more refined, quickly approaching the photorealistic

quality of the final image.

)(n

)(nO

While there are some disadvantages to these algorithms (see Chapter Six for details), they make

radiosity a practical approach to photorealistic image generation. More importantly, they scale well as the

environment becomes increasingly more complex.

2.7 Radiosity History

The radiosity approach to photorealistic image generation was independently introduced to the

computer graphics community by Goral et al. [1984] and Nishita and Nakamae [1985], who based their

work on radiative heat transfer theory and thermal engineering techniques (e.g., Siegel and Howell [1992]).

At that time, various radiosity algorithms had been employed by the thermal engineering community for

some thirty years (e.g., Hottel [1954]). Hottel referred to his algorithm as the “zone method” (Hottel and

Sarofim [1967]), calling radiosity “an undesirable word”. However, Sparrow [1963] had earlier noted that

the algorithms proposed by Hottel [1954], Eckbert and Drake [1959] and Gebhart [1961] were essentially

equivalent, and had labeled them “radiosity methods”. By 1967, the term had become part of thermal

engineering’s lexicon.

This is not the beginning of the story, however. The fundamental equation of radiant flux transfer

between ideal diffuse surfaces (Equation 2.22) was apparently first recognized by Yamauti [1926] and

Buckley [1927]. It was Ziro Yamauti who first suggested solving this Fredholm integral of the second kind

60 Radiosity Theory
__

(e.g., Heckbert [1991]) using finite difference equations. His suggestion was formalized as a lighting

calculation technique in H.H. Higbie’s “Lighting Calculations” (Higbie [1934]). In the absence of

computers however, it was not widely practiced by illumination engineers.

One exception was the work done by Parry Moon and Domina Eberle Spencer in the 1940s. They used

Yamauti’s technique (which they called the “interflection method”) to study lighting in empty rooms

(Moon and Spencer [1946]). Credit for the first photorealistic images created using radiosity methods must

go to Moon and Spencer–they exhibited synthetic photographs of empty rooms with luminous ceilings at

the 1946 National Technical Conference of the Illuminating Engineering Society of North America

(O’Brien and Howard [1959]). In the absence of computers, they calculated the luminance of each patch by

hand, cut out paper squares from Munsell color charts and pasted them together to form their images,

which were then photographed (Spencer [1993]). These photographs are reproduced in Moon and Spencer

[1948].

The introduction of digital computers in the 1950’s saw an international resurgence of interest in

Yamauti’s work. Numerous papers were presented to the illumination engineering community, including

those by Caracciolo [1952] , Centeno and Zagustin [1953], Dourgnon [1955], O’Brien [1955], Phillips

[1957] and O’Brien and Howard [1959]. Radiosity theory research has continued within this community to

the present day (e.g., DiLaura and Franck [1993]).

The illumination and thermal engineering communities have variously referred to radiosity theory and

methods as “interflection”, “interreflection”, “lumped parameter”, “network”, “finite difference”, “lumped

sum”, “zone”, “zonal cavity”, “zone analysis” and “radiative transfer”. Today, illumination engineers use

the term “radiative transfer theory”, while thermal engineers and the computer graphics community use

“radiosity theory”. Terminology aside, the two theories are equivalent.

2.8 Conclusions

In modeling an environment, the radiosity theory we have developed makes the following assumptions:

1. All surfaces are Lambertian.

2. Each patch has a uniform exitance distribution.

3. Each patch has a uniform irradiance distribution.

Radiosity Theory 61
__

4. The intervening medium is non-participating.

While none of these assumptions represent fundamental constraints for radiosity theory, they make

solving the radiosity equation a computationally tractable problem for personal desktop computers.

There is of course much more that can be said about radiosity theory. For instance, reducing the patches

from finite to differential areas leads to the Neumann series and a generalization of the Jacobi iteration

method. It also leads to Fredholm integrals of the second kind, Galerkin and point collocation methods (an

adaptation of finite element techniques) and other mathematical esoterica. There are also much more

sophisticated methods for representing the radiosity equation. (See Chapter Eight for brief survey of the

relevant literature.)

Those readers interested in pursuing this topic further are strongly advised to read Cohen and Wallace

[1993]. There is no better reference text to be found on the subject. Be forewarned, however, that portions

of their text are aimed at graduate-level computer science students and researchers. You will need a strong

background in integro-differential equations and other fields of higher mathematics to understand it

completely. On the other hand, it includes a wealth of technical details that, while beyond the scope of this

book, are easily understood.

We have seen in this chapter that radiosity does in truth model light. We have also seen the elegant

simplicity of the approach, both in its intuitive concepts and in its mathematical foundations. With this

understanding, we can now develop the tools and techniques needed for a radiosity-based rendering

program.

References

Buckley, H. [1927]. “On the Radiation from the Inside of a Circular Cylinder”, Philosophical Magazine

(London) 4, 753.

Caracciolo, F.B. [1952]. “Calcolo dell’illuminazione artificiate degli ambienti chiusi”, L’Ingegnere 10

(Italy).

Centeno, M. and A. Zagustin [1953]. “Interflectance in Two Dimensions”, Universidad Central de

Venezuela, Caracas, Venezuela.

62 Radiosity Theory
__

Chen, S.E., H.E. Rushmeier, G. Miller and D. Turner [1991]. “A Progressive Multi-Pass Method for

Global Illumination”, Computer Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 165-174.

Cohen, M.F. and D.P. Greenberg [1985]. “The Hemi-Cube - A Radiosity Solution for Complex

Environments”, Computer Graphics 19:3 (Proc. ACM SIGGRAPH ‘85), 31 - 40.

Cohen, M.F. and J. Wallace [1993]. Radiosity and Realistic Image Synthesis, Academic Press, San Diego,

CA.

Dourgnon, J. [1955]. “La Theorie des Reflexions Mutuelles Appliquee sur Calcul du Facteur

d’Utilisation”, Cahiers du Centre Scientifiquee Technique du Batiment 27 (September).

Eckbert, E.R.G. and R.M. Drake [1959]. Heat and Mass Transfer, McGraw-Hill, New York, NY.

DiLaura, D.L. and P. Franck [1993]. “On Setting Up and Solving Large Radiative Transfer Systems”, J.

Illuminating Engineering Society 22:2 (Summer), 3 - 7.

Gebhart, B. [1961]. Heat Transfer, McGraw-Hill, New York, NY.

Glassner, A.S., Ed. [1989]. An Introduction to Ray Tracing, Academic Press, San Diego, CA.

Golub, G.H. and C.F. Van Loan [1983]. Matrix Computations, John Hopkins University Press, Baltimore,

MD.

Goral, C.M., K.E. Torrance, D.P. Greenberg and B. Battaile [1984]. “Modeling the Interaction of Light

Between Diffuse Surfaces”, Computer Graphics 18:3 (Proc. ACM SIGGRAPH ‘84), 213 - 222.

Heckbert, P.S. [1991]. “Simulating Global Illumination Using Adaptive Meshing”, Ph.D. Thesis, U. of

California Berkeley Technical Report UCB/CSD 91/636.

Higbie, H.H. [1934]. Lighting Calculations, John Wiley & Sons, New York, NY.

Hottel, H.C. [1954]. “Radiant Heat Transmission”, in W.H. McAdams, Ed., Heat Transmission, McGraw-

Hill, New York, NY.

Hottel, H.C. and A.F. Sarofim [1967]. Radiative Transfer, McGraw-Hill, New York, NY.

Moon, P. and D.E. Spencer [1946]. “Lighting Design by the Interflection Method”, J. Franklin Institute

242, 465.

Moon, P. and D.E. Spencer [1948]. Lighting Design, Addison-Wesley, Cambridge, MA.

Radiosity Theory 63
__

Nishita, T. and E. Nakamae [1985]. “Continuous Tone Representation of Three-Dimensional Objects

Taking Account of Shadows and Interreflection”, Computer Graphics 19:3 (Proc. ACM SIGGRAPH ‘85),

23 - 30.

O’Brien, P.F. [1955]. “Interreflections in Rooms by a Network Method”, J. Optical Society of America

45:6 (June), 419 - 424.

O’Brien, P.F. and J.A. Howard [1959]. “Predetermination of Luminances by Finite Difference Equations”,

Illuminating Engineering 64:4 (April), 209 - 218.

Phillips, R.O. [1957]. “The Calculation of Interreflected Illumination and Luminances in Rooms, Using an

Electronic Computer”, School of Architecture, New South Wales University.

Rushmeier, H.E. and K.E. Torrance [1987]. “The Zonal Method for Calculating Light Intensities in the

Presence of a Participating Medium”, Computer Graphics 21:4 (Proc. ACM SIGGRAPH ‘87), 293 - 302.

Rushmeier, H.E. and K.E. Torrance [1990]. “Extending the Radiosity Method to Include Specularly

Reflecting and Translucent Materials”, ACM Trans. Graphics 9:1, 1 - 27.

Schröder, P. and P. Hanrahan [1993]. “On the Form Factor Between Two Polygons”, Computer Graphics

Proceedings (SIGGRAPH ‘93 Conference), 163 - 164.

Siegel, R. and J.R. Howell [1992]. Thermal Radiation Heat Transfer, Third Edition, Hemisphere

Publishing, Washington, DC.

Smits, B.E., J.R. Arvo and D.H. Salesin [1992]. “An Importance-Driven Radiosity Algorithm”, Computer

Graphics 26:2 (Proc. ACM SIGGRAPH ‘92), 273 - 282.

Sparrow, E.M. [1963]. “On the Calculation of Radiant Interchange Between Surfaces”, in W. Ibele, Ed.,

Modern Developments in Heat Transfer, Academic Press, New York, NY.

Spencer, D.E. [1993]. Private communication.

Varga, R.S. [1962]. Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.

Verbeck, C.P. and D.P. Greenberg [1984]. “A Comprehensive Light-Source Description for Computer

Graphics”, IEEE Computer Graphics & Applications 4:7, 66 - 75.

Wallace, J.R., M.F. Cohen and D.P. Greenberg [1987]. “A Two-Pass Solution to the Rendering Equation:

A Synthesis of Ray Tracing and Radiosity Methods”, Computer Graphics 21:4 (Proc. ACM SIGGRAPH

‘87), 311 - 320.

64 Radiosity Theory
__

Yamauti, Z. [1926]. “The Light Flux Distribution of a System of Interreflecting Surfaces”, J. Optical

Society of America 13:5 (November), 561.

 P A R T

II
Tools of the Trade

.
But what Trade art thou? Answer me directly ...

Julius Caesar
Wm. Shakespeare, 1601

The tools of the trade are one: a graphics package to manage and display three-dimensional polygons.

Chapter Three examines polygon representations and view transformations. Chapter Four reviews viewing

systems, polygon clipping, hidden surface elimination, scan conversion and incremental shading

algorithms.

These tools are not part of the radiosity approach per se, and may be available as callable library

functions in certain environments. Even so, it's always a good idea to know your tools before embarking on

a major project.

Chapter 3
Building An Environment

3.0 Introduction

Having laid the theoretical foundations of radiosity, we can now begin writing a radiosity-based

rendering program. From Chapter Two, we see that our program will have to perform the following tasks:

1. Build the environment

2. Determine the form factors

3. Solve the radiosity equation

4. Render the environment

Figure 3.1 - Radiosity-based rendering program outline

In this and the following chapter we consider the tasks of building and rendering environments. These

are not part of the radiosity approach per se. However, our photic fields are due to and defined by their

environments. To model a field of light then, we first need to model its environment. For most radiosity

methods, this means representing objects as collections of three-dimensional polygons.

Our tools for doing so–that is, algorithms and data structures–include vector mathematics, view

transformations, polygon clipping, hidden surface elimination and polygon scan conversion. These are

familiar tools of the trade for 3-D computer graphics programming of any sort. Indeed, many high-end

graphics programming environments include them as callable library functions, while some desktop

workstations and advanced video display subsystems offer them as built-in hardware or firmware features.

In general however, we must assume that they are not available. We shall build–and in doing so better

understand–our own set of tools.

Building An Environment 67
__

The goal of this particular chapter is to develop a 3-D graphics toolkit for building environments. The

coverage given the underlying algorithms and data structures will be neither rigorous nor comprehensive;

to do so would fill the remainder of this book and more. Instead, the emphasis will be on developing a set

of C++ classes sufficient to model collections of 3-D polygons. Those readers interested in a more

definitive approach to 3-D computer graphics are encouraged to consult one of the many excellent

reference texts, including Foley et al. [1990], Hill [1990], Watt [1989] and Rogers and Adams [1976].

We must also take a minimalist approach to user interface design. In particular, we will develop a

simple parsing program that reads an ASCII text file and translates it into a representation of an

environment in memory. The complexity of our environments will therefore be limited to those we can

generate by hand using a text editor.

Of course, we will ultimately want to create complex and visually interesting environments consisting

of thousands to hundreds of thousands of polygons. In practical terms, this is a task best performed with a

commercial computer-aided drafting (CAD) program such as AutoCAD. Fortunately, we do not need most

of the features of this expensive product; there are more reasonably priced CAD programs that offer all of

the functionality we need. Specifically, we require three features: 1) the ability to draw in three

dimensions; 2) a command that renders curved surfaces as polygon meshes; and 3) the ability to generate

AutoCAD-compatible DXF files.

The DXF graphics file format is a de facto standard in the CAD industry. While it has several

deficiencies that limit its usefulness for radiosity rendering applications, these can be overcome with some

discipline on the part of the draftsperson. We can create complex environments using a commercial CAD

program, generate a DXF file, and use it as a basis for generating input files for our radiosity renderer.

We will develop a data file format later in this chapter that is optimized for radiosity applications. A

program (including an explanatory text file and full C++ source code) that partially converts DXF files into

this format is included with the diskette accompanying this book. That, however, is later; right now we

need to design and code our graphics toolkit.

68 Building An Environment
__

3.1 Global Definitions

We begin with an include file that defines a few global typedefs and constants. Yes, it’s trivial and

boring, but we have to start somewhere.

// GENERAL.H - General Definitions

#ifndef _GENERAL_H
#define _GENERAL_H

#ifndef _NOT_WIN_APP
#define STRICT // Win32 API compatibility
#include <windows.h> // MS-Windows application
#endif

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#ifdef _NOT_WIN_APP
#define FALSE 0
#define TRUE 1

typedef int BOOL; // Boolean flag
typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;
#endif

#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))
#endif

#ifndef min
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif

#define PI 3.141592654
#define MIN_VALUE 1.0e-10 // Minimum value
#define MAX_VALUE 1.0e10 // Maximum value

inline double RadToDeg(double r)
{ return r * 180.0 / PI; }

inline double DegToRad(double d)
{ return d * PI / 180.0; }

inline double GetNormRand()
{ return (double) rand() / (double) RAND_MAX; }

#endif

Listing 3.1 - GENERAL.H

Building An Environment 69
__

GENERAL.H assumes MS-Windows 3.1 or Windows NT to be its target environment. If you have

another environment in mind, be sure to define _NOT_WINAPP somewhere for your compiler. (Most C++

compilers allow you to specify global definitions from the command line or workplace shell.)

3.2 Vector Mathematics

Next, we need two C++ classes to define and manipulate 3-D points and vectors. Many C programmers

create a Point structure and then typedef a Vector structure as follows:

typedef struct Point
{ float x, y, z; }
Point;

typedef Point Vector;

While this works, it obscures the mathematical definition of a vector. In particular, a point defines a

position in space; a vector defines a direction. This has important consequences for properly defined point

and vector classes. There are mathematical operations we can perform on points that have no meaning for

vectors, and vice versa. For instance, we can determine the distance between two points, but not vectors.

Thus, a vector class cannot–or at least should not–be derived from a point class, despite their similarities.

On the other hand, we can and should define an abstract base class for points and vectors that

encapsulates their similarities. Thus:

// VECTOR3.H - 3-D Vector and Point Classes

#ifndef _VECTOR3_H
#define _VECTOR3_H

#include <math.h>
#include "general.h"

class Vector3; // Forward reference

class Space3 // 3-D co-ordinates
{
 protected:
 float x; // X-axis co-ordinate
 float y; // Y-axis co-ordinate
 float z; // Z-axis co-ordinate

 public:
 Space3() { };
 Space3(double xval, double yval, double zval)
 {
 x = (float) xval;
 y = (float) yval;
 z = (float) zval;
 }

70 Building An Environment
__

 double GetX() { return x; }
 double GetY() { return y; }
 double GetZ() { return z; }

 void SetX(double xval) { x = (float) xval; }
 void SetY(double yval) { y = (float) yval; }
 void SetZ(double zval) { z = (float) zval; }
};

class Point3 : public Space3 // 3-D point
{
 public:
 Point3() : Space3() { };

 Point3(double xval, double yval, double zval) :
 Space3 (xval, yval, zval)
 { };

 // Add vector v to point p
 friend Point3 operator+(Point3 p, Vector3 v);

 // Add point p to vector v
 friend Point3 operator+(Vector3 v, Point3 p);

 friend class Vector3;
};

class Vector3 : public Space3 // 3D vector
{
 public:
 Vector3() : Space3() { };

 Vector3(double xval, double yval, double zval) :
 Space3 (xval, yval, zval)
 { };

 Vector3(Point3 &p) : Space3()
 { x = p.x; y = p.y; z = p.z; }

 Vector3(Point3 &start, Point3 &end) : Space3()
 {
 x = end.x - start.x;
 y = end.y - start.y;
 z = end.z - start.z;
 }

 // Return vector length
 double Length()
 { return sqrt(x * x + y * y + z * z); }

 // Assign scalar
 Vector3 &operator=(double s)
 {
 x = (float) s;
 y = (float) s;
 z = (float) s;

 return *this;
 }

Building An Environment 71
__

 // Add/assign vector v
 Vector3 &operator+=(Vector3 &v)
 { x += v.x; y += v.y; z += v.z; return *this; }

 // Subtract/assign vector v
 Vector3 &operator-=(Vector3 &v)
 { x -= v.x; y -= v.y; z -= v.z; return *this; }

 // Multiply/assign by scalar s
 Vector3 &operator*=(double s)
 {
 x *= (float) s;
 y *= (float) s;
 z *= (float) s;

 return *this;
 }

 // Divide/assign by scalar s
 Vector3 &operator/=(double s)
 {
 x /= (float) s;
 y /= (float) s;
 z /= (float) s;

 return *this;
 }

 // Negation
 Vector3 operator-()
 {
 Vector3 temp; // Temporary 3-D vector

 temp.x = -x;
 temp.y = -y;
 temp.z = -z;

 return temp;
 }

 // Add vector v2 to vector v1
 friend Vector3 operator+(Vector3 v1, Vector3 v2)
 {
 Vector3 temp; // Temporary 3-D vector

 temp.x = v1.x + v2.x;
 temp.y = v1.y + v2.y;
 temp.z = v1.z + v2.z;

 return temp;
 }

 // Subtract vector v2 from vector v1
 friend Vector3 operator-(Vector3 v1, Vector3 v2)
 {
 Vector3 temp; // Temporary 3-D vector

 temp.x = v1.x - v2.x;
 temp.y = v1.y - v2.y;

72 Building An Environment
__

 temp.z = v1.z - v2.z;

 return temp;
 }

 // Multiply vector v by scalar s
 friend Vector3 operator*(Vector3 v, double s)
 {
 Vector3 temp; // Temporary 3-D vector

 temp.x = v.x * (float) s;
 temp.y = v.y * (float) s;
 temp.z = v.z * (float) s;

 return temp;
 }

 // Multiply scalar s by vector v
 friend Vector3 operator*(double s, Vector3 v)
 { return v * s; }

 // Divide vector v by scalar s
 friend Vector3 operator/(Vector3 v, double s)
 {
 Vector3 temp; // Temporary 3-D vector

 temp.x = v.x / (float) s;
 temp.y = v.y / (float) s;
 temp.z = v.z / (float) s;

 return temp;
 }

 // Divide scalar s by vector v
 friend Vector3 operator/(double s, Vector3 v)
 { return v / s; }

 // Normalize
 Vector3 &Norm()
 {
 double len = Length();

 if (len < MIN_VALUE)
 len = 1.0;

 x /= (float) len;
 y /= (float) len;
 z /= (float) len;

 return *this;
 }

 // Return dot product of vectors v1 and v2
 friend double Dot(Vector3 &v1, Vector3 &v2)
 { return (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z); }

 // Return cross product of vectors v1 and v2
 friend Vector3 Cross(Vector3 &v1, Vector3 &v2)
 {
 Vector3 temp; // Temporary 3-D vector

Building An Environment 73
__

 temp.x = v1.y * v2.z - v1.z * v2.y;
 temp.y = v1.z * v2.x - v1.x * v2.z;
 temp.z = v1.x * v2.y - v1.y * v2.x;

 return temp;
 }
};

#endif

Listing 3.2 - VECTOR3.H

and:

// VECTOR3.CPP - 3-D Point and Vector Classes

#include "vector3.h"

// Add vector v to point p
Point3 operator+(Point3 p, Vector3 v)
{
 Point3 temp; // Temporary 3-D point

 temp.x = p.x + (float) v.GetX();
 temp.y = p.y + (float) v.GetY();
 temp.z = p.z + (float) v.GetZ();

 return temp;
}

// Add point p to vector v
Point3 operator+(Vector3 v, Point3 p)
{ return p + v; }

Listing 3.3 - VECTOR3.CPP

The above Vector3 class includes two friend functions–Dot and Cross–that may not be familiar to you.

They aren’t difficult to understand, and they are incredibly useful in computer graphics. Remembering that

vectors represent directions, the dot product of two vectors v1 and v2 is related to the cosine of the angle θ

between them (Fig. 3.2a). Mathematically, it is defined as:

v v v v1 2 1 2⋅ = cosθ

where v1 and v2 indicate the lengths of vectors v1 and v2 respectively. If both vectors are normalized

(i.e., have unit lengths), then their dot product is equal to the cosine of the angle θ between them. A dot

product of two vectors is a scalar (a single number).

The dot product of two vectors is easily calculated as the sum of the products of their component co-

ordinates, or:

74 Building An Environment
__

v v1 2⋅ = ∗ + ∗ + ∗v v v v v vy1x 2x 1y 2 1z 2z

The cross product of two vectors v1 and v2 is a third vector vC in a direction perpendicular to the plane

of v1 and v2 and with a length vC equal to the area of the parallelogram described by them (Fig. 3.2b).

Mathematically, it is defined as:

v v v1 2 C× =

where the length is:

v v vC 1 2= sinθ

and its three component co-ordinates are given by:

2y1z2z1y vvvv ∗−∗=Cxv

vCy = ∗ − ∗v v v v1z 2x 1x 2z
vCz = ∗ − ∗v v v v1x 2y 1y 2x

The direction of the cross product vector can be quickly determined without mathematics using the

right-hand rule mnemonic. Looking at Figure 3.2b, imagine grasping vC in your right hand such that your

thumb points in its direction. Your fingers will then always curl around vC from v1 to v2. (This assumes a

right-handed co-ordinate system; a left-handed co-ordinate system would have vC pointing in the opposite

direction.)

Finally, the class constructors Vector3(Point3 &) and Vector3(Point3 &, Point3 &) define bound

vectors, which have both a direction and a starting position. There is no need to create a separate data type

for bound vectors, since we can model them using our Vector3 class. Their starting positions will be

implied by their context.

Building An Environment 75
__

v1

v2

θ

v1

v2
θ

cv

Figure 3.2a - Dot Product Figure 3.2b - Cross Product

3.3 Rectangular and Spherical Co-ordinates

While our Vector3 class is based on the commonly used rectangular co-ordinate system, it is sometimes

more convenient and even necessary to specify 3-D vectors in spherical co-ordinates. For example, we will

need in Chapter Four to specify a direction of view from a point in the environment. Spherical co-ordinates

allow a more intuitive user interface for this task, particularly if the direction must be specified from the

keyboard.

We could store both rectangular and spherical co-ordinates in the Vector3 class. However, this

redundant information would consume inordinate amounts of memory if applied to every Vector3 object.

Since we shall rarely need both co-ordinate types for the same object, we shall instead define a separate

C++ class for spherical co-ordinate vectors and convert between co-ordinate systems as necessary.

Converting from spherical to rectangular co-ordinates is the easier of the two tasks. Given the length

r , the horizontal angle (or colatitude) θ, and the vertical angle (or azimuth) φ of a vector r (Fig. 3.3), its

equivalent rectangular co-ordinates { }zyx rrr ,, can be determined from:

r
r

r

x

y

z

=

=

=

r
r

r

sin cos
sin sin

cos

φ θ

φ

φ

θ (3.1)

Determining the spherical co-ordinates of a vector r from its rectangular representation requires a bit

more care. The requisite formulae are:

()
()xy

z

zyx

rr
r

rrr

,arctan
arccos

222

=

=

++=

θ

φ r

r

 (3.2)

76 Building An Environment
__

z

y

x

φ

θ

r

Figure 3.3 - Rectangular and spherical co-ordinates

where r is the vector length and the function arctan(y,x) is the two-argument form of the arctangent

function. It returns:

arctan(y/x) if x > 0
arctan(y/x) + π if x < 0
π 2 if x = 0 and y > 0
−π 2 if x = 0 and y < 0

This function is available in most C++ implementations as the standard library function atan(y, x).

Encapsulating these formulae in a class gives us:

// SPHERIC3.H - 3-D Spherical Co-ordinate System Class

#ifndef _SPHERIC3_H
#define _SPHERIC3_H

#include "vector3.h"

class Spheric3 // 3-D spherical co-ordinate system
{
 private:
 double length; // Vector length
 double horz; // Horizontal angle (in radians)
 double vert; // Vertical angle (in radians)

 public:
 Spheric3(double len = 1.0, double h = 0.0, double v =
 0.0)
 { length = len; horz = h; vert = v; }

 double GetHorz() { return horz; }
 double GetLength() { return length; }
 double GetVert() { return vert; }
 void SetHorz(double h) { horz = h; }
 void SetLength(double len) { length = len; }
 void SetVert(double v) { vert = v; }

Building An Environment 77
__

 // Convert spherical to rectangular co-ordinates
 void SpherToRect(Vector3 *pv)
 {
 pv->SetX(length * sin(vert) * cos(horz));
 pv->SetY(length * sin(vert) * sin(horz));
 pv->SetZ(length * cos(vert));
 }

 // Convert rectangular to spherical co-ordinates
 void RectToSpher(Vector3 &v)
 {
 length = v.Length();
 vert = acos(v.GetZ() / length);
 horz = atan2(v.GetY(), v.GetX());
 }
};

#endif

Listing 3.4 - SPHERIC3.H

3.4 Polygons

We saw in the previous chapter that the radiosity approach subdivides each surface of an environment

into a mesh of elements called “patches”, where each patch is a three-dimensional polygon. A polygon

mesh is the simplest mathematical representation of a surface (Fig. 3.4).

Most 3-D CAD programs model curved surfaces as polygon meshes. Unfortunately, many of them do

not allow the user to specify which side of the surface is exterior to an object. Clearly only one side of the

surface is visible. Nevertheless, programs such as AutoCAD can only distinguish sides (and their

subsequent visibility) by inference from the surface’s placement in an environment. This is a nuisance, to

say the least. For our purposes, we will consider each surface and its constituent polygons to have two

sides, only one of which is exterior to an object.

Polygons can be flat (i.e., planar), convex or concave (i.e., nonplanar). Unfortunately, nonplanarity

introduces a number of unwelcome complexities. For instance, the direction of the normal vector varies

across the polygon surface, and the curve of the surface must be represented somehow. Since most

radiosity methods assume flat patches, we will ignore these complexities and consider only planar

polygons.

78 Building An Environment
__

Polygon

Surface

Figure 3.4 - Polygon mesh representation of a surface

A planar polygon can be uniquely represented by an ordered list of vertices (Fig. 3.5), where by

definition the vertices all lie on the same two-dimensional plane. Looking at the visible side of the polygon,

the vertices are ordered such that they follow a counterclockwise path around the polygon edges. This is

essential! We can then use the vertices to define the polygon normal n. If we define vectors and as

 and respectively, then n is given by the cross product of the two vectors:

1v 2v

01 pp − 03 pp −

n v v1 2= × (3.3)

or, to use an example of our Point3 and Vector3 class notation:

Point3 p0(0.0, 0.0, 0.0);
Point3 p1(1.0, 0.0, 0.0);
Point3 p2(1.0, 1.0, 0.0);
Point3 p3(0.0, 1.0, 0.0);

Vector3 v1(p0, p1);
Vector3 v2(p0, p3);

Vector3 n = Cross(v1, v2));
n.Norm(); // Normalize vector

While a polygon can have any number of vertices, it becomes awkward to manage the data structures

needed to represent them. For our purposes, we need consider only two polygon primitives: triangles and

quadrilaterals. All of our polygons will have four vertices–triangles will be represented as having equal

third and fourth vertices. We will also assume that our polygons are simple (i.e., none of their edges cross

one another, thereby forming two triangular polygons from a quadrilateral polygon) and that they are not

degenerate (i.e., they must have finite areas).

Building An Environment 79
__

p0(x,y,z)

p3(x,y,z)

p2(x,y,z)

p1(x,y,z)

n

Ordered List Representation

{ p0, p1, p2, p3 }

v2(x,y,z)

v1(x,y,z)

Figure 3.5 - Ordered list representation of planar polygon

A polygon can also be convex or concave in another sense, as shown in Figure 3.6. A convex planar

polygon is one in which you can stretch an imaginary rubber band around it and not have any gaps between

it and the polygon edges.

Concave planar polygons are somewhat more difficult to deal with in computer graphics. Rather than

address these difficulties in this book, we shall simply issue a fiat to ourselves: all quadrilateral polygons

must be convex.

Figure 3.6a - Convex planar polygon Figure 3.6b - Concave planar polygon

3.4.1 Polygon Visibility

Since a polygon only has one visible side (its face), we can ask whether we can see it from a given

point in space. A visibility test called “backface elimination” or “culling” allows us to quickly identify

which polygons face away from our viewing position (Fig. 3.7).

80 Building An Environment
__

θ

n

s

Polygon face

Figure 3.7 - Polygon visibility test

The test is very simple: the polygon face is only visible if the angle θ between the polygon normal n

and the line of sight vector s is less than ±90 degrees. Recalling the formula for the dot product of two

vectors and (and noting that s is pointing in the opposite direction from n), it’s evident that the

angle θ between n and s will be less than ±90 degrees only if the their dot product is less than zero. Thus:

1v 2v

IF 0=⋅ sn
 Polygon is visible
ELSE
 Polygon is not visible
ENDIF

In terms of our Vector3 class notation, this becomes:

Vector3 normal, sight;

if (Dot(normal, sight) < (float) 0.0)
 return TRUE;
else
 return FALSE;

Our dot product function Vector3::Dot requires only three multiply and two addition operations,

making polygon visibility determination very fast. This is an important consideration, since we will be

viewing many thousands of polygons in a complex 3-D environment. Backface culling allows us to quickly

eliminate roughly half the polygons from further consideration before performing the computationally

expensive operations of view transformation, clipping, hidden surface elimination and scan conversion (to

be discussed in the next chapter).

We can now see why we must define the vertices of a polygon in counterclockwise order–doing so

ensures that the polygon normal points away from the visible face. Without this ordering, our simple

backface culling algorithm wouldn’t work.

Building An Environment 81
__

3.4.2 Polygon Areas

We shall later need to know the area of a polygon. If we limit our attention to planar triangles (Fig.

3.8), there is a very elegant answer given by the cross product:

A = ×v v1 2 2 (3.4)

where A is the area and v1 and v2 are vectors defined by the polygon vertices. (Any convex planar

quadrilateral can of course be decomposed into two triangles.)

Why this works becomes clear when we consider the physical interpretation of the cross product

operation. Remember that the magnitude of the cross product of two vectors is equal to the area of the

parallelogram described by them (Fig 3.2b). Our triangle is exactly one half of the parallelogram,

regardless of which vertices we use to define the vectors.

An example using our Point3 and Vector3 classes is:

Point3 p0(0.0, 0.0, 0.0);
Point3 p1(1.0, 0.0, 0.0);
Point3 p2(0.0, 1.0, 0.0);

Vector3 v1(p0, p1);
Vector3 v2(p0, p3);

Vector3 temp = Cross(v1, v2);
area = temp.Length() / (float) 2.0;

v1

v2

v

p0

p1

p2c

Figure 3.8 - Area of a triangular polygon

3.4.3 Polygon Centers

We shall also later need to know the center of a polygon. More specifically, we will need to know its

center of gravity, or centroid. Imagine a physical polygon cut from a piece of stiff, flat cardboard. It will

balance on the tip of a needle only if supported at its centroid.

82 Building An Environment
__

Given a polygon with m vertices, its centroid C is defined as:

∑
=

=
m

i
i m

1
rC (3.5)

where ri is a bound vector from the origin to vertex pi (Fig 3.9).

r0
r3

r2

r1
C

p0

p1

p2

p3

Origin

Figure 3.9 - Determining the center (centroid) of a polygon

The centroid C is a 3-D point located on the surface of the polygon. However, we can only add vectors,

so Equation 3.5 considers C to be a bound vector from the origin to the centroid. Its x-y-z co-ordinates are

the same as the centroid’s position in 3-D space, and so we can simply copy them to a Point3 object after

we calculate them as a Vector3 object.

3.4.4 Vertex Normals

While we can model a curved surface as an array of planar polygons, we have to pay careful attention

to the surface normal. The direction of the true surface normal varies continuously as we move across a

curved surface. Each polygon normal, on the other hand, has a constant direction. Moving across the

polygonal approximation of the surface results in discontinuous changes in the direction of the surface

normal.

These discontinuities are of particular concern in ray tracing applications, where the ray tracer needs to

know the true normal of a specular surface (or a close approximation) in order to determine the direction of

a reflected ray. In contrast, most radiosity applications are concerned with diffuse surfaces. As such, they

only need to know about the individual polygon normals.

Building An Environment 83
__

There are radiosity applications, however, where it is necessary to know the surface normal at the

polygon vertices (see Chapter Five). Looking at Figure 3.10, we can approximate the true normal at the

vertex as the average of the normals for the polygons sharing it. In other words, we have:

∑
=

=
m

i
iv m

1
nn (3.6)

where n is the vertex normal and n is the normal of the ith of m polygons. v i

nv

n1

n2
n3

n4

Figure 3.10 - Determining the vertex normal from adjacent polygon normals

3.5 Reflectance and Color

We have so far represented polygons as 3-D geometrical objects with no intrinsic physical properties.

To be useful for anything other than wireframe models, we need to add surface reflectances to our model.

As was noted in Chapter One, the physical reflectance properties of a surface usually depend on

wavelength. However, they can be approximated by specifying the average spectral reflectance within

three or more color bands. Subtle color aliasing effects can occur in photorealistic renderings when only

three bands are used (Hall [1989]). However, these are usually apparent only when compared to the

physical objects they are modeling. For most purposes, a choice of red, green and blue bands is sufficient.

Together, the three reflectance values define the intrinsic color of the polygon surface.

How many bits for each value? Under optimal viewing conditions, we can distinguish at most several

hundred thousand colors. This implies that the 16.7 million colors offered by a 24-bit representation (using

one byte for each primary color) are quite adequate for display purposes.

Spectral radiant exitance, on the other hand, requires much greater precision. Our radiosity methods

require us to repeatedly update a polygon’s exitance, possibly as many as several hundred times in the

84 Building An Environment
__

course of solving the radiosity equation. Each update requires that we multiply the flux received by the

polygon by its average spectral reflectance for each color band. A single byte per spectral band is clearly

inadequate here; we have to use a floating point representation.

We may also want to create and display grayscale images. Since our eyes are more sensitive to green

light than they are to red or blue (Fig. 1.7), we will need to take a weighted average of the three color band

values. A set of weights suitable for most display devices is:

BGRvalue 0721.07154.02125.0 ++= (3.7)

where value is the grayscale value and R, G and B are the red, green and blue color band values

respectively. Assigning this value to each color band produces a monochromatic shade of gray.

We may also want to display pseudocolor images, where each color represents a given range of surface

exitance values. We have an almost infinite variety of choices when it comes assigning colors. One simple

but useful approach is offered by the color scheme shown in Figure 3.11, where the colors range from blue

through green to red in order of increasing exitance. This allows us to perform color mapping on the fly

without having to store a potentially large color lookup table.

Grayscale value

R
G
B

v
a
l
u
e
s

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

Red
Green
Blue

Figure 3.11 - A simple pseudocolor encoding scheme

The following ColorRGB and Spectra classes incorporates these ideas in a simple but effective

representation:

// COLOR.H - Color Model Classes

#ifndef _COLOR_H
#define _COLOR_H

#include <limits.h>
#include "general.h"

Building An Environment 85
__

// Grayscale color band weights
#define C_RedWeight (float) 0.2125
#define C_GreenWeight (float) 0.7154
#define C_BlueWeight (float) 0.0721

class Spectra // Average spectral radiant exitance
{
 private:
 float red_band;
 float green_band;
 float blue_band;

 public:
 float GetBlueBand() { return blue_band; }
 float GetGreenBand() { return green_band; }
 float GetRedBand() { return red_band; }
 void Reset()
 { red_band = green_band = blue_band = 0.0; }
 void SetBlueBand(float b) { blue_band = b; }
 void SetGreenBand(float g) { green_band = g; }
 void SetRedBand(float r) { red_band = r; }

 Spectra &Add(Spectra &a) // Add color
 {
 red_band += a.red_band;
 green_band += a.green_band;
 blue_band += a.blue_band;

 return *this;
 }

 Spectra &Subtract(Spectra &a) // Subtract color
 {
 red_band -= a.red_band;
 green_band -= a.green_band;
 blue_band -= a.blue_band;

 return *this;
 }

 // Blend colors
 friend Spectra Blend(Spectra &s1, Spectra &s2, double
 alpha)
 {
 Spectra temp; // Temporary spectrum

 // Linear interpolation
 temp.red_band = s1.red_band + (s2.red_band -
 s1.red_band) * (float) alpha;
 temp.green_band = s1.green_band + (s2.green_band -
 s1.green_band) * (float) alpha;
 temp.blue_band = s1.blue_band + (s2.blue_band -
 s1.blue_band) * (float) alpha;

 return temp;
 }

 double GetMaxColor() // Get maximum color
 {

86 Building An Environment
__

 float maximum = 0.0;

 maximum = max(maximum, red_band);
 maximum = max(maximum, green_band);
 maximum = max(maximum, blue_band);

 return (double) maximum;
 }

 void Scale(double value) // Scale color
 {
 red_band *= (float) value;
 green_band *= (float) value;
 blue_band *= (float) value;
 }
};

class ColorRGB // 24-bit RGB color model
{
 private:
 BYTE red;
 BYTE green;
 BYTE blue;

 public:
 BYTE GetBlue() { return blue; }
 BYTE GetGreen() { return green; }
 BYTE GetRed() { return red; }
 void SetBlue(BYTE b) { blue = b; }
 void SetGreen(BYTE g) { green = g; }
 void SetRed(BYTE r) { red = r; }

 // Set 24-bit RGB color
 void SetColor(Spectra &c)
 {
 red = (BYTE) (c.GetRedBand() * (float) UCHAR_MAX);
 green = (BYTE) (c.GetGreenBand() * (float) UCHAR_MAX);
 blue = (BYTE) (c.GetBlueBand() * (float) UCHAR_MAX);
 }

 // Set 24-bit grayscale
 void SetMono(Spectra &c)
 {
 red = green = blue = (BYTE) ((c.GetRedBand() *
 C_RedWeight + c.GetGreenBand() * C_GreenWeight +
 c.GetBlueBand() * C_BlueWeight) * (float)
 UCHAR_MAX);
 }

 // Set 24-bit pseudocolor
 void SetPseudo(Spectra &c)
 {
 double gsv; // Grayscale value

 // Convert color to grayscale
 gsv = (double) (c.GetRedBand() * C_RedWeight +
 c.GetGreenBand() * C_GreenWeight + c.GetBlueBand()
 * C_BlueWeight);

 // Convert grayscale to pseudocolor

Building An Environment 87
__

 if (gsv < 0.5)
 {
 red = (BYTE) 0;
 green = (BYTE) (2.0 * gsv * (double) UCHAR_MAX);
 blue = (BYTE) ((1.0 - 2.0 * gsv) * (double)
 UCHAR_MAX);
 }
 else
 {
 red = (BYTE) ((2.0 * gsv - 1.0) * (double)
 UCHAR_MAX);
 green = (BYTE) ((2.0 - 2.0 * gsv) * (double)
 UCHAR_MAX);
 blue = (BYTE) 0;
 }
 }
};

#endif

Listing 3.5 - COLOR.H

Spectra is used for two purposes: to represent surface reflectances and average spectral radiant

exitances. When used for surface reflectance, the three color band values red_band, green_band and

blue_band must range from 0.0 to 1.0 inclusive. For average spectral radiant exitance, however, they can

assume any non-negative number. This allows us to add bright light source patches to an environment

without adjusting the exitances of existing light source patches. However, ColorRGB implicitly assumes

that red_band, green_band and blue_band range from 0.0 to 1.0. This means that we need to appropriately

scale all Spectra objects before calling ColorRGB::SetColor to convert them to a 24-bit RGB

representation. (The same applies for ColorRGB::SetMono and ColorRGB::SetPseudo.) To do this, each

Spectra object is examined to determine the maximum color band value for the set of objects (by calling

Spectra::GetMaxColor). The inverse of this value becomes the parameter to be passed to Spectra::Scale.

(More sophisticated conversion algorithms can also be used–see for example Hall [1989]).

3.5.1 Gamma Correction

Specifying a color as a 24-bit ColorRGB object is not enough for photorealistic display purposes. Most

video monitors (monochrome and color) , photographic films, four-color printing processes and other

display media have nonlinear responses that we must compensate for.

Consider, for example, a typical color video monitor. The video display adapter in our computer

converts each color value into a discrete voltage for the three electron guns inside the cathode ray tubes.

88 Building An Environment
__

The resultant beams of electrons are directed to a pixel on the screen, where rare earth phosphors convert

their energy into the visible (i.e., red, green and blue) light that we see.

The problem is that there is a nonlinear relation between electron gun voltage and light output. This

relation can be expressed as:

γkvL = (3.8)

where L is the phosphor spectral radiance, k is a constant, v is the input voltage to the electron gun, and the

exponent γ (pronounced “gamma”) determines the degree of nonlinearity. The value of this exponent varies

between monitors, but generally ranges from 2.2 to 2.5 (Foley et al. [1990]). In visual terms, a displayed

image displayed “as is” will appear to have too much contrast.

We can compensate for this nonlinear behavior through gamma correction. Given an input value

(such as one of the members of a ColorRGB object), the linearized output value is given by:

inputv

outputv

γ
1









=

k
v

v input
output (3.9)

In critical color rendition applications, it may be necessary to experimentally determine a value of γ for

each primary color. In most instances, however, the same gamma correction can be applied equally to all

three members of a ColorRGB object.

Since each ColorRGB member has a limited range of discrete values it can assume, it will be

convenient to precompute the equivalent output values and store them in a lookup table. This gives us:

// GAMMA.H - Gamma Correction Class

#ifndef _GAMMA_H
#define _GAMMA_H

#include "color.h"

static const int G_Domain = 256; // Input domain
static const int G_Range = 256; // Output range

class Gamma // Gamma correction
{
 private:
 // Gamma correction lookup table
 static BYTE GammaTable[256];

 double g_value; // Gamma value

 void InitTable()

Building An Environment 89
__

 {
 int i; // Loop index

 // Calculate gamma correction lookup table entries
 for (i = 0; i < G_Domain; i++)
 GammaTable[i] = (BYTE) ((double) G_Range *
 pow((double) i / (double) G_Domain, 1.0 /
 g_value));
 }

 public:
 Gamma(double g = 2.2)
 {
 g_value = g;
 InitTable();
 }

 double GetGamma() { return g_value; }

 void Correct(ColorRGB &c)
 {
 c.SetRed(GammaTable[c.GetRed()]);
 c.SetGreen(GammaTable[c.GetGreen()]);
 c.SetBlue(GammaTable[c.GetBlue()]);
 }

 void SetGamma(double g)
 {
 g_value = g;
 InitTable();
 }
};

#endif

Listing 3.6 - GAMMA.H

and:

// GAMMA.CPP - Gamma Correction Class

#include "gamma.h"

// Gamma correction lookup table
BYTE Gamma::GammaTable[G_Domain];

Listing 3.7 - GAMMA.CPP

Actually, this class can provide more than gamma correction. The defined constants G_Domain and

G_Range specifies the range of the input and output values respectively. For ColorRGB, these are both

assumed to be 8-bit BYTE data types. However, some video display adapters (the IBM-PC’s VGA and 256-

color SuperVGA adapters, for example) only support six bits per primary color. Gamma can support these

devices if G_Range is redefined to be 64. The gamma correction lookup table values will then be

calculated such that the output values are with the range 0 to 63.

90 Building An Environment
__

The g_value member specifies the gamma correction to be applied, and defaults to 2.2. Other values

can be used for specific video monitors or other display media. It can be updated at any time by calling

SetGamma with any positive gamma value.

Gamma is something of an oddball class. It belongs with ColorRGB, but it has nothing to do with

building an environment. It’s one of the joys of trying to shoehorn the real world into a hierarchy of neatly

defined classes: sometimes you have bits and pieces left over. Gamma is one of those pieces. Having

developed it, we can put it aside until the next chapter.

3.5.2 Color Reduction Techniques

While 24-bit color display adapters with their 16.7 million colors are becoming increasingly common,

there are still many personal desktop computers without such capabilities. Since our radiosity renderer will

inherently generate 24-bit color images, we need to consider color reduction techniques that match our

images to the display capabilities of these computers.

Many of the more recent personal computers support a maximum of 32,768 or 65,536 colors. This

includes those with display adapters that offer 24-bit support for their lower resolution modes only.

Displaying 24-bit color images is possible if the software reduces the gamut of image colors to those that

can be displayed. In most cases, this is done by simply dividing the 16.7 million possible colors into 32,768

or 65,536 equally-spaced regions. Unfortunately, this usually results in annoying color bands appearing on

what should be smoothly shaded surfaces.

One solution is to employ one of several dithering techniques (e.g., Foley et al. [1990]). While often

effective, a discussion of color dithering algorithms is beyond the scope of this book (see Thomas and

Bogart [1991] for two examples, including C source code). Fortunately, we can use a simpler approach that

produces nearly equal results: color jittering.

The basic principle is that the human eye is fairly insensitive to random pixel-by-pixel variations in

color or shading–we tend to see the average color instead. This is useful: we can introduce a small amount

of random “noise” to an image without noticeably degrading its appearance. At worst, the image appears to

have a somewhat “grainy” appearance, much like a photograph taken with a high-speed color film.

Building An Environment 91
__

By itself, adding noise does nothing to improve the appearance a displayed 24-bit color image.

However, the noise very effectively masks the color bands we would otherwise see. Given a choice,

observers invariably choose images with random noise over those with visible color banding.

Bragg [1992] presented a simple color reduction “filter” that capitalizes on this effect by jittering each

color component of an RGB pixel by a small random amount. This random noise is weighted such that the

average RGB color of any small group of pixels closely approximates the average color of their original

24-bit colors. Each RGB component is then masked to produce a 5-bit value, resulting in a total of 32,768

(i.e.,) possible colors. 323232 ××

In detail, Bragg’s algorithm begins by dividing each 8-bit RGB color component value into 32 equally-

spaced regions and saving the remainder. Each region represents one of 32 output values. This value is

divided by 8; its remainder is in the range of 0 to 7. A random number in the range of 0 to 8 is then chosen.

If the second remainder is less than or equal to this number, the original 8-bit RGB component value is

incremented by 8. The effect of this procedure is to produce a randomized component value that is

weighted toward the nearest 5-bit output value.

The component value is further randomized by adding another small random value. The range of this

noise is user-defined by a “noise level” parameter that can range from 0 (no noise) to 8. A value of 1 or 2 is

sufficient to mask any color banding in most images; 8 produces very grainy images. Finally, a 5-bit output

value is produced by masking off the three least significant bits.

We can implement this algorithm with the following C++ class:

// C_JITTER.H - Color Reduction Filter Class

#ifndef _C_JITTER_H
#define _C_JITTER_H

// Adapted from: Bragg, D. [1992]. "A Simple Color Reduction
// Filter", in Graphics Gems III (D. Kirk,
// Ed.), Academic Press, San Diego, CA, 20 -
// 22, 429 - 431

#include <stdlib.h>
#include "color.h"

static const int C_LargeNum = 1024;
static const int C_TableSize = 1024;
static const int C_Mask = C_TableSize - 1;

class ColorJitter // Color reduction filter

92 Building An Environment
__

{
 private:
 double *pxrand; // Jitter lookup table pointer
 double *pyrand; // Jitter lookup table pointer
 int noise; // Noise level (0 - 8)
 int *pirand; // Jitter lookup table pointer
 BOOL status; // Object status

 double JitterX(int x, int y, int band)
 {
 return pxrand[((x + (y << 2)) + pirand[(x + band) &
 C_Mask]) & C_Mask];
 }

 double JitterY(int x, int y, int band)
 {
 return pyrand[((y + (x << 2)) + pirand[(y + band) &
 C_Mask]) & C_Mask];
 }

 public:
 ColorJitter();

 ~ColorJitter();

 BOOL GetStatus() { return status; }
 int GetNoiseLevel() { return noise; }
 void SetNoiseLevel(int n) { noise = n % 9; }
 void Reduce(ColorRGB *, int, int);
};

#endif

Listing 3.8 - C_JITTER.H

and:

// C_JITTER.CPP - Color Reduction Filter Class

// Adapted from: Bragg, D. [1992]. "A Simple Color Reduction
// Filter", in Graphics Gems III (D. Kirk,
// Ed.), Academic Press, San Diego, CA, 20 -
// 22, 429 - 431

#include "c_jitter.h"

ColorJitter::ColorJitter() // Class constructor
{
 int i; // Loop index

 status = TRUE;

 // Initialize jitter lookup table pointers
 pirand = NULL;
 pxrand = NULL;
 pyrand = NULL;

 noise = 1; // Set default noise level

 // Allocate jitter lookup tables

Building An Environment 93
__

 if ((pirand = new int[C_TableSize]) == NULL)
 {
 status = FALSE;
 return;
 }

 if ((pxrand = new double[C_TableSize]) == NULL)
 {
 status = FALSE;
 return;
 }

 if ((pyrand = new double[C_TableSize]) == NULL)
 {
 status = FALSE;
 return;
 }

 // Initialize jitter lookup tables
 for (i = 0; i < C_TableSize; i++)
 {
 pirand[i] = (int) ((double) C_TableSize * ((double)
 (rand() % C_LargeNum) / (double) C_LargeNum));
 pxrand[i] = (double) (rand() % C_LargeNum) / (double)
 C_LargeNum;
 pyrand[i] = (double) (rand() % C_LargeNum) / (double)
 C_LargeNum;
 }
}

ColorJitter::~ColorJitter() // Class destructor
{
 // Release jitter lookup tables
 if (pirand != NULL)
 delete [] pirand;

 if (pxrand != NULL)
 delete [] pxrand;

 if (pyrand != NULL)
 delete [] pyrand;
}

// Perform color reduction by jittering color values
void ColorJitter::Reduce(ColorRGB *pc, int x, int y)
{
 int i; // Loop index
 int p, q; // Temporary variables
 BYTE color[3]; // Color band values

 // Get color band values
 color[0] = pc->GetRed();
 color[1] = pc->GetGreen();
 color[2] = pc->GetBlue();

 for (i = 0; i < 3; i++)
 {
 if (color[i] < 248)
 {
 // Map color band value to one of 32 possible output

94 Building An Environment
__

 // values and determine remainder
 p = (int) (color[i] % 8);

 // Look up random jitter value based on color band
 // index and pixel x-y co-ordinates
 q = (int) (JitterX(x, y, i) * 9.0);

 // Jitter color band value
 if (p >= q)
 color[i] += 8;

 // Calculate second jitter value and add to color
 // band value
 q = 8 * ((int) ((JitterY(x, y, i) * (double) (2 *
 noise)) + 0.5) - noise) + (int) color[i];

 // Ensure jittered color band value is within
 // allowable range
 if (q >= 0 && q <= 255)
 color[i] = q;
 }

 // Mask off lowest three bits to create 5-bit value
 color[i] &= 0xf8;
 }

 // Set jittered color band values
 pc->SetRed(color[0]);
 pc->SetGreen(color[1]);
 pc->SetBlue(color[2]);
}

Listing 3.9 - C_JITTER.CPP

The ColorJitter class constructor precalculates and stores random jitter values in three lookup tables.

The table lookup functions JitterX and JitterY are admittedly somewhat convoluted. However, they have

the valuable property that the returned random number always has the same magnitude for any given pair

of pixel co-ordinates (x and y). This is important if ColorJitter is to be used to color reduce a sequence of

24-bit images for an animation. Using rand for each jitter value would result in the animated sequence

displaying a highly objectionable amount of “snow”. A detailed explanation and analysis of the lookup

tables and their access functions is given in Cychosz [1990].

What about older-model desktop computers that offer a maximum of 256 colors? Attempting to display

24-bit color images with these systems usually produces unacceptably garish and posterized results.

Nevertheless, it is evident that they are quite capable of displaying reasonable quality photorealistic

images.

Building An Environment 95
__

The saving grace of these computers is that their 256-color display adapters feature programmable

palettes. At six bits per color channel, there are 262,144 (64 6464××) colors to choose from. Since most

scenes are dominated by relatively few colors, it often takes less than 256 colors to provide a reasonable

approximation of a 24-bit color image. All we have to do is to find those colors!

Unfortunately, this is not a simple problem. Basically, we need to group common colors together and

represent them with one averaged color for each group. There are several color quantization techniques

that we can use, but a full discussion would take us too far afield. The diskette accompanying this book

includes a text file that discusses the octree color quantization algorithm (Gervautz and Purgathofer [1990])

and presents full C++ source code for a standalone color quantization utility. Here, we simply note the

problem and continue on with our primary interest: building an environment.

3.6 Entities and Instances

Many ray tracing and CAD programs model complex 3-D environments as a hierarchy of objects,

volumes, surfaces and polygons. That is, an environment consists of a collection of objects, each of which

is modeled as a set of volume primitives such as boxes, spheres, cylinders and tori. In the case of CAD

programs, the merged surfaces of these volumes are then approximated with polygon meshes.

This approach has numerous advantages. For example, we might be modeling an office that has several

identical tables located about the room. A hierarchical representation allows us to model one table as an

entity. Each table in the room then becomes an instance of this entity. We can scale, rotate and translate

these instances as required (see Section 3.11) to individually position them in the room.

The approach we must take is regrettably more common. Developing a 3-D CAD interface that would

enable us to interactively model objects as volume primitives and polygon meshes is beyond the scope of

this book. Instead, we will have to model entities as a hierarchy of surfaces and polygons by hand. (Again

however, the accompanying diskette includes a data file translator for those readers with access to a 3-D

CAD program that can generate AutoCAD-compatible DXF files. There is still a considerable amount of

hand work that has to be done, but at least you are spared the necessity of having to manually enter

innumerable vertex co-ordinates.)

96 Building An Environment
__

3.7 Polygons and Radiosity

Recalling Section 2.2, we realize that the solution of the radiosity equation is expressed in terms of

patch (polygon) exitances. Now exitance–as was emphasized in Section 1.9–is not a property of a polygon

surface per se. Nevertheless, it will be convenient to store this information as a Spectra data type in the

polygon data structure. This will allow us to solve the radiosity equation independently for each of the

three spectral color bands.

We will also see in Chapter Five that the time needed to solve the radiosity algorithm can be reduced by

modeling surfaces as a two-level hierarchy of polygons. A surface is first divided into a coarse grid of

polygons called patches. Each patch is then divided into a smaller grid of polygons called elements (Fig.

3.12).

Patch

Element

Figure 3.12 - Subdividing a surface into a hierarchy of patches and elements

Other radiosity methods go further, dividing the surfaces into a multi-level hierarchy of polygons; the

reasons for this will be explained in Chapter Eight. For our purposes, a two-level hierarchy is sufficient.

3.8 Modeling An Environment

There are many possible ways to describe polygons in a complex 3-D environment. Cohen et al. [1986],

for example, used a winged-edge data structure to provide access to polygon data in constant time.

Winged-edge data structures (e.g., Baumgart [1975]) offer several computational advantages when

manipulating polygons. They are also quite complex and difficult to implement properly (Glassner [1991]).

We will therefore limit our attention to a simpler but still efficient and flexible linked list representation.

It is very important to ensure that we can access the information we need in an environment with a

minimum of effort. This leads to the linked list representation shown in Figure 3.13.

Building An Environment 97
__

Instance Surface Patch Element Vertex ElemList Element

Instance Surface Patch Element Vertex ElemList Element

Vertex

Figure 3.13 - Modeling the environment as a linked list data structure

An environment consists of a linked list of instances. The purpose of the links are as follows:

Object Link Comments

Instance Surface Each instance consists of one or more surfaces.

 Vertex Provides immediate access to linked list of vertices.

 Next Instance

Surface Patch Each surface consists of one or patches.

 Next Surface

Patch Element Each patch consists of one or more elements.

 Vertex[4] Each patch has three or four vertices.

 Parent surface Each patch belongs to a parent surface

 Next Patch

Element Vertex[4] Each element has three or four vertices.

 Parent patch Each element belongs to a parent patch

 Next Element

Vertex ElemList Each vertex is shared by one or more elements.

 Next vertex

ElemList Element Each ElemList member points to an element.

 Next ElemList

To expand on this explanation, all the vertices defining a surface are stored once in memory as a linked

list. This list is owned by the instance, which provides it with access to the vertices without having to

traverse the linked lists of surfaces, patches and elements.

98 Building An Environment
__

The patches and elements each point to three or four of these vertices, depending on whether they

represent triangles or quadrilaterals. Each vertex is shared by one or more elements and patches.

We will later want to access the attributes of the elements sharing a given vertex as quickly as possible.

Each vertex therefore points to a linked list of ElemList objects, each of which points to an element sharing

the vertex. (The patches sharing a vertex are not important.)

Finally, each element has a pointer to its parent patch, and each patch has a pointer to its parent surface.

These will be used to access patch and surface attributes from an element without having to traverse the

environment data structure.

One disadvantage of linked lists is that they have a voracious appetite for memory, especially when

relatively small objects must be allocated from C++’s free store (also referred to as global or heap

memory). This concerns memory management, which is discussed at length in a text file on the diskette

accompanying this book. For our current purposes, we can allocate and release memory as required using

C++’s default new and delete operators. A production-quality program, however, should really provide its

own class-specific memory management functions.

 3.8.1 Modeling Polygons

Beginning at the bottom of our hierarchy of entities, surfaces and polygons, we can represent patches

and elements with the following C++ class:

// PATCH3.H - 3-D Patch Classes

#ifndef _PATCH3_H
#define _PATCH3_H

#include "vector3.h"
#include "color.h"

#define QUAD_FLAG 0x01 // Quadrilateral flag

class Surface3; // External reference

class ElemList // Element list
{
 private:
 class Element3 *pelem; // Element pointer
 ElemList *pnext; // Next element list pointer

 public:
 ElemList(Element3 *pe, ElemList *pel)
 { pelem = pe; pnext = pel; }

Building An Environment 99
__

 Element3 *GetElemPtr() { return pelem; }
 ElemList *GetNext() { return pnext; }
};

class PatchList // Patch list
{
 private:
 class Patch3 *ppatch; // Patch pointer
 PatchList *pnext; // Next patch list pointer

 public:
 PatchList(Patch3 *pp, PatchList *ppl)
 { ppatch = pp; pnext = ppl; }

 Patch3 *GetPatchPtr() { return ppatch; }
 PatchList *GetNext() { return pnext; }
};

class Vertex3 // 3-D vertex
{
 private:
 Point3 posn; // Vertex co-ordinates
 Vector3 normal; // Vertex normal
 Spectra exitance; // Vertex exitance
 ElemList *pelhd; // Element list head pointer
 Vertex3 *pnext; // Next vertex pointer

 public:
 Vertex3(Point3 &coord)
 {
 posn = coord;
 normal = 0.0;
 pelhd = NULL;
 pnext = NULL;
 exitance.Reset();
 }

 ~Vertex3()
 {
 ElemList *pel = pelhd;
 ElemList *pelnext;

 // Delete element list
 while (pel != NULL)
 {
 pelnext = pel->GetNext();
 delete pel;
 pel = pelnext;
 }
 }

 ElemList *GetElemListPtr() { return pelhd; }
 Point3 &GetPosn() { return posn; }
 Point3 *GetPosnPtr() { return &posn; }
 Spectra &GetExitance() { return exitance; }
 Vector3 &GetNormal() { return normal; }
 Vertex3 *GetNext() { return pnext; }
 void CalcNormal();
 void SetExitance(Spectra &e) { exitance = e; }
 void SetElemListPtr(ElemList *ppl) { pelhd = ppl; }

100 Building An Environment
__

 void SetNext(Vertex3 *pn) { pnext = pn; }
 void SetPosn(Point3 &p) { posn = p; }
};

class Element3 // 3-D element
{
 protected:
 BYTE flags; // Flags bitmap
 float area; // Element area
 Patch3 *ppatch; // Parent patch pointer
 Spectra exitance; // Spectral exitance
 Vector3 normal; // Normal vector
 Vertex3 *pvertex[4]; // Vertex pointer array
 Element3 *pnext; // Next element pointer

 public:
 Element3(Vertex3 *pvtx[4], Patch3 *pp)
 {
 int index; // Array index

 ppatch = pp;
 area = 0.0;
 flags = (BYTE) 0;
 pnext = NULL;
 exitance.Reset();

 for (index = 0; index < 4; index++)
 pvertex[index] = pvtx[index];
 }

 BOOL IsQuad() { return (flags & QUAD_FLAG); }
 double GetArea() { return area; }
 int GetNumVert()
 { return (flags & QUAD_FLAG) ? 4 : 3; }
 Element3 *GetNext() { return pnext; }
 Patch3 *GetParentPtr() { return ppatch; }
 Spectra &GetExitance() { return exitance; }
 Vector3 &GetNormal() { return normal; }
 Vertex3 *GetVertexPtr(int i) { return pvertex[i]; }
 void CalcArea();
 void CalcNormal();
 void SetExitance(Spectra &e) { exitance = e; }
 void SetNext(Element3 *pn) { pnext = pn; }
 void SetQuad() { flags |= QUAD_FLAG; }
};

class Patch3 : public Element3 // 3-D patch
{
 private:
 Point3 center; // Patch center
 Element3 *pelhd; // Element list head ptr
 Surface3 *psurf; // Parent surface pointer

 public:
 Patch3(Vertex3 *pvtx[4], Surface3 *ps) :
 Element3(pvtx, NULL)
 {
 pelhd = NULL;
 psurf = ps;
 }

Building An Environment 101
__

 ~Patch3()
 {
 Element3 *pe = pelhd;
 Element3 *penext;

 while (pe != NULL) // Delete elements
 {
 penext = pe->GetNext();
 delete pe;
 pe = penext;
 }
 }

 double GetUnsentFlux()
 {
 return ((exitance.GetRedBand() +
 exitance.GetGreenBand() + exitance.GetBlueBand())
 * (double) area);
 }

 Element3 *GetElementPtr() { return pelhd; }
 Patch3 *GetNext() { return (Patch3 *) pnext; }
 Point3 &GetCenter() { return center; }
 Surface3 *GetParentPtr() { return psurf; }
 void CalcCenter();
 void SetElementPtr(Element3 *pe) { pelhd = pe; }
};

#endif

Listing 3.10 - PATCH3.H

and:

// PATCH3.CPP - 3-D Patch Classes

#include "patch3.h"

void Vertex3::CalcNormal() // Calculate vertex normal
{
 ElemList *pelist = pelhd; // Element list pointer

 // Sum element normals
 while (pelist != NULL)
 {
 normal += pelist->GetElemPtr()->GetNormal();
 pelist = pelist->GetNext();
 }

 normal.Norm(); // Normalize vector
}

void Element3::CalcArea() // Calculate element area
{
 Vector3 temp; // Temporary 3-D vector

 Vector3 va(pvertex[0]->GetPosn(), pvertex[1]->GetPosn());
 Vector3 vb(pvertex[0]->GetPosn(), pvertex[2]->GetPosn());

102 Building An Environment
__

 temp = Cross(va, vb);
 area = (float) (temp.Length() / 2.0);

 if (IsQuad() == TRUE)
 {
 Vector3 vc(pvertex[3]->GetPosn(),
 pvertex[0]->GetPosn());

 temp = Cross(vb, vc);
 area += (float) (temp.Length() / 2.0);
 }
}

void Element3::CalcNormal() // Calculate element normal
{
 Vector3 va(pvertex[0]->GetPosn(), pvertex[1]->GetPosn());
 Vector3 vb(pvertex[0]->GetPosn(), pvertex[2]->GetPosn());

 normal = Cross(va, vb);
 normal.Norm();
}

void Patch3::CalcCenter() // Calculate patch centroid
{
 int i; // Loop index
 int num_vert; // Number of vertices
 Vector3 cv; // Centroid vector

 num_vert = GetNumVert();

 // Initialize centroid vector to origin
 cv = Vector3(0.0, 0.0, 0.0);

 // Determine patch centroid
 for (i = 0; i < num_vert; i++)
 cv += Vector3(pvertex[i]->GetPosn());

 cv /= (double) num_vert;

 // Convert centroid vector to 3-D point
 center.SetX(cv.GetX());
 center.SetY(cv.GetY());
 center.SetZ(cv.GetZ());
}

Listing 3.11 - PATCH3.CPP

ElemList is self-explanatory: each object of the class provides a singly linked list element that points to

an Element3 object and the next ElemList element. ElemList::GetNext returns NULL for the last element of

the list. PatchList provides the same services for Patch3 objects. We don’t use linked lists of patches in our

environment data structure, but we will need them later on in this chapter when we build environments

from data file descriptions.

Building An Environment 103
__

The Vertex3 class is slightly more interesting. Its private data members include the vertex co-ordinates

and normal, its color (to be used in the next chapter), a pointer to a linked list of elements that share the

vertex and a pointer to the next Vertex3 list element. Again, Vertex3::GetNext returns NULL for the last

element of the vertex list.

Vertex3::CalcNormal calculates the vertex normal according to Equation 3.6; normalizing the sum of

the polygon normals is equivalent to dividing by the number of polygons sharing the vertex. These normals

are not available when the Vertex3 object is constructed, which is why CalcNormal is not part of the class

constructor.

The Element3 class can represent triangular and quadrilateral polygons. Each Element3 object is a

singly linked list element whose private data members include the polygon area and normal, a quadrilateral

flag, an array of four Vertex3 pointers, a pointer to its parent patch, and a pointer to the next Element3 list

element. If the polygon is a triangle, the third and fourth Vertex3 pointers should be equal; otherwise

Element3::SetQuad must be called to set the quadrilateral bit flag in flags.

Element3::CalcArea and Element3::CalcNormal calculate the polygon area and normal. Note that these

values are not calculated by the Element3 constructor; an object of this class initially belongs to an entity

with default values for its dimensions, orientation and position in space. Only when we create an instance

of this entity by scaling, rotation and translation (see Section 3.11) will we have the information necessary

to calculate the polygon area and normal.

Patch3 is derived from Element3, and so inherits its members and functions. To this it adds the patch

center, a pointer to a linked list of elements, and a pointer to its parent surface. Like the CalcArea and

CalcNormal functions, Patch3::CalcCenter should only be called after we’ve created an instance of the

entity.

Patch3 also provides Patch3::GetUnsentFlux to calculate the patch’s “unsent” flux. All this function

does is sum the patch’s spectral radiant exitances and multiply the value by the patch area. The result–the

amount of radiant flux leaving and/or reflected by the patch–will be used in Chapter Six when we solve the

radiosity equation.

You may question the complexity of these data structures, particularly the Element3 and Patch3 classes.

Keep in mind, however, that we want our data structures to 1) conserve memory; 2) provide quick and easy

104 Building An Environment
__

access to the polygon data members; and 3) allow for the dynamic addition, deletion and modification of

polygons and their vertices. The current C++ class designs, while perhaps not perfect, substantially achieve

these goals.

3.8.2 Modeling Surfaces

Moving up our hierarchy, we next consider the representation of surfaces. Their physical geometry is

described by their patches and elements; all we need to add arereflectance and initial spectral radiant

exitance.

In theory, we should specify exitance values in units of watts per square meter for each color band.

However, we are rarely interested in actual radiometric or photometric quantities when rendering radiosity

images. It’s like a camera, where you adjust the exposure and/or lens aperture to properly expose the film.

Our interest is in the relative distribution of spectral radiant exitance in the environment. Accordingly, we

can choose any convenient floating point range–say 0.0 to 1.0–where the maximum value represents the

maximum initial spectral radiant exitance in the environment. (Final calculated exitances may exceed this

value if the light source also reflects light.)

One other point about surfaces: they do not share vertices where they join other surfaces. This allows

us to set vertex colors according to the color of their parent polygons and surfaces.

Our Surface3 class is thus:

// SURFACE3.H - 3-D Surface Class

#ifndef _SURFACE3_H
#define _SURFACE3_H

#include "patch3.h"

class Surface3 // 3-D surface
{
 private:
 Spectra reflectance; // Spectral reflectance
 Spectra emittance; // Initial radiant exitance
 Patch3 *pplhd; // Patch list head pointer
 Surface3 *pnext; // Next surface pointer

 public:
 Surface3(Spectra reflect, Spectra emit)
 {
 reflectance = reflect;
 emittance = emit;

 pplhd = NULL;

Building An Environment 105
__

 pnext = NULL;
 }

 ~Surface3()
 {
 Patch3 *pp = pplhd;
 Patch3 *ppnext;

 while (pp != NULL) // Delete patches
 {
 ppnext = pp->GetNext();
 delete pp;
 pp = ppnext;
 }
 }

 Spectra &GetReflectance() { return reflectance; }
 Spectra &GetEmittance() { return emittance; }
 Patch3 *GetPatchPtr() { return pplhd; }
 Surface3 *GetNext() { return pnext; }
 void SetNext(Surface3 *pn) { pnext = pn; }
 void SetPatchPtr(Patch3 *pp) { pplhd = pp; }
};

#endif

Listing 3.12 - SURFACE3.H

Each Surface3 object is a singly linked list element that points to a linked list of Patch3 objects and the

next Surface3 element. As before, Surface3::GetNext returns NULL for the last element of the list.

3.8.3 Modeling Entities and Instances

Finally, we need a C++ class to represent entities, the top level of our hierarchy. We will later copy and

transform each entity into instances for our environment. While the transformation process may modify the

size, orientation and position of the entity in the environment, it does not result in any change to the

underlying data structure. In other words, an entity is morphologically equivalent to an instance. We can

therefore use the following Instance class to represent both entities and instances:

// INSTANCE.H - Instance Class

#ifndef _INSTANCE_H
#define _INSTANCE_H

#include "surface3.h"

class Instance // Instance (also entity)
{
 private:
 Surface3 *pshead; // Surface list head pointer
 Vertex3 *pvhead; // Vertex list head pointer
 Instance *pnext; // Next instance pointer

106 Building An Environment
__

 public:
 Instance(Vertex3 *pv, Surface3 *ps)
 {
 pvhead = pv;
 pshead = ps;
 pnext = NULL;
 }

 ~Instance()
 {
 Surface3 *psnext;
 Surface3 *ps = pshead;
 Vertex3 *pvnext;
 Vertex3 *pv = pvhead;

 // Delete surfaces
 while (ps != NULL)
 {
 psnext = ps->GetNext();
 delete ps;
 ps = psnext;
 }

 // Delete vertices
 while (pv != NULL)
 {
 pvnext = pv->GetNext();
 delete pv;
 pv = pvnext;
 }
 }

 Instance *GetNext() { return pnext; }
 Surface3 *GetSurfPtr() { return pshead; }
 Vertex3 *GetVertPtr() { return pvhead; }
 void SetNext(Instance *pn) { pnext = pn; }
 void SetSurfPtr(Surface3 *ps) { pshead = ps; }
 void SetVertPtr(Vertex3 *pv) { pvhead = pv; }
};

#endif

Listing 3.13 - INSTANCE.H

Each Instance object is a singly linked list element. Its private data members include a pointer to a

linked list of Surface3 objects, a pointer to a linked list of Vertex3 elements and a pointer to the next

Instance element. A linked list of Instance elements fully describes a complex 3-D environment.

3.9 Modeling An Environment

The last requirement for our environment is a class that can provide some statistics about it, such as the

number of instances, surfaces and so forth. It should also provide a pointer to the first instance and delete

the memory allocated to the environment when we are through with it. This becomes:

Building An Environment 107
__

// ENVIRON.H - Environment Class

#ifndef _ENVIRON_H
#define _ENVIRON_H

#include "instance.h"

class Environ // Environment
{
 private:
 Instance *pinsthd; // Instance list pointer
 WORD num_inst; // Number of instances
 WORD num_surf; // Number of surfaces
 WORD num_patch; // Number of patches
 WORD num_elem; // Number of elements
 WORD num_vert; // Number of vertices

 friend class Parse;

 public:
 Environ() { pinsthd = NULL; }

 ~Environ() { DeleteEnv(); }

 Instance *GetInstPtr() { return pinsthd; }
 WORD GetNumInst() { return num_inst; }
 WORD GetNumSurf() { return num_surf; }
 WORD GetNumPatch() { return num_patch; }
 WORD GetNumElem() { return num_elem; }
 WORD GetNumVert() { return num_vert; }
 void DeleteEnv()
 {
 Instance *pinst; // Instance pointer
 Instance *pnext; // Next instance pointer

 pinst = pinsthd;
 while (pinst != NULL)
 {
 pnext = pinst->GetNext();
 delete pinst;
 pinst= pnext;
 }
 pinsthd = NULL;
 }
};

#endif

Listing 3.14 - ENVIRON.H

3.10 A Rudimentary Data File Format

Having designed a hierarchical data structure, we need a data file format that will allow us to store and

retrieve our representations to and from disk, and possibly to transfer them across computer platforms.

Our first thought should be to consider one of the device-independent graphics standards, such as

IGES, GKS-3D or PHIGS. On the microcomputer front, there’s the popular AutoCAD DXF graphics file

108 Building An Environment
__

format. However, these all have complex specifications that cover far more than what we need. All we

want is a data file format that supports polygons, surfaces and entities. There’s little sense in choosing a

graphics standard that includes scaleable text, multiple fonts, polylines, linetype patterns, bicubic and

Bezier surfaces, constructive solid geometry and a host of other features that we’ll never use. Lacking any

existing standards for radiosity rendering programs, we shall simply have to create our own.

Actually, we shall require two data file formats: one to describe individual entities and another to

describe the transformations necessary to create instances of them in an environment. The entity file format

will be considered here; the environment file format will be addressed later.

We begin by specifying our entity data file structure as:

COMMENT Entity Data File
ENTITY entity_name
VERTEX
< x1 y1 z1 >
< x2 y2 z2 >
···
< xm ym zm >
END_VERT
SURFACE
[rr1 rg1 rb1] [er1 eg1 eb1]
[rr2 rg2 rb2] [er2 eg2 eb2]
···
[rrn rgn rbn] [ern egn ebn]
END_SURF
PATCH
s1 { v10 v11 v12 v13 }
s2 { v20 v21 v22 v23 }
···
sp { vp0 v
END_PATCH

p1 vp2 vp3 }

ELEMENT
p1 { v10 v11 v12 v13 }
p2 { v20 v21 v22 v23 }
···
pp { vp0
END_ELEM

vp1 vp2 vp3 }

END_ENTITY

Figure 3.14 - Entity data file structure

The syntactic rules for our nameless file format specification are:

1. The data file consists of ASCII characters.

2. Each line must be terminated with an environment-specific “newline” character (typically <CR><LF>

for MS-DOS and <CR> for UNIX systems).

3. The maximum length of a line is 256 characters, including the newline character(s).

Building An Environment 109
__

4. Multiple whitespace (ASCII space and horizontal tab) characters between data values and separators

are ignored.

5. Comment lines beginning with the keyword “COMMENT” are ignored.

6. The data file consists of one ENTITY section.
7. The ENTITY section header begins with the “ENTITY” keyword, followed on the same line by an

optional entity_name character string that identifies the entity. Any printable ASCII character is

permitted in the string.

8. The ENTITY section header is followed by a VERTEX subsection. It begins with the “VERTEX”

keyword, followed on subsequent lines by a list of four or more vertex vectors. A maximum of 65,536

vertex vectors are allowed. Each vertex is implicitly assigned an index number according to its

position in the list, beginning with zero. The “END_VERT” keyword terminates the subsection

9. Each vertex vector consists of a ‘<‘ separator, followed by three floating point numbers representing

the x, y and z values of the vertex co-ordinates respectively, followed by a ‘>‘ separator.

10. The VERTEX subsection is followed by a SURFACE subsection. It begins with the “SURFACE”

keyword, followed on subsequent lines by a list of one or more RGB color vector pairs. The first

vector of each pair represents the surface reflectance for the entity; the second vector represents the

surface’s initial surface spectral radiant exitance. A maximum of 65,536 surfaces are allowed. Each

surface and its associated reflectance and initial exitance vectors are implicitly assigned an index

number according to its position in the list, beginning with zero. The “END_SURF” keyword

terminates the subsection.

11. Each reflectance vector consists of a ‘[‘ separator, followed by three floating point numbers

representing the red, green and blue primary color values respectively, followed by a ‘]’ separator.

The color values must be in the range 0.0 to 1.0.

12. Each initial exitance vector consists of a ‘[‘ separator, followed by three floating point numbers

representing the red, green and blue primary color values respectively, followed by a ‘]’ separator.

The color values must be equal to or greater than 0.0.

110 Building An Environment
__

13. The SURFACE subsection is followed by a PATCH subsection. It begins with the keyword

“PATCH”, followed on subsequent lines by one or more patch identifiers. A maximum of 65,536

polygon identifiers are allowed. The “END_PATCH” keyword terminates the subsection.

14. Each patch identifier consists of an integer number indicating the index number of the surface to

which the patch belongs, followed by a ‘{‘ separator, followed by four integer numbers indicating the

indices of the four patch vertices v0, v1, v2 and v3 respectively, followed by a ‘}’ separator. If the

patch is a triangle, the third and fourth vertex indices must be identical.

15. The PATCH subsection is followed by an ELEMENT subsection. It begins with the keyword

“ELEMENT”, followed on subsequent lines by one or more element identifiers. A maximum of

65,536 element identifiers are allowed. The “END_ELEM” keyword terminates the subsection.

16. Each element identifier consists of an integer number indicating the index number of the patch to

which the element belongs, followed by a ‘{‘ separator, followed by four integer numbers indicating

the indices of the four element vertices v0, v1, v2 and v3 respectively, followed by a ‘}’ separator. If

the element is a triangle, the third and fourth vertex indices must be identical.

17. The ELEMENT subsection is followed by an “END_ENTITY” keyword, which terminates the file.

To clarify the above, here’s an example of a small entity data file that describes a colored cube:

ENTITY colored cube
VERTEX
< 0.0 0.0 0.0 >
< 1.0 0.0 0.0 >
< 1.0 0.0 1.0 >
< 0.0 0.0 1.0 >
< 1.0 0.0 0.0 >
< 1.0 1.0 0.0 >
< 1.0 1.0 1.0 >
< 1.0 0.0 1.0 >
< 1.0 1.0 0.0 >
< 0.0 1.0 0.0 >
< 0.0 1.0 1.0 >
< 1.0 1.0 1.0 >
< 0.0 1.0 0.0 >
< 0.0 0.0 0.0 >
< 0.0 0.0 1.0 >
< 0.0 1.0 1.0 >
< 0.0 0.0 0.0 >
< 0.0 1.0 0.0 >
< 1.0 1.0 0.0 >
< 1.0 0.0 0.0 >
< 0.0 0.0 1.0 >
< 1.0 0.0 1.0 >
< 1.0 1.0 1.0 >

Building An Environment 111
__

< 0.0 1.0 1.0 >
END_VERT
SURFACE
[0.0 0.0 1.0] [0.0 0.0 0.0]
[1.0 1.0 0.0] [0.0 0.0 0.0]
[1.0 1.0 1.0] [0.0 0.0 0.0]
[0.0 1.0 1.0] [0.0 0.0 0.0]
[1.0 0.0 0.0] [0.0 0.0 0.0]
[0.0 1.0 0.0] [0.0 0.0 0.0]
END_SURF
PATCH
0 { 0 1 2 3 }
1 { 4 5 6 7 }
2 { 8 9 10 11 }
3 { 12 13 14 15 }
4 { 16 17 18 19 }
5 { 20 21 22 23 }
END_PATCH
ELEMENT
0 { 0 1 2 3 }
1 { 4 5 6 7 }
2 { 8 9 10 11 }
3 { 12 13 14 15 }
4 { 16 17 18 19 }
5 { 20 21 22 23 }
END_ELEM
END_ENTITY

Listing 3.15 - COL_CUBE.ENT

For the sake of simplicity, the surfaces described here consist of one patch each. Similarly, each patch

consists only one element. Clearly though, any surface or patch can be subdivided into multiple patches

and elements by defining additional vertices and patch or element identifiers.

3.11 3-D Transformations

We have so far defined an entity as an object floating in its own local co-ordinate space, independent

of all other entities. Our colored cube, for example (Listing 3.15), is aligned with the co-ordinate axes and

has one corner at the origin. Following the usual computer graphics conventions, it’s a right-handed co-

ordinate system, as shown in Figure 3.15.

What we want, of course, is to place instances of our entities in the world co-ordinate space of our 3-D

environment. In general, this requires that we 1) scale the entity dimensions to that required for the

instance; 2) rotate the instance to properly align it with respect to the world co-ordinate axes; and 3)

translate the instance to its proper position in the world space. Taken together, these operations are

referred to as linear 3-D transformations.

112 Building An Environment
__

The subject of 3-D transformations, linear and otherwise, deserves an entire book in its own right.

Some of the more accessible texts include Watt [1990], Harrington [1987] and Foley et al. [1990].

Thorough coverage is provided by Hill [1990] and Rogers and Adams [1976]. The best we can afford here

is to review the basics necessary for our 3-D graphics toolkit.

x

z

y

Figure 3.15 - Cube in a right-handed co-ordinate system

3.11.1 Translation, Scaling and Rotation

Imagine we have a vertex v1 in space whose co-ordinates are { }111 ,, zyx and that we want to move

(translate) it to another position v2 with co-ordinates { }222 ,, zyx . Expressing the vertex co-ordinates in

matrix notation as , we can represent the translation as v v















=

z
y
x

v t2 1= + , where . We can

clearly apply the same translation to every vertex of an object to move it anywhere in space.

















−
−
−

=

12

12

12

zz
yy
xx

t

Now suppose we want to scale the same object, either enlarging or reducing it in size. Our colored cube

has unit dimensions along each edge; we might want to change it into a rectangular box with say x = 2.0, y

= 1.5, z = 3.0. For any vertex v1, we must multiply each of its co-ordinates by the appropriate scaling factor

for that dimension. Again using matrix notation, we have v sv2 1= , where is the scaling

matrix.
















=

z

y

x

s
s

s

00
00
00

s

Building An Environment 113
__

We can express our vertex co-ordinates in four-dimensional homogeneous co-ordinates as the matrix

, where w can be any value other than zero, and where:


















w
V
V
V

z

y

x

v V
v V

v V w

x x

y y

z z

=

=

=

w
w (3.10)

In computer graphics, w is usually taken to be unity, so that the homogeneous co-ordinates of our

vertex reduce to .


















1
z

y

x

v
v
v

One of the advantages of homogeneous co-ordinates is that they allow us to unify the linear

transformation operations. Whereas translation required matrix addition and scaling required matrix

multiplication, the homogeneous co-ordinates representation allows us to do the following:

Translation: (3.11)


















=





































=



















111000
100
010
001

1
1

1

1

1

1

1

2

2

2

z
y
x

z
y
x

t
t
t

z
y
x

z

y

x

T

Scaling: (3.12)


















=





































=



















111000
000
000
000

1
1

1

1

1

1

1

2

2

2

z
y
x

z
y
x

s
s

s

z
y
x

z

y

x

S

Anyone who has taken a formal course in matrix theory knows it is not for the mathematically timid.

Fortunately, matrix scaling, addition and multiplication are much easier to understand.

A matrix is a rectangular array of elements. A matrix with m horizontal rows and n vertical columns is

called an m×n matrix. A matrix with a single row or column of elements is called a row or column vector.

Thus, our vertex expressed in homogeneous co-ordinates is a 14× column vector. A square matrix has the

same number of rows and columns (e.g., 44×).

114 Building An Environment
__

We can scale any matrix A by a number s by multiplying each element of A by s. For example, if A is a

22× matrix, then:









=








=

1110

0100

1110

0100

sasa
sasa

aa
aa

ssA

We can add two matrices A and B to produce a third matrix C only if they have the same number of

rows and columns (i.e., they have the same shape). Each element of C is the sum of its corresponding

elements in A and B. For example:

() ()
() (








++
++

=+=







=

11111010

01010000

1110

0100

baba
baba

cc
cc

BAC)

Two matrices A and B can be multiplied only if the number of columns of A equals the number of rows

of B. For example, a 32× matrix A can be multiplied by a 3 2× matrix B to produce the matrix 22×

ABC = .

Given , the ijth element of C (that is, the element from the ith row and jth column) is the dot ABC =

product (Section 3.2) of the ith row of A with the jth column of B. For example:

()
()
()

()
()
()
















++
++
++

++
++
++

=
































==
















=

212211210120

211211110110

210211010100

202210210020

201210110010

200210010000

21

11

01

20

10

00

222120

121110

020100

21

11

01

20

10

00

bababa
bababa
bababa

bababa
bababa
bababa

b
b
b

b
b
b

aaa
aaa
aaa

c
c
c

c
c
c

ABC

Stated more succinctly, matrix multiplication ABC = is defined as:

c aik ijb
k

k j

jk=
=

<

∑
0

for each element c of C. ij

Note, however, B cannot be multiplied by A. That is, C BA= is undefined for this example. Since, in

general, the order of A and B cannot be reversed in multiplication (square matrices being the exception),

we say that for , B postmultiplies A or A premultiplies B. ABC =

We define the identity matrix I as a square matrix whose elements are all zero except for those along

the main diagonal, which are one. For example, the 3×3 identity matrix is:

Building An Environment 115
__
















=

100
010
001

I

The identity matrix has the property that AIA = . That is, multiplying a matrix by an identity matrix

does not change the original matrix.

From this, we can define the inverse of a matrix M as M-1, where:

IMMMM == −− 11

Some matrices (called singular matrices) do not have definable inverses. Those of interest to us,

however, are nonsingular matrices with easily determined inverses.

Finally, we can interchange the rows and columns of a matrix A. This gives us the transpose of A,

denoted as , where . This also means that we can represent 3-D and 4-D homogeneous co-TA jiij aa =T

ordinates as 1 and 1 row vectors. In fact, some computer graphics textbooks (e.g., Hill [1990]) use 3× 4×

this notational style. It’s a matter of personal preference, since the following two representations produce

equivalent results:

()
()
()
















++
++
++

=
































==
















=

222121020

212111010

202101000

2

1

0

222120

121110

020100

2

1

0

bababa
bababa
bababa

b
b
b

aaa
aaa
aaa

c
c
c

ABC

and:

[] []

() () ([]222211200122111100022011000

221202

211101

201000

210210

ababababababababab
aaa
aaa
aaa

bbbccc

++++++=
















=== TTT ABC

)

There is a vast body of literature available on matrix mathematics. Of this, the material in this text box

is all we need in order to understand the radiosity approach.

Translation and scaling are now in identical form, being a single matrix multiplication. While

multiplication is more time consuming than addition, there is another advantage to homogeneous co-

116 Building An Environment
__

ordinates which more than compensates. We will address this shortly; in the meantime, the three examples

shown in Figure 3.16 should clarify how these transformations work.

z

x

y

z

x

y



















1000
0100
0010
0001



















1100
0100
005.10
0005.1

Figure 3.16a - Identity Figure 3.16b - Scaling (x and y axes)

z

x

y



















−
1000

5.0100
0.1010

0001

Figure 3.16c - Translation

The same mathematical form applies to rotation about one of the co-ordinate axes:

x-axis: (3.13)


















=




































−

=



















111000
0cossin0
0sincos0
0001

1
1

1

1

1

1

1

2

2

2

z
y
x

z
y
x

z
y
x

xR
θθ
θθ

y-axis: (3.14)


















=





































−
=



















111000
0cos0sin
0010
0sin0cos

1
1

1

1

1

1

1

2

2

2

z
y
x

z
y
x

z
y
x

yR
θθ

θθ

Building An Environment 117
__

z-axis: (3.15)


















=



































 −

=



















111000
0100
00cossin
00sincos

1
1

1

1

1

1

1

2

2

2

z
y
x

z
y
x

z
y
x

zR
θθ
θθ

where θ is the angle of rotation measured counterclockwise about the axis when looking towards the

origin. Two examples are shown in Figure 3.17.

z

x

y

x

y

z

















 −

1000
0100
00866.05.0
005.0866.0

















 −

1000
0100
4.00866.05.0
8.005.0866.0

Figure 3.17a - 30° rotation about z-axis Figure 3.17b - Rotation and translation

The advantage of having one common mathematical form for translation, scaling and rotation is that

any sequence of these transformations can be concatenated (i.e., premultiplied) to yield a single net

transformation matrix. Matrix multiplication is associative, so we can group matrix multiplications as we

please. That is, rather than separately translating, scaling and rotating each vertex, we can successively

premultiply the transformation matrices together, as in:

()() 112 MvvSTRv == (3.16)

where the net transformation matrix M has the general form:



















=

1000
333231

232221

131211

z

y

x

taaa
taaa
taaa

M (3.17)

Note that the 3 × 3 upper left submatrix A determines the net rotation and scaling, while the three elements

, t and determine the net translation. xt y zt

118 Building An Environment
__

Any number of translation, scaling and rotation matrices can be concatenated in any order. However,

the results depend on the order of concatenation. Rotations, for example, are not commutative. Given any

two rotation matrices R1 and R2, R1R2 ≠ R2R1. (Try rotating an object 90 degrees vertically, then 90

degrees horizontally. Note its orientation, return it to its original orientation, then rotate it 90 degrees in the

same horizontal direction before rotating it 90 degrees vertically.) Similarly, scaling and then translating a

vertex’s co-ordinates is not the same as translating them before scaling.

Any transformation can be reversed by multiplying the transformation M matrix by its inverse M-1. T-1

is obtained by negating , and t , S-1 replaces , and by their inverses, and R-1 negates the

rotation angle θ.

xt yt z xs ys zs

It should also be remembered that rotation is defined with respect to the co-ordinate system origin.

Therefore, in creating an instance of an entity for an environment, we typically want to compute a

transformation matrix that will do the following:

1. Scale the entity vertices;

2. Rotate the vertices counterclockwise about the x, y and z axes; and

3. Translate the vertices.

In practice, this requires a single net transformation matrix M that is applied to all the vertices

belonging to the entity.

The following Transform3 class implements the tools we need:

// TRANSFM3.H - 3-D Linear Transformation Class

#ifndef _3D_TRANS_H
#define _3D_TRANS_H

#include "vector3.h"

class Transform3 // 3-D linear transformation
{
 private:
 double scale_x; // x-axis scaling factor
 double scale_y; // y-axis scaling factor
 double scale_z; // z-axis scaling factor
 double trans_x; // x-axis translation distance
 double trans_y; // y-axis translation distance
 double trans_z; // z-axis translation distance
 double rot_x; // x-axis rotation (in radians)
 double rot_y; // y-axis rotation (in radians)
 double rot_z; // z-axis rotation (in radians)
 double m[3][4]; // Transformation matrix

Building An Environment 119
__

 void Identity() // Initialize identity matrix
 {
 int i, j; // Loop indices

 for (i = 0; i < 3; i++)
 for (j = 0; j < 4; j++)
 {
 if (i == j)
 m[i][j] = 1.0;
 else
 m[i][j] = 0.0;
 }
 }

 // Note: s_val is sine of rotation angle
 // c_val is cosine of rotation angle

 // Rotate counterclockwise about x-axis
 void RotateX(double s_val, double c_val)
 {
 int i; // Loop index
 double temp; // Temporary variable

 for (i = 0; i < 4; i++)
 {
 temp = m[1][i] * c_val - m[2][i] * s_val;
 m[2][i] = m[1][i] * s_val + m[2][i] * c_val;
 m[1][i] = temp;
 }
 }

 // Rotate counterclockwise about y-axis
 void RotateY(double s_val, double c_val)
 {
 int i; // Loop index
 double temp; // Temporary variable

 for (i = 0; i < 4; i++)
 {
 temp = m[0][i] * c_val + m[2][i] * s_val;
 m[2][i] = -m[0][i] * s_val + m[2][i] * c_val;
 m[0][i] = temp;
 }
 }

 // Rotate counterclockwise about z-axis
 void RotateZ(double s_val, double c_val)
 {
 int i; // Loop index
 double temp; // Temporary variable

 for (i = 0; i < 4; i++)
 {
 temp = m[0][i] * c_val - m[1][i] * s_val;
 m[1][i] = m[0][i] * s_val + m[1][i] * c_val;
 m[0][i] = temp;
 }
 }

120 Building An Environment
__

 void Scale()
 {
 m[0][0] *= scale_x;
 m[1][1] *= scale_y;
 m[2][2] *= scale_z;
 }

 void Translate()
 {
 m[0][3] += trans_x;
 m[1][3] += trans_y;
 m[2][3] += trans_z;
 }

 public:
 Transform3()
 {
 scale_x = scale_y = scale_z = 1.0;
 trans_x = trans_y = trans_z = 0.0;
 rot_x = rot_y = rot_z = 0.0;

 Identity();
 }

 // Set scaling factors
 void SetScale(double sx, double sy, double sz)
 { scale_x = sx; scale_y = sy; scale_z = sz; }

 // Set translation distances
 void SetTranslation(double tx, double ty, double tz)
 { trans_x = tx; trans_y = ty; trans_z = tz; }

 // Set rotation angles
 void SetRotation(double rx, double ry, double rz)
 { rot_x = rx; rot_y = ry; rot_z = rz; }

 void BuildTransform()
 {
 Identity(); // Initialize identity matrix

 Scale(); // Concatenate scale matrix

 // Concatenate rotation matrices
 RotateX(sin(rot_x), cos(rot_x));
 RotateY(sin(rot_y), cos(rot_y));
 RotateZ(sin(rot_z), cos(rot_z));

 Translate(); // Concatenate translation matrix
 }

 // Premultiply point by 3-D transformation matrix
 void Transform(Point3 *pp)
 {
 Point3 temp; // Temporary 3-D point

 temp.SetX(m[0][0] * pp->GetX() + m[0][1] * pp->GetY()
 + m[0][2] * pp->GetZ() + m[0][3]);
 temp.SetY(m[1][0] * pp->GetX() + m[1][1] * pp->GetY()
 + m[1][2] * pp->GetZ() + m[1][3]);
 temp.SetZ(m[2][0] * pp->GetX() + m[2][1] * pp->GetY()

Building An Environment 121
__

 + m[2][2] * pp->GetZ() + m[2][3]);

 pp->SetX(temp.GetX());
 pp->SetY(temp.GetY());
 pp->SetZ(temp.GetZ());
 }
};

#endif

Listing 3.16 - TRANSFM3.H

There are two items of interest here. First, the transformation matrix m is stored as a 3 rather than a

 matrix. As Equation 3.17 indicates, the fourth row of the transformation matrix is always the same

for scaling, translation and rotation. We can therefore ignore it in our calculations.

4×

44×

Second, the user is only allowed to specify the net transformation matrix in terms of scaling factors,

translation distances and rotation angles. Calling BuildTransform results in the transformation matrix being

recalculated based on the current set of parameters. Note that the private member functions responsible for

scaling, translation and rotation are designed for this specific use. That is, they modify the identity matrix

in a given order to produce the net transformation matrix. Equivalent public functions to perform scaling,

translation and rotation by premultiplying an arbitrary 3-D transformation matrix would each have to

perform a full matrix multiply.

3.12 Building An Environment

Building an environment consists of copying and transforming entities into instances. For this, we need

an environment data file format to describe which entities are to be copied and what 3-D linear

transformations are to be applied to them.

Here’s the general outline of the data file format:

WORLD world_name
COMMENT Environment Data File
entity_file_name
< sx sy sz >
< rx ry rz >
< tx ty tz >
entity_file_name
···
END_FILE

Figure 3.18 - Environment data file format

Similar to our entity data file format, the following syntax rules apply:

1. The data file consists of ASCII characters.

122 Building An Environment
__

2. Each line must be terminated with an environment-specific “newline” character (typically <CR><LF>

for MS-DOS and <CR> for UNIX systems).

3. The maximum length of a line is 256 characters, including the newline character(s).

4. Multiple whitespace (ASCII space and horizontal tab) characters between data values and separators

are ignored.

5. Comment lines beginning with the keyword “COMMENT” are ignored.

6. The data file begins with the keyword “WORLD”, followed on the same line by an optional

world_name character string that identifies the environment. Any printable ASCII character is

permitted in the string.

7. The remainder of the data file consists of one or more entity sections, followed by the “END_FILE”

keyword. Any lines after this keyword are ignored.

8. An entity section consists of an entity_file_name character string, followed in sequence by a scaling

vector, a rotation vector and a translation vector.

9. The entity_file_name is an environment-specific file name that uniquely identifies the entity data file.

10. A scaling vector consists of a ‘<‘ separator, followed by three floating point numbers representing the

x-axis, y-axis and z-axis scaling factors respectively, followed by a ‘>‘ separator.

11. A rotation vector consists of a ‘<‘ separator, followed by three floating point numbers representing the

x-axis, y-axis and z-axis rotation angles (in degrees) respectively, followed by a ‘>‘ separator.

12. A translation vector consists of a ‘<‘ separator, followed by three floating point numbers representing

the x-axis, y-axis and z-axis translation values respectively, followed by a ‘>‘ separator.

Here’s an example of a data file that places two instances of our previously defined colored cube entity

in a world environment:

WORLD colored cube
COMMENT first instance
col_cube.ent
< 2.0 3.0 1.0 >
< 30.0 45.0 0.0 >
< 2.0 0.0 0.0 >
COMMENT second instance
col_cube.ent
< 1.5 1.0 0.5 >
< 30.0 45.0 30.0 >
< 0.0 0.0 1.0 >

Building An Environment 123
__

END_FILE

Listing 3.17 - COL_CUBE.WLD

3.13 An Environment Data File Parser

Our final requirement is for a C++ class that can read an environment data file and build an equivalent

data structure in memory. In terms of programming languages and compiler theory, we want to parse the

data file. Unlike even the smallest programming language, however, parsing our data file formats will be a

trivial exercise. At the highest level, we want to do something like this:

Open environment file
WHILE more entity sections
 Read entity file
 Create entity
 Read transformation matrix
 Transform entity to instance
 Add instance to linked list
ENDWHILE
Close environment file

Figure 3.19 - Environment file parser program pseudocode

where most of the work will be handled by our previously defined classes.

So why is the following Parse class so lengthy? Most of its code is devoted to manipulating linked lists

and converting ASCII character strings into meaningful data primitives such as int and float. If you ignore

the bookkeeping, PARSE.CPP is fairly straightforward. Keeping this in mind, here’s the header file:

// PARSE.H - Environment Data File Parser Class

#ifndef _PARSE_H
#define _PARSE_H

#include "environ.h"
#include "transfm3.h"
#include "win_text.h"

#define MaxLine 256 // Maximum line length

typedef Patch3 *PatchPtr; // Patch pointer data type
typedef Surface3 *SurfacePtr; // Surface pointer data type
typedef Vertex3 *VertexPtr; // Vertex pointer data type

class Parse // Environment data file parser
{
 private:
 WORD elem_cnt; // Instance element count
 WORD patch_cnt; // Instance patch count
 WORD surf_cnt; // Instance surface count
 WORD vert_cnt; // Instance vertex count
 char ent_buff[MaxLine]; // Entity file name buffer

124 Building An Environment
__

 char line_buff[MaxLine]; // Line buffer
 char msg_buff[MaxLine]; // Message buffer
 Environ *penv; // Environment pointer
 PatchPtr *pp_array; // Patch pointer array ptr
 SurfacePtr *ps_array; // Surface pointer array ptr
 Transform3 tm; // 3-D transformation matrix
 VertexPtr *pv_array; // Vertex pointer array ptr
 WinText efile; // Entity file
 WinText ifile; // Instance file

 BOOL ParseElements();
 BOOL ParsePatches();
 BOOL ReadVector(WinText &, double *, double *,
 double *);
 Instance *ParseEntityFile();
 Surface3 *ParseSurfaces();
 Surface3 *ReadSurface();
 Vertex3 *ParseVertices();
 Vertex3 *ReadVertex();
 void ReadLine(WinText &);
 void ReadTransform();
 void TransformInstance(Instance *);

 public:
 BOOL ParseFile(char *, char *, Environ *);
};

#endif

Listing 3.18 - PARSE.H

If your target environment is not MS-Windows, you should note the MS-DOS specific file path

separator “\”. A UNIX-based implementation, for example, would require this to be “/”.

Another platform-dependent issue to watch out for is text file handling, which is handled in PARSE.H

by an MS-Windows specific class called WinText (described below). MS-Windows uses a 256-character

extended ASCII character set. It also provides no built-in functions for reading text files. You can use the

C++ iostream or stdio.h file functions, but you have to be careful about casting character strings and FILE

pointers if you’re using them in conjunction with MS-Windows functions (which typically expect _far

pointers).

We can sidestep these issues by using the large memory model when compiling our MS-Windows

application program and encapsulating the file handling functions in a separate class. While the following

WinText class is nominally specific to MS-Windows, it can applied without change to most other

environments.

// WIN_TEXT.H - MS-Windows Text File Class

#ifndef _WIN_TEXT_H

Building An Environment 125
__

#define _WIN_TEXT_H

#include <string.h>
#include "general.h"

// NOTE: Requires LARGE memory model for Win16

class WinText // MS-Windows text file
{
 private:
 FILE *pfile; // File pointer

 public:

 // Close file
 void Close() { (void) fclose(pfile); }

 // Read next line from file
 void GetLine(char *pline, int max)
 {
 char *pstr; // String pointer

 if ((pstr = fgets(pline, max, pfile)) != NULL)
 pstr = strchr(pline, '\n');

 if (pstr == NULL)
 pstr = pline;

 *pstr = '\0'; // Strip off newline
 }

 BOOL Open(char *fname) // Open text file
 {
 if ((pfile = fopen(fname, "r")) != NULL)
 return TRUE;
 else
 return FALSE;
 }
};

#endif

Listing 3.19 - WIN_TEXT.H

The remainder of our Parse class consists of:

// PARSE.CPP - Environment Data File Parser Class

#include <string.h>
#include "error.h"
#include "parse.h"

// File path separator (MS-DOS specific)
static const char PathSeparator[] = "\\";

// Data file keywords
static const char EndFileStr[] = "END_FILE";
static const char CommentStr[] = "COMMENT";

// Parse world file

126 Building An Environment
__

BOOL Parse::ParseFile(char *fname, char *fpath, Environ
 *pe)
{
 char *pefp; // Entity file path pointer
 Instance *pinst; // Instance pointer
 Instance *pinsthd; // Instance list head pointer

 penv = pe; // Save environment pointer

 // Delete previous environment (if any)
 penv->DeleteEnv();

 pinst = pinsthd = NULL;

 // Initialize environment statistics
 penv->num_inst = (WORD) 0;
 penv->num_surf = (WORD) 0;
 penv->num_patch = (WORD) 0;
 penv->num_elem = (WORD) 0;
 penv->num_vert = (WORD) 0;

 // Build file path string
 pefp = ent_buff;
 if (*fpath != '\0')
 {
 strcpy(ent_buff, fpath);
 if (fpath[strlen(ent_buff) - 1] != *PathSeparator)
 strcat(ent_buff, PathSeparator);
 pefp += strlen(ent_buff);
 }

 if (ifile.Open(fname) != TRUE) // Open instance file
 {
 sprintf(msg_buff, "Could not open world file %s",
 fname);
 ReportError(msg_buff);
 return FALSE;
 }

 ReadLine(ifile); // Read world name

 for (; ;)
 {
 ReadLine(ifile); // Read entity file name

 // Check for end of file
 if (strcmp(line_buff, EndFileStr) == 0)
 break;

 // Build full entity file name
 strcpy(pefp, line_buff);

 // Read entity file
 if ((pinst = ParseEntityFile()) == NULL)
 {
 ifile.Close();
 return FALSE;
 }

 // Read 3-D transformation matrix

Building An Environment 127
__

 ReadTransform();

 // Transform entity into instance
 TransformInstance(pinst);

 // Link instance to instance list
 pinst->SetNext(pinsthd);
 pinsthd = pinst;
 penv->num_inst++;
 }
 ifile.Close();
 penv->pinsthd = pinsthd;
 return TRUE;
}

// Parse entity data file
Instance *Parse::ParseEntityFile()
{
 BOOL status; // Return status
 Instance *pinst; // Instance pointer
 Surface3 *ps; // Surface pointer
 Vertex3 *pv; // Vertex pointer

 pinst = NULL;
 ps = NULL;
 pv = NULL;

 surf_cnt = patch_cnt = elem_cnt = vert_cnt = (WORD) 0;

 // Open entity file
 if (efile.Open(ent_buff) != TRUE)
 {
 sprintf(msg_buff, "Could not open entity file %s",
 ent_buff);
 ReportError(msg_buff);
 return NULL;
 }

 ReadLine(efile); // Read file description

 pv = ParseVertices();
 ps = ParseSurfaces();
 status = ParsePatches();

 if (status == TRUE)
 status = ParseElements();

 // Delete temporary pointer arrays
 delete [] pv_array;
 delete [] ps_array;
 delete [] pp_array;

 // Create new entity
 if (status == TRUE)
 pinst = new Instance(pv, ps);

 efile.Close();
 return pinst;
}

128 Building An Environment
__

// Parse vertices
Vertex3 *Parse::ParseVertices()
{
 WORD v_index; // Vertex pointer array index
 Vertex3 *pv; // Vertex pointer
 Vertex3 *pvhd; // Vertex list head ptr

 pv = pvhd = NULL;

 ReadLine(efile); // Read vertex section header

 // Build vertex linked list
 for (; ;)
 {
 // Read vertex vector
 if ((pv = ReadVertex()) == NULL)
 break;

 // Link vertex to vertex list
 pv->SetNext(pvhd);
 pvhd = pv;
 penv->num_vert++;
 vert_cnt++;
 }

 // Build vertex pointer array
 pv = pvhd;
 pv_array = new VertexPtr[vert_cnt];
 v_index = vert_cnt - (WORD) 1;
 while (pv != NULL)
 {
 pv_array[v_index--] = pv;
 pv = pv->GetNext();
 }
 return pvhd;
}

// Parse surfaces
Surface3 *Parse::ParseSurfaces()
{
 WORD s_index; // Surface pointer array index
 Surface3 *ps; // Surface pointer
 Surface3 *pshd; // Surface list head ptr

 ps = pshd = NULL;

 ReadLine(efile); // Read surface section header

 // Build surface linked list
 for (; ;)
 {
 // Read surface identifier
 if ((ps = ReadSurface()) == NULL)
 break;

 // Link surface to surface list
 ps->SetNext(pshd);
 pshd = ps;
 penv->num_surf++;
 surf_cnt++;

Building An Environment 129
__

 }

 // Build surface pointer array
 ps = pshd;
 ps_array = new SurfacePtr[surf_cnt];
 s_index = surf_cnt - (WORD) 1;
 while (ps != NULL)
 {
 ps_array[s_index--] = ps;
 ps = ps->GetNext();
 }
 return pshd;
}

// Read surface identifier
Surface3 *Parse::ReadSurface()
{
 char start[2], end[2]; // Vector separators
 float ered, egreen, eblue; // Exitance components
 float rred, rgreen, rblue; // Reflectance components
 Spectra reflect; // Spectral reflectance
 Spectra emit; // Spectral radiant exitance

 ReadLine(efile); // Read color vector

 if (sscanf(line_buff, "%1s %f %f %f %1s %1s %f %f %f %1s",
 start, &rred, &rgreen, &rblue, end, start, &ered,
 &egreen, &eblue, end) == 10)
 {
 // Set reflectance
 reflect.SetRedBand(rred);
 reflect.SetGreenBand(rgreen);
 reflect.SetBlueBand(rblue);

 // Set initial spectral radiant exitance
 emit.SetRedBand(ered);
 emit.SetGreenBand(egreen);
 emit.SetBlueBand(eblue);

 return new Surface3(reflect, emit);
 }
 else
 return NULL; // Must be terminator
}

// Parse patch identifiers
BOOL Parse::ParsePatches()
{
 char start[2], end[2]; // List separators
 int v_index; // Vertex pointer array index
 BOOL status = TRUE; // Status flag
 WORD p_index; // Patch pointer array index
 WORD s_index; // Surface index
 WORD ivtx[4]; // Vertex indices
 Patch3 *pp; // Patch pointer
 Patch3 *pphd; // Patch head pointer
 PatchList *ppl = NULL; // Patch list pointer
 PatchList *pplnext; // Next patch list pointer
 Vertex3 *pv[4]; // Vertex pointers array

130 Building An Environment
__

 ReadLine(efile); // Read patch section header

 for (; ;)
 {
 ReadLine(efile); // Read patch identifier

 if (sscanf(line_buff, "%d %1s %d %d %d %d %1s",
 &s_index, start, &ivtx[0], &ivtx[1], &ivtx[2],
 &ivtx[3], end) == 7)
 {
 // Validate surface index
 if (s_index >= surf_cnt)
 {
 sprintf(msg_buff,
 "Entity file: %s\nPatch # %u\nSurface index "
 "error: %s", ent_buff, patch_cnt + 1,
 line_buff);
 ReportError(msg_buff);
 status = FALSE;
 break;
 }

 // Validate vertex array indices
 for (v_index = 0; v_index < 4; v_index++)
 {
 if (ivtx[v_index] >= vert_cnt)
 {
 sprintf(msg_buff,
 "Entity file: %s\nPatch # %u\nVertex index "
 "error: %s", ent_buff, patch_cnt + 1,
 line_buff);
 ReportError(msg_buff);
 status = FALSE;
 break;
 }
 }

 if (status == FALSE)
 break;

 // Get vertex pointers
 for (v_index = 0; v_index < 4; v_index++)
 pv[v_index] = pv_array[ivtx[v_index]];

 // Update surface patch linked list
 pp = new Patch3(pv, ps_array[s_index]);
 pphd = ps_array[s_index]->GetPatchPtr();
 pp->SetNext(pphd);
 ps_array[s_index]->SetPatchPtr(pp);

 // Determine whether triangle or quadrilateral
 if (ivtx[2] != ivtx[3])
 pp->SetQuad();
 }
 else
 break;

 // Link patch to temporary patch list
 ppl = new PatchList(pp, ppl);
 penv->num_patch++;

Building An Environment 131
__

 patch_cnt++;
 }

 // Build patch pointer array and delete patch list
 pp_array = new PatchPtr[patch_cnt];
 p_index = patch_cnt - (WORD) 1;
 while (ppl != NULL)
 {
 pp_array[p_index--] = ppl->GetPatchPtr();
 pplnext = ppl->GetNext();
 delete ppl;
 ppl = pplnext;
 }

 return status;
}

// Parse element identifiers
BOOL Parse::ParseElements()
{
 char start[2], end[2]; // List separators
 int nvert; // Number of vertices
 int v_index; // Vertex pointer array index
 BOOL status = TRUE; // Status flag
 WORD p_index; // Patch array index
 WORD ivtx[4]; // Vertex indices
 Element3 *pe; // Element pointer
 Element3 *pehd; // Element head pointer
 ElemList *pel; // Element list pointer
 ElemList *pelhd; // Element list head pointer
 Vertex3 *pv[4]; // Vertex pointers array

 ReadLine(efile); // Read element section header

 for (; ;)
 {
 ReadLine(efile); // Read element identifier

 if (sscanf(line_buff, "%d %1s %d %d %d %d %1s",
 &p_index, start, &ivtx[0], &ivtx[1], &ivtx[2],
 &ivtx[3], end) == 7)
 {
 // Validate patch index
 if (p_index >= patch_cnt)
 {
 sprintf(msg_buff,
 "Entity file: %s\nElement # %u\nPatch index "
 "error: %s", ent_buff, elem_cnt + 1,
 line_buff);
 ReportError(msg_buff);
 status = FALSE;
 break;
 }

 // Validate vertex array indices
 for (v_index = 0; v_index < 4; v_index++)
 {
 if (ivtx[v_index] >= vert_cnt)
 {
 sprintf(msg_buff,

132 Building An Environment
__

 "Entity file: %s\nElement # %u\nVertex index "
 "error: %s", ent_buff, elem_cnt + 1,
 line_buff);
 ReportError(msg_buff);
 status = FALSE;
 break;
 }
 }

 if (status == FALSE)
 break;

 // Get vertex pointers
 for (v_index = 0; v_index < 4; v_index++)
 pv[v_index] = pv_array[ivtx[v_index]];

 // Update patch element linked list
 pe = new Element3(pv, pp_array[p_index]);
 pehd = pp_array[p_index]->GetElementPtr();
 pe->SetNext(pehd);
 pp_array[p_index]->SetElementPtr(pe);
 penv->num_elem++;
 elem_cnt++;

 // Determine whether triangle or quadrilateral
 if (ivtx[2] != ivtx[3])
 {
 nvert = 4;
 pe->SetQuad();
 }
 else
 nvert = 3;

 for (v_index = 0; v_index < nvert; v_index++)
 {
 // Update vertex element linked list
 pelhd = pv[v_index]->GetElemListPtr();
 pel = new ElemList(pe, pelhd);
 pv[v_index]->SetElemListPtr(pel);
 }
 }
 else
 break;
 }

 return status;
}

void Parse::ReadTransform()
{
 double sx, sy, sz; // Scaling parameters
 double rx, ry, rz; // Rotation parameters
 double tx, ty, tz; // Translation parameters

 // Read transformation vectors
 ReadVector(ifile, &sx, &sy, &sz);
 ReadVector(ifile, &rx, &ry, &rz);
 ReadVector(ifile, &tx, &ty, &tz);

 // Convert rotation angles to radians

Building An Environment 133
__

 rx = DegToRad(rx);
 ry = DegToRad(ry);
 rz = DegToRad(rz);

 // Calculate vertex transformation matrix
 tm.SetScale(sx, sy, sz);
 tm.SetRotation(rx, ry, rz);
 tm.SetTranslation(tx, ty, tz);
 tm.BuildTransform();
}

// Read vertex identifier
Vertex3 *Parse::ReadVertex()
{
 double xval, yval, zval; // Vertex coordinates

 if ((ReadVector(efile, &xval, &yval, &zval)) == TRUE)
 return new Vertex3(Point3(xval, yval, zval));
 else
 return NULL;
}

// Read vector
BOOL Parse::ReadVector(WinText &file, double *px, double
 *py, double *pz)
{
 float x, y, z; // Temporary variables
 char start[2], end[2]; // Data separators

 ReadLine(file); // Read vector

 if (sscanf(line_buff, "%1s %f %f %f %1s", start, &x, &y,
 &z, end) == 5)
 {
 *px = x;
 *py = y;
 *pz = z;

 return TRUE;
 }
 else
 return FALSE;
}

// Transform entity into instance
void Parse::TransformInstance(Instance *pinst)
{
 Element3 *pe; // Element pointer
 Patch3 *pp; // Patch pointer
 Surface3 *ps; // Surface pointer
 Vertex3 *pv; // Vertex pointer

 // Transform vertex co-ordinates
 pv = pinst->GetVertPtr();
 while (pv != NULL)
 {
 tm.Transform(pv->GetPosnPtr());
 pv = pv->GetNext();
 }

134 Building An Environment
__

 // Calculate patch attributes
 ps = pinst->GetSurfPtr();
 while (ps != NULL)
 {
 pp = ps->GetPatchPtr();
 while (pp != NULL)
 {
 // Calculate element attributes
 pe = pp->GetElementPtr();
 while (pe != NULL)
 {
 pe->CalcArea();
 pe->CalcNormal();
 pe = pe->GetNext();
 }

 pp->CalcArea();
 pp->CalcCenter();
 pp->CalcNormal();
 pp = pp->GetNext();
 }
 ps = ps->GetNext();
 }

 // Calculate vertex normals
 pv = pinst->GetVertPtr();
 while (pv != NULL)
 {
 pv->CalcNormal();
 pv = pv->GetNext();
 }
}

// Read next line from file
void Parse::ReadLine(WinText &file)
{
 for (; ;)
 {
 file.GetLine(line_buff, MaxLine);

 // Skip comment lines
 if (strncmp(line_buff, CommentStr, strlen(CommentStr))
 != 0)
 break;
 }
}

Listing 3.20 - PARSE.CPP

Our program outline (Fig. 3.19) is handled by ParseFile, which accepts as its parameters an

environment data file name and an optional file path name to where the entity files are stored.

ParseFile extracts each entity file name from the environment data file and appends it to the entity file

path name (if one was specified). Using this fully expanded file name, it calls ParseEntityFile to read each

Building An Environment 135
__

entity file, after which it calls ReadTransform to read the associated transformation matrix. Each entity

returned by ParseEntityFile is transformed into an instance by TransformInstance.

If ParseFile is successful, a pointer to the environment can be obtained by calling GetEnv. The memory

allocated to this data structure can be released at any time by calling DeleteEnv. This memory is also

released if ParseFile is called again; each Parse object can only point to a single environment.

Finally, ParseFile calls ReportError if it can’t open an environment or entity file. This global function

is defined by:

// ERROR.H- Error Reporting Functions

#ifndef _ERROR_H
#define _ERROR_H

#ifndef _NOT_WIN_APP
#include <windows.h>
#else
#include <iostream.h>
#endif

extern void OutOfMemory();
extern void ReportError(char *);

#endif

Listing 3.21 - ERROR.H

and:

// ERROR.CPP - Error Reporting Functions

#include "error.h"

void OutOfMemory() // Report out of memory error
{
#ifndef _NOT_WIN_APP
 MessageBox(GetFocus(), "Out of memory", NULL, MB_OK |
 MB_ICONEXCLAMATION);
#else
 cerr << "ERROR: out of memory" << endl;
#endif
}

// Report error message
void ReportError(char *msg)
{
#ifndef _NOT_WIN_APP
 MessageBox(GetFocus(), msg, NULL, MB_OK |
 MB_ICONEXCLAMATION);
#else
 cerr << "ERROR: " << msg << endl;
#endif

136 Building An Environment
__

}

Listing 3.22 - ERROR.CPP

Note the use of the externally defined _NOT_WIN_APP to choose between a character-mode and an

MS-Windows application. MessageBox is an MS-Windows function that displays the error message in a

popup window.

PARSE.CPP and ERROR.CPP are not exactly laudable examples of robust user interface code. Unlike

the previous classes, Parse has to accept input from the outside world. Done properly, it should

exhaustively validate this data, provide meaningful error messages and exit gracefully. As a rule of thumb,

the error checking code should double the size of PARSE.CPP.

3.14 A Character-Mode Test Program

Using the example data files COL_CUBE.ENT and COL_CUBE.WLD (Listings 3.15 and 3.17), we

can exercise the code we’ve developed to date with:

// TEST_1.CPP - Environment Data File Parser Test Program

// NOTE: _NOT_WIN_APP must be globally defined for this
// program to be successfully compiled

#include <stdio.h>
#include <iostream.h>
#include "parse.h"

// Default entity directory path
static char NoEntityDir[] = "";

static Parse Parser; // World file parser
static Environ Environment; // Environment

int main(int argc, char **argv)
{
 int inst_num; // Instance number
 WORD surf_num; // Surface number
 WORD patch_num; // Patch number
 WORD elem_num; // Element number
 WORD vert_num; // Vertex number
 WORD list_num; // Polylist number
 char *pentdir; // Entity directory path
 Instance *pinst; // Instance pointer
 Surface3 *psurf; // Surface pointer
 ElemList *pelist; // Element list pointer
 Patch3 *ppatch; // Polygon pointer
 Element3 *pelem; // Element pointer
 Vertex3 *pvert; // Vertex pointer
 Spectra color; // Temporary color
 Point3 posn; // Point co-ordinates
 Vector3 normal; // Normal vector

Building An Environment 137
__

 // Get entity directory path (if any)
 if (argc > 2)
 pentdir = argv[2];
 else
 pentdir = NoEntityDir;

 // Parse the environment file
 if (Parser.ParseFile(argv[1], pentdir, &Environment) ==
 FALSE)
 return 1;

 // Get environment pointer
 pinst = Environment.GetInstPtr();

 // Walk the instance list
 inst_num = 1;
 while (pinst != NULL)
 {
 cout << "Instance #" << inst_num++ << endl;

 // Walk the surface list
 surf_num = 1;
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 cout << " Surface #" << surf_num++ << endl;
 color = psurf->GetReflectance();
 cout << " reflectance = [" << color.GetRedBand()
 << " " << color.GetGreenBand() << " " <<
 color.GetBlueBand() << "]" << endl;
 color = psurf->GetEmittance();
 cout << " emittance = [" << color.GetRedBand() <<
 " " << color.GetGreenBand() << " " <<
 color.GetBlueBand() << "]" << endl;

 // Walk the patch list
 patch_num = 1;
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 cout << " Patch #" << patch_num++ << endl;
 cout << " area = " << ppatch->GetArea() <<
 endl;
 posn = ppatch->GetCenter();
 cout << " center = < " << posn.GetX() << " "
 << posn.GetY() << " " << posn.GetZ() << " >" <<
 endl;
 normal = ppatch->GetNormal();
 cout << " normal = < " << normal.GetX() << " "
 << normal.GetY() << " " << normal.GetZ() <<
 " >" << endl;
 color = ppatch->GetExitance();
 cout << " exitance = [" << color.GetRedBand()
 << " " << color.GetGreenBand() << " " <<
 color.GetBlueBand() << "]" << endl;

 // Walk the patch element list
 elem_num = 1;
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)

138 Building An Environment
__

 {
 cout << " Element #" << elem_num++ << endl;
 cout << " area = " << pelem->GetArea() <<
 endl;
 normal = pelem->GetNormal();
 cout << " normal = < " << normal.GetX() <<
 " " << normal.GetY() << " " << normal.GetZ()
 << " >" << endl;
 color = pelem->GetExitance();
 cout << " exitance = [" <<
 color.GetRedBand() << " " <<
 color.GetGreenBand() << " " <<
 color.GetBlueBand() << "]" << endl;

 pelem = pelem->GetNext();
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }

 // Walk the vertex list
 vert_num = 1;
 pvert = pinst->GetVertPtr();
 while (pvert != NULL)
 {
 cout << " Vertex #" << vert_num++ << endl;
 posn = pvert->GetPosn();
 cout << " position = < " << posn.GetX() << " " <<
 posn.GetY() << " " << posn.GetZ() << " >" << endl;
 normal = pvert->GetNormal();
 cout << " normal = < " << normal.GetX() << " " <<
 normal.GetY() << " " << normal.GetZ() << " >" <<
 endl;
 color = pvert->GetExitance();
 cout << " color = [" << color.GetRedBand() << " "
 << color.GetGreenBand() << " " <<
 color.GetBlueBand() << "]" << endl;

 // Walk the vertex element list
 list_num = 0;
 pelist = pvert->GetElemListPtr();
 while (pelist != NULL)
 {
 list_num++;
 pelist = pelist->GetNext();
 }
 cout << " vertex shared by " << list_num <<
 " elements" << endl;
 pvert = pvert->GetNext();
 }
 pinst = pinst->GetNext();
 }

 return 0;
}

Listing 3.23 - TEST_1.CPP

Building An Environment 139
__

TEST_1 is a character-mode application that sends its output to the user console. As such,

_NOT_WIN_APP must be globally defined in order to correctly compile ERROR.CPP.

To run TEST_1, make sure that both data files are in the current directory, then enter the following

command:

TEST_1 COL_CUBE.WLD

Alternatively, you can have COL_CUBE.ENT in a separate directory, say “C:\RADIANT\ENTITIES”, and

enter:

TEST_1 COL_CUBE.WLD C:\RADIANT\ENTITIES

The output in either case will be a detailed listing of the surfaces, polygons and vertices belonging to

the two instances in the environment, along with their properties (surface colors, polygon normals, vertex

co-ordinates and so on).

3.14 Conclusions

With Parse and its associated classes, we have the 3-D graphics toolkit necessary to build an

environment. There are of course opportunities for improvement. The RGB model used in the ColorRGB

class, for example, could be augmented with a more sophisticated representation such as the HSV (hue-

saturation-value) or HLS (hue-lightness-saturation) models (e.g., Foley et al. [1990], Hill [1990], Watt

[1990] and Hall [1989]). These models are particularly useful for interactive control of surface colors,

where equal changes in the color space parameters produce approximately equal changes in the perceived

color. Foley et al. [1990] and Watt [1990] both offer Pascal code for converting between HLS and HSV

color models and the RGB color model.

A second approach is to use four or more color bands (Hall [1989]) for more accurate color rendition.

Chen [1991] offers C source code for mapping between such models and the simpler RGB color model.

The only problem is that there is very little information available on the spectral reflectance distribution of

most materials. Architectural finishes in particular are most often characterized using the subjective

Munsell color specification system (e.g., Munsell [1946], Judd and Wyszecki [1975] and Burnham et al.

[1963]) with its hue, value and chroma parameters. A Munsell color can only be mapped to the three color

bands of the RGB and similar color models.

140 Building An Environment
__

The Element3, Patch3 and Surface3 classes are candidates for improvement. The winged-edge data

structure (Baumgart [1974], Baumgart [1975] and Glassner [1991]) for polygon representation is one

possibility, although developing a robust winged-edge class in C++ is not for the timid. Another possibility

is to replace the polygon-based representation of surfaces with the edge-based representation described in

Mitchell [1990] (see also Watt and Watt [1992]). This approach results in a data structure that is simpler

than Element3 and which consumes less memory. Unfortunately, it requires different rendering techniques

than are presented in the next chapter.

Finally, the Parse class could be made more robust for use in a stand-alone application. Given the

widespread availability of reasonably priced 3-D CAD packages however, it is probably more reasonable

to develop an AutoCAD DXF file translator (see the accompanying diskette for a simple example) to

generate complex environment descriptions. For our purposes, Parse and its associated classes are more

than adequate.

References

Arvo, J., Ed. [1991]. Graphics Gems II, Academic Press, San Diego, CA.

Baumgart, B.G. [1974]. “Winged-Edge Polyhedron Representation”, Technical Report STAN-CS-320,

Stanford University, Palo Alto, CA.

Baumgart, B.G. [1975]. “A Polyhedron Representation for Computer Vision”, Proc. National Computer

Conference ‘75, 589 - 596.

Bragg, D. [1992]. “A Simple Color Reduction Filter”, in Kirk [1992], 20 - 22, 429 - 431.

Burnham, R.W., R.M. Hanes and C.J. Bartleson [1963]. Color: A Guide To Basic Facts and Concepts,

Wiley, New York, NY.

Chen, S.E. [1991]. “Implementing Progressive Radiosity with User-Provided Polygon Display Routines”,

in Arvo [1991], 295 - 298.

Cychosz, J.M. [1990]. “Efficient Generation of Sampling Jitter Using Look-Up Tables”, in Glassner

[1990], 64 - 74, 660 - 661.

Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes [1990]. Computer Graphics: Principles and Practice

(Second Edition), Addison-Wesley, Reading, MA.

Building An Environment 141
__

Gervautz, M. and W. Purgathofer [1990]. "A Simple Method for Color Quantization: Octree Quantization",

in Glassner [1990], 287 - 293.

Glassner, A.S. [1990]. Graphics Gems, Academic Press, San Diego, CA.

Glassner, A.S. [1991]. “Maintaining Winged-Edge Models”, in Arvo [1991], 191 - 201.

Hall, R. [1989]. Illumination and Color in Computer Generated Imagery, Springer-Verlag, New York,

NY.

Harrington, S. [1987]. Computer Graphics: A Programming Approach. McGraw-Hill, New York, NY.

Hill, F.S., Jr. [1990]. Computer Graphics, Macmillan, New York, NY.

Judd, D. and G. Wyszecki [1975]. Color in Business, Science and Industry, Wiley, New York, NY.

Kirk, D., Ed. [1992]. Graphics Gems III, Academic Press, San Diego, CA.

Mitchell, D.P. [1990]. Fast Algorithms for 3D Computer Graphics, Ph.D. thesis, University of Sheffield.

Munsell, A.H. [1946]. A Color Notation, Munsell Color Co., Baltimore, MD.

Rogers, D.F. and J.A. Adams [1976]. Mathematical Elements for Computer Graphics, McGraw-Hill, New

York, NY.

Thomas, S.W. and R.G. Bogart [1990]. “Color Dithering”, in Arvo [1990], 72 - 77, 509 - 513.

Watt, A. [1989]. Fundamentals of Three-Dimensional Computer Graphics, Addison-Wesley, Reading,

MA.

Watt, A. and M. Watt [1992]. Advanced Animation and Rendering Techniques, Addison-Wesley, Reading,

MA.

Chapter 4
A Viewing System

4.0 Introduction

Our environment consists of a complicated arrangement of data structures and pointers residing

somewhere in memory. Examining its contents is not easy; even a pair of colored cubes floating in space

presents us with an overwhelming stream of instance, surface, polygon and vertex values. Before doing

anything else, we need to develop a viewing system to display 3-D environments on our two-dimensional

computer screens.

What is a viewing system? Think of a computer screen as being a glass window looking into the

environment (Fig. 4.1). Examining the image on the screen from a fixed position with one eye closed, we

cannot say (with a bit of poetic license) whether we are viewing a 3-D environment or a 2-D representation

of it.

Window

Figure 4.1 - Projecting a 3-D object onto a 2-D window

That’s all there is to it! By tracing rays from a 3-D object to our eye position, we can “project” the

object onto the 2-D window. The ray luminances determines the luminances of the window at the points of

intersection. Looking at this window, we see a two-dimensional perspective projection of the 3-D

environment.

144 A Viewing System
__

Do not be misled by some of the more complex discussions of viewing systems in the computer

graphics literature. A viewing system–any viewing system– consists of one eye and a window. The

viewing system we will develop in this chapter is a slightly simplified version of the GKS-3D (ISO [1988])

and PHIGS (ANSI [1988]) systems. The principles of these industry standards are described at length in

Singleton [1987], with more generalized descriptions available in Foley et al. [1990] and Hill [1990].

The differences between our viewing system and GKS-3D or PHIGS are minimal and relatively

unimportant. It can show us everything we could see and photograph with a 35mm camera in real life. In

fact, the only advantage GKS-3D and PHIGS offer is their ability to model a professional photographer’s

view camera with its tilting lens holder. This is useful only if you want to correct for perspective distortion

(such as a tall building photographed from street level with a wide angle lens). Few of us own one of these

cameras, so why bother implementing its equivalent in software?

The advantage of our viewing system is that it is conceptually simple. Don’t let the mathematics

intimidate you. Look at the illustrations first and remind yourself that the equations are nothing more than a

formalized description of what you see. Taken one step at a time, they are actually quite easy to follow and

understand.

4.1 A Minimal Viewing System

Imagine our window as being part of an infinite view plane that is some distance (called the view

distance) in front of our eye and perpendicular to our line of sight (Fig. 4.2). We can position this view

plane window anywhere in an environment and orient it such that we can look in any direction.

To simplify our understanding of what we see, we can define a left-handed view plane co-ordinate

system (or “view space”) whose origin lies at the center of our window. In accordance with computer

graphics convention, we label its axes u, v and n. The n-axis indicates the direction in which we are

looking, while the v-axis establishes our local “up” direction. Expressing the view space origin in world

co-ordinates (i.e., { }zyx ooo ,,) establishes our position, while expressing the n-axis and v-axis as vectors in

world co-ordinates uniquely orients our view space with respect to the environment. The n-axis unit vector

n is called the view direction vector, while the v-axis unit vector v is referred to as the view-up vector.

A Viewing System 145
__

n

y

z

x

Eye position

v

u

View plane window

View distance

Figure 4.2 - View plane co-ordinate system

Our view plane window is a square with dimensions two units wide by two units high. What the units

actually represent–inches, feet or meters–is not important. Looking through the window, we can see that

the set of rays traced from its four corners to the eye position define an imaginary pyramidal cone (the view

pyramid) that delimits our angular field of view (Fig. 4.3). We can change this field of view by varying the

view distance. The effect is the same as that of changing the focal length setting of a zoom lens on a

camera–objects appear larger through the view plane window as the view distance is increased.

View distance = 4View distance = 2

View pyramid

Figure 4.3 - Changing the field of view by varying the view distance

Actually, the “window” analogy is somewhat misleading. Unlike a physical window, we will not see an

object that is in front of the window (i.e., between the view plane and our eye position) but outside the

view pyramid. Conversely, any object contained within the view pyramid will be visible, regardless of

whether it is behind or in front of the window. A more accurate description of the view plane window is

that of an imaginary square, defined on the equally imaginary view plane, that determines the shape of the

view pyramid.

146 A Viewing System
__

4.1.1 The View Volume

We need two more components to make our minimal viewing system a useful tool. Suppose we want to

look at the interior of a room somewhere inside a large building. If the eye position we need to obtain the

proper perspective is located outside the room, we must somehow remove the intervening walls and

objects. Even if our eye position is within the room, we will still want to ignore anything that lies beyond

the far walls.

A simple but effective solution is to define two additional planes (called clipping planes) that are

perpendicular to the view direction vector (Fig. 4.4). Together with the view pyramid, these planes delimit

a view volume (also known as a view frustum). Only objects that are contained within this volume are

visible through the view plane window; those that lie partially or wholly outside the volume are clipped

from our field of view. In our example, we would likely set the front clipping plane to be just inside the

room and the back clipping plane to lie just beyond the far room walls.

View plane window

Front clipping plane

Back clipping plane
View volume

Front plane distance

Back plane distance

v

u

n

View distance

Figure 4.4 - Defining the view volume

Given a viewing system position and orientation within an environment, we may find that the nearest

objects of interest are between the eye position and the view plane window. This is not a problem! The

front clipping plane can be placed as close to the eye position as necessary, including in front of the view

plane window. We can always trace rays backwards from the eye position through the objects to the view

plane.

A Viewing System 147
__

)

4.1.2 Specifying the View-Up Vector

In later developing a user interface for our viewing system, we will need to specify its position and

orientation in world co-ordinates. While specifying the position is trivial, orienting the viewing system

presents a minor problem. Designing an intuitive interface suggests that the view direction vector n and

view-up vector v should be specified using spherical co-ordinates. However, v must be exactly

perpendicular to n. Once we specify n, how can we accurately specify v?

One reasonable approach is to indicate an approximate view-up vector . The true view-up vector v

can then be determined by projecting onto the view plane (Fig. 4.5) and normalizing the resultant

vector. This can be done by calculating:

'v

'v

()(nnvvv ⋅−= ''norm (4.1)

where the only restriction is that cannot point in the same or opposite direction as n. In other words,

cannot be collinear with n.

'v 'v

n

v
v' u

Figure 4.5 - Determining the view-up vector v from an approximate vector 'v

Knowing v and n, the world co-ordinates of the unit vector u can be determined from:

u n v= × (4.2)

where n comes before v in the cross product only because u, v and n comprise a left-handed co-ordinate

system.

4.2 From World to View Co-ordinates

The objects in our environment are defined in terms of 3-D polygons with world co-ordinates. To

project them onto the view plane window, we first need to transform their co-ordinates into those of our

view space. This problem is similar to that of transforming an entity into an instance (Section 3.9), except

148 A Viewing System
__

that no scaling is required. We are also dealing with an environment (a “world space”) rather than a single

entity. Nevertheless, the same principles apply.

Imagine that we have an environment consisting of a cube and a viewing system as shown in Figure

4.6a. We need a linear 3-D transformation that will perform two operations. First, it should translate the

world space such that its origin coincides with our view space origin (Fig 4.6b). In other words, the world

co-ordinates of every object in the environment are shifted a distance equal to that between the two origins.

Second, the transformation should rotate the world space such that its axes are aligned with those of our

view space (Fig. 4.6c). Remember however that the world space has a right-handed co-ordinate system,

while our view space is left-handed. This means that when the x-axis unit vector is aligned with the u-axis

unit vector and the y-axis and v-axis unit vectors are similarly aligned, the z-axis unit vector will point in

the opposite direction to that of its n-axis counterpart.

In terms of homogeneous co-ordinates, this transformation can be expressed as:



















=



















=



















111
z
y
x

z
y
x

n
v
u

MRT (4.3)

where T is the translation matrix, R is the rotation matrix, and M is the net view space transformation

matrix.

The translation component is quite simple, being:



















−
−
−

=

1000
100
010
001

z

y

x

o
o
o

T (4.4)

where o , o and o are the world co-ordinates of the view space origin. The rotation component is

somewhat more complicated. We have the view space axes as unit vectors u, v and n expressed in world

space co-ordinates (e.g.,

x y z

{ }zyx uuuu ,= for the u-axis vector). We want a 3-D transformation matrix R that

will rotate them into the following view space co-ordinates:

{ }
{
{ }1,0,0

0,1,0
0,0,1

=
=
=

n
v
u

} (4.5)

A Viewing System 149
__

Expressed in homogeneous co-ordinates, these become:



















=





































=





































=



















1
1
0
0

1

1
0
1
0

1

1
0
0
1

1

z

y

x

z

y

x

z

y

x

n
n
n

v
v
v

u
u
u

R

R

R

 (4.6)

z

x

y

v

u

n

{2,2,0}

{0,1,0}

Figure 4.6a - Viewing system in world space

v

u

n

{0,0,0}

{-2,-1,0}

z

x

y

Figure 4.6b - Translate world co-ordinates to view space origin

150 A Viewing System
__

u,x

n
{0,0,0}

{0,0.7,2.1}

z

v,y

Figure 4.6c - Rotate world co-ordinates into view space

It can be shown (e.g., Hill [1990]) that the matrix R must have the form:



















=

1000
0
0
0

zyx

zyx

zyx

nnn
vvv
uuu

R (4.7)

where u , u and are the world co-ordinates of the u-axis unit vector, and similarly for the v-axis and

n-axis unit vectors. For our purposes, it is sufficient to confirm that R satisfies Equation 4.6 (since

 for u, and similarly for v and n).

x

2
yu

y

+ u

zu

122 =+ zxu

Concatenating these two matrices gives us the view space transformation matrix:



















==

1000
zzyx

yzyx

xzyx

tnnn
tvvv
tuuu

RTM (4.8)

where:

zzyyxxz

zzyyxxy

zzyyxxx

nononot

vovovot

uououot

∗−∗−∗−=

∗−∗−∗−=

∗−∗−∗−=

 (4.9)

from the definition of matrix multiplication. Put more succinctly, each of the components of the submatrix

t is the dot product of the view space origin o (expressed as a vector in world space co-ordinates) and one

of the vectors u, v or n. In other words:

A Viewing System 151
__

















⋅−
⋅−
⋅−

=
no
vo
uo

t (4.10)

Referring to Figure 4.6 as an example, suppose we have chosen an view space whose position and

orientation in world co-ordinates are: { }0,2,2=o , { }1,0,0 −=u , { }0,21,21−=v , and

{ }0,21,21 −−=n . This gives us the following view space transformation matrix:



















−−
−

−

=

1000
2202121

002121
0100

M (4.11)

If we then have (for example) a point in our environment with world co-ordinates { } ,

premultiplying its homogeneous co-ordinates representation by M gives its view space co-ordinates of

0,1,0



















1
0
1
0

{ }23,21,0 − .

In summary, we can position and orient our viewing system anywhere in an environment. Having done

so, Equations 4.8 and 4.9 show us how to compute its transformation matrix. Applying this matrix to the

world co-ordinates of any point in the environment gives us its equivalent view space co-ordinates.

4.3 Perspective Projection

The objects in our environment consist of collections of 3-D polygons. Having transformed the world

co-ordinates of their vertices into view space co-ordinates, it remains to project these vertices onto the view

plane. At first glance, this appears to be a problem involving elementary geometry.

From Figure 4.7, it is evident that the co-ordinates of the projected point can be determined from

the co-ordinates of p according to the equations:

'p

wpp
wpp

vv

uu

=
=

'
'

 (4.12)

where (dpw n−=1) , with d being the view distance (and where 0<d).

152 A Viewing System
__

This is reminiscent of our definition of homogeneous co-ordinates (Eqn. 3.10). Suppose we expand

Equation 4.12 to include the n-axis co-ordinate:

wpp
wpp
wpp

nn

vv

uu

=
=
=

'
'
'

 (4.13)

where again (dpw n−=1) . Expressed in terms of homogeneous co-ordinates, this becomes:

Perspective:


















=





































−

=



















111100
0100
0010
0001

n
v
u

n
v
u

dw
P
P
P

n

v

u

P (4.14)

p(u,v,n)
p'(u,v,0)

u

v

n

View plane window

d

Figure 4.7 - Perspective projection

where the projected co-ordinates are given by:

wPp
wPp
wPp

nn

vv

uu

=
=
=

'
'
'

 (4.15)

(The division of the first three homogeneous co-ordinates by the fourth co-ordinate is called the

perspective divide operation.)

This approach offers several advantages. First, it allows us to perform perspective projection as a 3-D

transformation using homogeneous co-ordinates. Recalling Section 3.11, we can concatenate the

A Viewing System 153
__

perspective transformation matrix P with our view space transformation matrix M (Eqn. 4.8), thereby

performing two transformations with one matrix multiplication.

Second, the projected n-axis co-ordinate has a physical meaning. It represents the perspective

depth (or pseudodepth) of the vertex. Given two vertices and where , the projected n-

axis co-ordinates are such that . In other words, the perspective transformation preserves the

depth ordering of the vertices relative to the view plane. (It does not preserve the true n-axis depth,

however. Plotting versus will show that the n-axis scale is stretched as it approaches the back

clipping plane.) We will need this information later on to determine whether an object is hidden by any

other objects in front of it.

np'

1p 2p nn pp 21 >

nn pp 21 '' >

npnp'

Third and most importantly, the perspective transformation preserves straight lines and planes. That is,

a straight line between two vertices in our view space is projected onto the view plane as a straight line

while retaining the proper depth ordering of each point along the line. The same applies to points on a

plane. This is essential if we are to interpolate edges and planar polygon surfaces between vertices after a

perspective transformation of their co-ordinates.

The four homogeneous co-ordinates represent four dimensions. Unfortunately, the words “four

dimensions” bring to mind thoughts of general relativity and curved space-time, following which most of

us respond to social conditioning and switch our minds into neutral. To avoid this syndrome, we should

consider the simpler case of three dimensions.

The diagram shown in Figure 4.8 illustrates two points (and) on a 3-D line being projected onto 0p 1p

the u-v plane. The projected points are and respectively. Notice that the two horizontal axes are '0p '1p

labeled u and v, while the vertical axis is labeled w. Notice also that wp '' 1p0 = . This applies for any

point along the line.

There are two crucial concepts here: first, the w-axis plots our fourth co-ordinate, and therefore

represents the fourth dimension. It clearly shows that the co-ordinate w is nothing more than a scaling

factor that converts the u-v co-ordinates of a point to their projected co-ordinates on the view plane. This

same scaling factor converts the n-axis co-ordinate to its perspective depth.

154 A Viewing System
__

Second, the fourth homogeneous dimension is no different from the other three dimensions. We can

plot points, lines and planes in four dimensions as easily as we can in two or three. Moreover, the usual

rules of geometry and trigonometry apply. For example, the length of a 4-D vector is given by

2222 wnvu +++ .

There is one point to remember, however. Since w represents a scaling factor (as shown by Equation

4.13), any line or plane plotted along the w-axis must intersect the origin. There are exceptions to this rule

in computer graphics, but they do not occur in any area of concern to us.

w

u

v

0

p0

p1

p1'

p0'
1

2

Figure 4.8 - Avoiding the “general relativity” syndrome

What happens if a point p is behind our eye position? Even though has a negative value, Equations

4.14 and 4.15 yield valid results. They can be interpreted by tracing a ray from the point through the eye

position to the view plane (Fig. 4.9). This emphasizes the need for our view volume. Without it, objects

behind the eye position are projected onto the view plane. Another reason is that any attempt to project a

point on the plane parallel to the view plane and intersecting the eye position (i.e.,) will result in a

division-by-zero error.

np

dpn =

A Viewing System 155
__

View plane Front clipping plane

Figure 4.9 - Projecting points from behind the eye position

The perspective division distorts the truncated pyramid of our perspective view volume (Fig. 4.10a)

into the parallel view volume shown in Figure 4.10b.

View plane window

View volume

v

u

n

Figure 4.10a - Perspective view volume (before perspective divide)

View plane window

View volume

v

u

n

Figure 4.10b - Parallel view volume (after perspective divide)

The view volume is now a rectangular box with parallel sides, with our eye position removed to minus

infinity along the n-axis. Of course, all the points in the view space have been similarly distorted–we have

transformed our perspective projection of the world space into an equivalent parallel projection (Fig. 4.11).

156 A Viewing System
__

The projection of any point onto the view plane can now be performed by tracing a ray parallel to the n-

axis from the point to the view plane. The spatial distortions we have introduced with the perspective

transformation make this projection of the environment onto the view plane window look like our original

perspective projection.

Figure 4.11a - Before perspective division Figure 4.11b - After perspective division

4.4 Screen Space Co-ordinates

Our view plane window is a square. Recalling the beginning of this chapter, our goal is to display 2-D

projected images of a 3-D environment. These images will typically be rectangular. We can think of them

having a left-handed screen space co-ordinate system (Fig. 4.12), with the x-axis and y-axis representing

the image width and height, and the z-axis representing the depth “behind” the screen. The question is,

once we project a point onto the square view plane window, how can we scale its u-v view space co-

ordinates to the x-y-z screen space co-ordinates of a rectangular image?

Screen

y

z

x

width

height aspect ratio = width / height

Figure 4.12 - Screen space co-ordinates

A Viewing System 157
__

We could of course simply crop the projected image before scaling. However, this entails an

unnecessary amount of work. We still have to clip, shade and perform hidden surface elimination

calculations for each polygon (discussed in the following sections) before we can scale them.

The aspect ratio of an image is defined as the ratio of its width to its height. What if we redefined our

view plane window as a rectangle with the same aspect ratio as the image we want to display?

Unfortunately, this complicates both our definition of a view volume and the following algorithms for

clipping, shading and hidden surface elimination. In particular, the algorithms must be made aware of the

relative dimensions of the image.

The preferred solution is to scale our entire view space. Suppose we want to display a rectangular

image that measures 320 pixels horizontally and 240 pixels vertically on a computer screen with square

pixels. The aspect ratio of this image is approximately 1.33. By multiplying (i.e., scaling) the view space

v-axis co-ordinates by this ratio, we can stretch our view space vertically such that the rectangular image

becomes a square. This allows us to continue to use our square view plane window. (If the aspect ratio

were less than one–that is, if we want a vertically-oriented image–we would have to scale the u-axis co-

ordinates instead.)

We can now perform our clipping, shading and hidden surface elimination calculations for each

polygon in this distorted view space. More importantly, the algorithms do not need to know about the

aspect ratio. We only need to divide the distorted v-axis or u-axis co-ordinates by this ratio when we are

ready to scale to screen space co-ordinates.

What about the front and back clipping plane distances? As a result of perspective division, the front

plane is now located at ()dFF −1

0<

 units along the n-axis, where F is the front plane distance and d is the

view distance (with d). Similarly, the back plane is located at ()dBB −1 units, where B is the back

plane distance. By translating and then scaling our view volume in the n-axis direction prior to perspective

division, we can change these distances to 0 and +1 units respectively. By appropriately translating and

scaling in the u-axis and v-axis directions as well, we can create the canonical parallel view volume shown

in Figure 4.13, where and 1≤0 ≤ u 10 ≤≤ v . These are normalized view space co-ordinates.

158 A Viewing System
__

The required translation and scaling can be performed with one normalization transformation,

expressed in homogeneous co-ordinates as:

Normalization:


















=





































=



















111000
00

2100
2100

1
'
'
'

n
v
u

n
v
u

rs
s

s

n
v
u

nn

v

u

N (4.16)

0

+1

+1

+1

u

v

n

Figure 4.13 - Canonical parallel view volume

where:

2

2
bs

as

v

u

=

=
 (4.17)

()(
()

)

()
()BFd

BdFs
dF

Fr

FBd
FdBd

dF
F

dB
Bs

nn

n

−
−

=







−

−=

−
−−

=







−

−
−

=
−

1

11 2

1

and where:

aspectb
a
=
=1

if , otherwise: 1≥aspect

1
1

=
=

b
aspecta

A Viewing System 159
__

)

with aspect being the image aspect ratio.

We will later need the pseudodepth of our normalized view space co-ordinates to determine the

relative depth of object in the view volume. Meanwhile, we can scale and v to our screen space co-

ordinates using:

'n

'u '

()()()
()()(1,'intmin

1,'intmin
−∗=

−∗=
heightheightvy

widthwidthux
 (4.18)

where x is the horizontal position in pixels from the left edge of the screen and y is the vertical position in

scan lines from the bottom. Similarly, the screen width is measured in pixels and its height is measured in

scan lines. Since u and can range from 0.0 to 1.0 inclusive, the min function needed to ensure that the

screen space co-ordinates stay within their upper bounds.

' 'v

There are some differences of opinion in the computer graphics community regarding the co-ordinates

of a pixel. Our normalized view space co-ordinates are floating point values, implying a continuous image.

Our screen, on the other hand, is an array of pixels, which implies a discrete image. The question is, are

these pixels centered on integer co-ordinates or halfway between? Given a floating point value of 3.75, do

we round it to the nearest integer value of 4.0 or truncate it to 3.0?

Heckbert [1990a] argues for the latter, stating that “the pixel with discrete co-ordinates (x, y) has its

center at continuous coordinates (x + 1/2, y + 1/2).” That is, we should truncate using the C++ math library

floor function. This is done implicitly when the compiler converts a floating point value to its integer

representation (Plauger and Brodie [1989]) through the cast to int in Equation 4.18.

4.5 3-D Projective Transformations

Summarizing our viewing system transformations then, we have:



















=



















1
z

y

x

n

v

u

p
p
p

w
P
P
P

NPM (4.19)

where { }zyx ppp ,, are the world co-ordinates of a point p, M is the view space transformation matrix

(Eqn. 4.8), P represents the perspective transformation (Eqn. 4.14) and N performs the normalization

transformation (Eqn. 4.16). The perspective division (Eqn. 4.15) then recovers the 3-D projected co-

160 A Viewing System
__

ordinates { . The net transformation matrix NPM is called the 3-D projective transformation

matrix.

}nvu ppp ',','

0.2=F

{ 1,0,0=n

{ }00

















−

1000
0100
0010
0001










14100
0100
0010
0001







=
00
320

021

The beauty of homogeneous co-ordinates is that for any given set of viewing system parameters, these

three matrices can be concatenated to form a single 4×4 transformation matrix. This allows us to

accomplish our view space, normalization and perspective transformations with a single matrix multiply

operation, and to apply the identical operation to each point in the environment.

To illustrate Equation 4.19 assume we have a viewing system with view distance , front plane

distance and back plane distance

0.4−=d

0.10=B . Our image has an aspect ratio . If we

orient this system such that its origin is located at the world co-ordinate space origin, its view direction

vector is and its view-up vector is

33.1=aspect

{ }0,1,0=v , then its u-axis co-ordinates will be

. This gives us the view space transformation matrix: ,1−=u

}

=M (4.20

which in this case only does nothing more than convert right-handed world space co-ordinates into those of

the left-handed view space co-ordinate system.

Premultiplying by the perspective transformation matrix P, we have:

















−

=










=

14100
0100
0010
0001

MPM (4.21)

From Equation 4.17, we have 21=us , 32=vs , 3221=ns and 87−=nr . Premultiplying by the

normalization matrix N, we get:



















−

−

=












−
14100

8716700
2181320
2181021

1000
873221

210
210

PMNPM (4.22)

A Viewing System 161
__

Applying this transformation matrix to a point with world space co-ordinates { }7,3,4 , we obtain its

equivalent view space co-ordinates:

4435
8
7

16
7

2227
2
1

8
1

3
2

225
2
1

8
1

2
1

41141

=





 −=

=





 ++=

−=





 ++−=

=+=

wzn

wzyv

wzxu

zw

 (4.23)

Substituting the front and back clipping plane values of 2 and 10 for the point’s z-axis co-ordinate will

demonstrate that its perspective depth n becomes 0 and 1 respectively. Similar substitutions can be used to

confirm the normalized u-axis and v-axis limits.

4.6 Backface Culling

We saw in the previous chapter (Section 3.4.1) that a polygon is only visible if the angle between its

normal and our line of sight vector is less than ±90 degrees, or equivalently if their dot product is less than

zero. Backface culling employs this concept to eliminate those polygons we cannot see before we perform

our projective transformations.

We already have the polygon normal in world co-ordinates. What we need is the view vector from our

eye position to any point on the polygon (Fig. 4.14). The polygon’s first vertex makes as good a choice as

any. The view vector is then defined as the vector from our eye position to this vertex. (Note that this

vector is not our view direction vector. The polygon may not even be in our field of view.)

View vector

v0

θ

NEye position

View direction vector

Figure 4.14 - Backface culling in world space

We do not have the eye position in world co-ordinates. However, we do have the view system origin o

and view direction vector n. Given the view distance d, the eye position co-ordinates are given by:

162 A Viewing System
__

zzz

yyy

xxx

ndoe

ndoe
ndoe

∗+=

∗+=

∗+=
 (4.24)

or in vector notation, . (Note that this only applies when the eye position is on the n-axis.

While this is always true for our viewing system, it may not be true for a more generalized viewing system

such as GKS-3D or PHIGS.)

noe ∗+= d

The view vector has to be calculated for each polygon, which may seem like a fair amount of work.

Could we not perform backface culling after the projective transformations have been applied? The eye

position will have been removed to minus infinity, and so every view vector will parallel to the view

direction vector. A polygon will be visible only if its normal in view space points towards the eye position.

Unfortunately, the amount of work involved in the projective transformation of a polygon is greater than

that of backface culling the polygon in world space.

4.7 A Viewing System Class

We can neatly encapsulate the preceding equations and parameters of our minimal viewing system in

the following class:

// VIEW_SYS.H - Viewing System Class

#ifndef _VIEW_SYS_H
#define _VIEW_SYS_H

#include "patch3.h"

class ViewSys // Viewing system
{
 private:
 double bpd; // Back plane distance
 double eye; // View distance
 double fpd; // Front plane distance
 Point3 origin; // View space origin
 Point3 eye_posn; // Eye position
 Vector3 vdv; // View direction vector
 Vector3 vuv; // View-up vector
 double ptm[4][4]; // Projective transformation matrix

 protected:
 double aspect; // Aspect ratio

 BOOL BackFaceCull(Patch3 *);
 double (*GetProjMatrix())[4];
 void BuildTransform();

 public:
 ViewSys()

A Viewing System 163
__

 {
 aspect = 1.0;
 fpd = -0.99;
 bpd = 10000.0;
 eye = -1.0;
 eye_posn = Point3(-1.0, 0.0, 0.0);
 origin = Point3(0.0, 0.0, 0.0);
 vdv = Vector3(-1.0, 0.0, 0.0);
 vuv = Vector3(0.0, 0.0, 1.0);

 BuildTransform(); // Initialize matrix
 }

 double GetBackDist() { return bpd; }
 double GetFrontDist() { return fpd; }
 double GetViewDist() { return -eye; }
 Point3 &GetOrigin() { return origin; }
 Point3 &GetEyePosn() { return eye_posn; }
 Vector3 &GetViewDir() { return vdv; }
 Vector3 &GetViewUp() { return vuv; }
 void SetBackDist(double b) { bpd = b; }
 void SetEyePosn(Point3 &e) { eye_posn = e; }
 void SetFrontDist(double f) { fpd = f; }
 void SetOrigin(Point3 &o) { origin = o; }
 void SetViewDir(Vector3 &v) { vdv = v; }
 void SetViewDist(double e) { eye = -e; }
 void SetViewUp(Vector3 &);
};

// Return projective transformation matrix pointer
inline double (*ViewSys::GetProjMatrix())[4]
{ return ptm; }

#endif

Listing 4.1 - VIEW_SYS.H

and:

// VIEW_SYS.CPP - Viewing System Class

#include "view_sys.h"

// Build projective transformation matrix and eye position
void ViewSys::BuildTransform()
{
 double rn; // Translation factor
 double su, sv, sn; // Scaling factors
 Vector3 o; // Origin vector
 Vector3 u; // u-axis vector

 // Set view space origin
 origin.SetX(eye_posn.GetX() - eye * vdv.GetX());
 origin.SetY(eye_posn.GetY() - eye * vdv.GetY());
 origin.SetZ(eye_posn.GetZ() - eye * vdv.GetZ());

 o = Vector3(origin); // Initialize origin vector
 u = Cross(vdv, vuv); // Calculate u-axis vector

164 A Viewing System
__

 // Initialize view transformation matrix
 ptm[0][0] = u.GetX();
 ptm[0][1] = u.GetY();
 ptm[0][2] = u.GetZ();
 ptm[0][3] = -(Dot(o, u));

 ptm[1][0] = vuv.GetX();
 ptm[1][1] = vuv.GetY();
 ptm[1][2] = vuv.GetZ();
 ptm[1][3] = -(Dot(o, vuv));

 ptm[2][0] = vdv.GetX();
 ptm[2][1] = vdv.GetY();
 ptm[2][2] = vdv.GetZ();
 ptm[2][3] = -(Dot(o, vdv));

 ptm[3][0] = 0.0;
 ptm[3][1] = 0.0;
 ptm[3][2] = 0.0;
 ptm[3][3] = 1.0;

 // Premultiply by perspective transformation matrix
 ptm[3][0] -= ptm[2][0] / eye;
 ptm[3][1] -= ptm[2][1] / eye;
 ptm[3][2] -= ptm[2][2] / eye;
 ptm[3][3] -= ptm[2][3] / eye;

 // Premultiply by normalization matrix

 if (aspect >= 1.0)
 {
 su = 0.5;
 sv = 0.5 * aspect;
 }
 else
 {
 su = 0.5 / aspect;
 sv = 0.5;
 }

 sn = (eye - bpd) * (eye - fpd) / (eye * eye * (bpd -
 fpd));
 rn = fpd * (eye - bpd) / (eye * (fpd - bpd));

 ptm[0][0] = su * ptm[0][0] + 0.5 * ptm[3][0];
 ptm[0][1] = su * ptm[0][1] + 0.5 * ptm[3][1];
 ptm[0][2] = su * ptm[0][2] + 0.5 * ptm[3][2];
 ptm[0][3] = su * ptm[0][3] + 0.5 * ptm[3][3];

 ptm[1][0] = sv * ptm[1][0] + 0.5 * ptm[3][0];
 ptm[1][1] = sv * ptm[1][1] + 0.5 * ptm[3][1];
 ptm[1][2] = sv * ptm[1][2] + 0.5 * ptm[3][2];
 ptm[1][3] = sv * ptm[1][3] + 0.5 * ptm[3][3];

 ptm[2][0] = sn * ptm[2][0] + rn * ptm[3][0];
 ptm[2][1] = sn * ptm[2][1] + rn * ptm[3][1];
 ptm[2][2] = sn * ptm[2][2] + rn * ptm[3][2];
 ptm[2][3] = sn * ptm[2][3] + rn * ptm[3][3];
}

A Viewing System 165
__

// Set view-up vector
void ViewSys::SetViewUp(Vector3 &approx)
{
 Vector3 temp = vdv; // Temporary vector

 // Project approximate view-up vector onto view plane
 temp *= Dot(approx, vdv);
 vuv = approx - temp;

 vuv.Norm(); // Normalize view-up vector
}

// Perform backface culling
BOOL ViewSys::BackFaceCull(Patch3 *ppatch)
{
 Vector3 view; // View vector

 // Calculate view vector (first vertex to eye position)
 view = Vector3(ppatch->GetVertexPtr(0)->GetPosn(),
 eye_posn);

 // Indicate whether patch is backface
 return (Dot(ppatch->GetNormal(), view) < MIN_VALUE) ?
 TRUE : FALSE;
}

Listing 4.2 - VIEW_SYS.CPP

Only one instance of ViewSys is required for our radiosity renderer. Its constructor positions the

viewing system at the world space origin with its view direction vector aligned with the x-axis in the

negative direction and its view-up vector aligned with the z-axis. The eye position is set at -1.0 and the

front and back plane distances are set to very small and large values respectively. The constructor then

calls BuildTransform to initialize the 3-D projective transformation matrix and determine the eye position.

ViewSys also presents the view distance to the user as a positive number through the functions

GetViewDist and SetViewDist. This is more for the user’s convenience than anything else; its internal

representation and mathematics remain unchanged.

The viewing system parameters can be changed at any time by calling the appropriate class member

functions. However, any change to SetViewDir must be followed with a call to SetViewUp. This call is not

included in SetViewDir, since the user must specify an approximate view-up vector that is not collinear

with the new view direction vector. Once the parameters have been updated, BuildTransform must be

called to calculate the new transformation matrix elements and update the eye position.

166 A Viewing System
__

One final comment: the function GetProjMatrix represents one of the least elegant aspects of C++. All

it does is return a pointer to the projective transformation matrix ptm. Unfortunately, C++ function

declarations involving pointers to multidimensional arrays are something only a compiler writer can love.

4.8 Polygon Clipping

Again, the objects in our environment consist of collections of 3-D polygons. While we want to project

these polygons onto the view plane, we must consider that a polygon may not be wholly within the view

volume. If it is completely outside, we can simply ignore it. However, it may be only partly within the

volume (e.g., Fig. 4.15). In this case we must somehow clip the portion that is outside the view volume

before projecting its remainder onto the view plane window.

Figure 4.15 - Clipping a polygon to the canonical view volume

4.8.1 The Sutherland-Hodgman Algorithm

There are many different polygon clipping algorithms described in the literature, including Liang and

Barsky [1983], Weiler and Atherton [1980], Burkett and Noll [1988] and Vatt [1992]. For our purposes

however, we need look no further than the classic Sutherland-Hodgman algorithm (Sutherland and

Hodgman [1974]).

Looking at our view volume, we can imagine it as being the intersection of six clipping planes (Section

4.1.1). The Sutherland-Hodgman algorithm accepts as its input an n-sided polygon modeled as an ordered

list of vertices and clips it against each of these planes in sequence. Vertices within the view 10 ,, −npp K

A Viewing System 167
__

volume are retained, and new vertices are created wherever a polygon edge intersects one of the clipping

planes. The algorithm’s output is a new set of vertices that represents the clipped polygon. 10 ,, −mqq K

S

We can best see how the algorithm works by first examining how it clips a polygon against a single

plane. It considers the vertices one vertex at a time, beginning with . Each vertex is

considered to be the end vertex E of an edge of the polygon; the start vertex S is the preceding vertex .

The algorithm may generate zero, one or two output vertices of the clipped polygon for each input vertex,

depending on the relation of the edge to the clipping plane.

10 ,, −npp K 0p ip

1−ip

The plane divides the view plane space into two regions: a “visible” region that contains the view

volume and an “invisible” region. This leads to the four possibilities shown in Figure 4.16. First, the edge

may have both vertices in the visible region (Fig 4.16a), in which case the end vertex E is output (the start

vertex will have been previously output). (A vertex actually on the plane is assumed to be in the visible

region.) Second, the edge may have both vertices in the invisible region (Fig. 4.16b), in which case no

vertex is output. Third, the edge may leave the visible region (Fig. 4.16c), with only the start vertex in the

visible region. In this case, the intersection I between the edge and the plane is determined and output as a

vertex. Fourth, the edge may enter the visible region (Fig. 4.16d), with only the end vertex in the visible

region. Here two vertices are output: the intersection I between the edge and the plane, followed by the end

vertex E.

S

E

E

Invisible region

Visible region

Figure 4.16a - Edge in visible region Figure 4.16b - Edge in invisible region

S SEE
I I

Figure 4.16c - Edge leaving visible region Figure 4.16d - Edge entering visible region

168 A Viewing System
__

Looking at Figure 4.17, we can follow the vertices of an arbitrary polygon intersected by a plane to see

that this algorithm works with one exception: the edge from to is not considered. If it crosses the

plane, we miss the final intersection vertex .

4p 0p

3I

The solution is to save the first vertex and “close” the polygon by examining the edge from to

 after all the input vertices have been considered. A final output vertex is generated only if the edge

crosses the plane. (We could instead simply access directly if the vertices are stored in an array.

However, one of the primary advantages of the Sutherland-Hodgman algorithm is that it does not need

intermediate storage for an indeterminate number of input or output vertices. All it needs to store for

clipping against a plane is the first and previous vertices and .)

0p 1−np

0p

0p

0p 1−ip

p0

p4

p3

p2

p1

I0 I1
I2I3 Visible

Invisible

Figure 4.17 - Clipping a polygon against a single plane

Expressed in pseudocode, the above becomes:

static F // First vertex
static S // Start vertex
BOOL fflag // First vertex seen flag

PolyClip(polygon, plane) // Clip entire polygon
fflag = FALSE
FOR each vertex ip
 Clip(, plane) ip
ENDFOR
Close(plane) // Close polygon

Clip(E, plane) // Clip polygon edge
IF (fflag == FALSE)
 F = E
 fflag = TRUE
ELSE IF (edge SE intersects plane)
 I = Intersect(S, E, plane)
 Output(I)

A Viewing System 169
__

ENDIF
IF (E in visible region)
 Output(E)
ENDIF
S = E

Close(plane) // Close polygon
IF (fflag == TRUE)
 IF (edge SF intersects plane)
 I = Intersect(S, F, plane)
 Output(I)
 ENDIF
ENDIF

Figure 4.18 - Sutherland-Hodgman algorithm (single plane)

where polygon is an ordered list of vertices , plane describes the clipping plane, Intersect

computes the intersection of the polygon edge and the plane, and Output generates an output vertex that is

placed in an output vertex array.

10 ,, −npp K

4.8.2 Clipping Plane Intersections

To determine the intersection of a polygon edge and an arbitrary plane, we first need to describe both

objects mathematically. Given an edge with start vertex S and end vertex E, we can define the vector

. The parametric equation of the polygon edge is then: SE −=r

() r∗+= tStp (4.25)

where 0 is the parameter that describes the set of points 1≤≤ t ()tp between S and E. For example, if

, and { }0,2,1=S { }1,3,2−=E 7.0=t , then the point ()7.0p has the co-ordinates

. { }7.,1.1− 0,7.2

We can similarly define an arbitrary plane (shown in cross-section in Figure 4.19) using the equation:

dznynxn zyx =++ (4.26)

where the coefficients n , and are the co-ordinates of the plane normal n and d is the distance from

the origin to the nearest point on the plane. Expressed in vector notation, this gives us the point normal

equation of a plane:

x yn zn

d=⋅pn (4.27)

where p is the bound vector from the origin to any point p on the plane.

170 A Viewing System
__

We adopt the convention that the visible region of the plane contains the plane normal n. An arbitrary

vertex p represented by the bound vector p from the origin to the vertex is then:

1. in the visible region if n . d>⋅p

2. on the plane (and in the visible region) if d=⋅pn .

3. in the invisible region if . d<⋅pn

For example, given a plane with normal { }3,1,2 −=n and distance 3=d , its point normal equation

is { } . The vertex { 3,,3,1,2 =⋅− zyx } { }1,5,2 −=p is in the invisible region, since 4−=⋅pn .

n

d

x

y

p

Plane

Figure 4.19 - Determining the equation of a plane

A polygon edge intersects a plane only if its start and end vertices S and E are on opposite sides. If we

substitute Equation 4.25 into Equation 4.26, we get:

() () () dtrSntrSntrSn zzzyyyxxx =∗+∗+∗+∗+∗+∗ (4.28)

Rearranging terms to solve for t gives us:

()
zzyyxx

zzyyxx

rnrnrn
SnSnSnd

t
∗+∗+∗

∗+∗+∗−
= (4.29)

Expressed in vector notation, this becomes:

rn
Sn

⋅
⋅−

=
dt (4.30)

where S is the vector from the origin to vertex S and SE −=r . Substituting t into Equation 4.25 gives us

the co-ordinates of the intersection point. For example, suppose we have a plane with normal

 and distance . The polygon edge described by the vertices S and

 intersects the plane at the point

{ 3,1,2 −=n

{ 3,7,4=E

}

}

3=d { }1,5,2 −=

{ }1,6,3=I .

A Viewing System 171
__

4.8.3 Clipping Against Multiple Planes

Another advantage of the Sutherland-Hodgman algorithm is the ease with which it can be extended to

clip against multiple planes. We could of course clip against each of our six view volume clipping planes

in sequence, saving the intermediate polygon as an ordered list of vertices at each stage.

However, the Sutherland-Hodgman algorithm allows a more elegant approach. Apart from the Intersect

function, the code is identical for each plane. We can make the Clip function reentrant by defining separate

static F and S vertices for each plane. More importantly, we can modify Output such that it recursively

calls Clip for the current vertex and the next plane. In other words, the next clipping stage can begin as

soon as the current stage finds an acceptable vertex. This approach is often used to advantage in hardware

graphics accelerators, where the vertices can be processed in a “pipeline” without the need for intermediate

storage of the output vertices.

10 ,, −mqq K

The revised algorithm for clipping against m multiple planes becomes:

static F[m] // First vertices array
static S[m] // Start vertices array
static fflag[m] // First vertex seen flags array

PolyClip(polygon) // Clip polygon
FOR each plane
 fflag[plane] = FALSE
ENDFOR
FOR each vertex ip
 Clip(, first_plane) ip
ENDFOR
Close(first_plane)

Clip(E, plane) // Clip polygon against plane
IF (fflag[plane] == FALSE)
 F[plane] = E
 fflag[plane] = TRUE
ELSE
 S = S[plane]
 IF (edge SE intersects plane)
 I = Intersect(S, E, plane)
 Output(I, plane)
 ENDIF
ENDIF
IF (E in visible region)
 Output(E, plane)
ENDIF
S[plane] = E

Output(vertex, plane) // Output vertex

172 A Viewing System
__

IF (no more planes)
 Put(vertex)
ELSE
 Clip(vertex, next_plane)
ENDIF

Close(plane) // Close polygon
IF (fflag[plane] == TRUE)
 S = S[plane]
 F = F[plane]
 IF (edge SF intersects plane)
 I = Intersect(S, F, plane)
 Output(I, plane)
 ENDIF
 IF (more planes)
 Close(next_plane)
 ENDIF
ENDIF

Figure 4.20 - Recursive Sutherland-Hodgman algorithm (multiple planes)

where the function Put generates the output vertex. The additional logic in Close is needed to ensure that

the first vertex for the current plane is valid.

4.8.4 Clipping a Polygon - An Example

The behavior of the Sutherland-Hodgman algorithm is quite subtle. Even the authors (Sutherland and

Hodgman [1974]) admitted that “We are somewhat chagrined that the obvious extension of work on line

clipping with which we have been involved kept us so long from seeing the simplicity of the present

approach.” With this in mind, it may help to see the algorithm in action where a polygon is being clipped

against a rectangle in two dimensions (Fig. 4.21).

Right

Bottom

Left

Top

P3

P0 P1

I2

P2I1

I3

I0

Figure 4.21 - Clipping a polygon against a rectangle

A Viewing System 173
__

Ordering the four clipping planes as Left, Right, Top and Bottom, the algorithm proceeds as follows:

Clip(P0, Left) // Clip P0
 first[Left] = P0
 Clip(P0, Right)
 first[Right] = P0
 Clip(P0, Top)
 first[Top] = P0
 Clip(P0, Bottom)
 first[Bottom] = P0
 Output(P0) // Output P0
 S[Bottom] = P0
 S[Top] = P0
 S[Right] = P0
 S[Left] = P0
Clip(P1, Left) // Clip P1
 Clip(P1, Right)
 Clip(I0, Top)
 Clip(I0, Bottom)
 Output(I0) // Output I0
 S[Bottom] = I0
 S[Top] = I0
 S[Right] = P1
 S[Left] = P1
Clip(P2, Left) // Clip P2
 Clip(P2, Right)
 S[Right] = P2
 S[Left] = P2
Clip(P3, Left) // Clip P3
 Clip(P3, Right)
 Clip(I1, Top)
 Clip(I2, Bottom)
 Output(I2) // Output I2
 S[Bottom] = I2
 S[Top] = I1
 Clip(P3, Top)
 S[Top] = P3
 S[Right] = P3
 S[Left] = P3
Close(Left) // Close left plane
 Close(Right) // Close left plane
 Close(Top) // Close top plane
 Clip(I3, Bottom)
 Output(I3) // Output I3
 S[Bottom] = I3
 Close(Bottom) // Close bottom plane

Figure 4.22 - Sutherland-Hodgman algorithm execution example

4.8.5 Clipping in Homogeneous Co-ordinate Space

We have to be careful when applying the Sutherland-Hodgman polygon clipper to our view volume.

Suppose we have a viewing system with view distance 3−=d and a polygon vertex p with view space co-

ordinates { before perspective transformation. From Equation 4.13, its fourth homogeneous }4,0,0 −

174 A Viewing System
__

co-ordinate is 31−=w

nzn wz ++

, and so after perspective division. This implies that the vertex is behind

the view plane, which is clearly wrong. The vertex is behind our eye position!

12=np

zn n

xn yn

The problem is that perspective division eliminates the sign of the vertex’s n-axis co-ordinate. The only

solution is to perform our polygon clipping before perspective division. In other words, we need to clip in

four (homogeneous) dimensions.

Clipping in four homogeneous dimensions is not as difficult as you might think. To begin with,

remember that we divide the first three homogeneous co-ordinates x, y and z by the fourth co-ordinate w to

obtain the transformed view space co-ordinates. Thus, our clipping plane limits in homogeneous co-

ordinate space are:

wz
wy
wx

≤≤
≤≤
≤≤

0
0
0

 (4.31)

The fourth homogeneous dimension w is no different from the first three dimensions. Similarly, aside

from the additional co-ordinate, there is no difference between a 3-D and a 4-D vector. Allowing for the

additional co-ordinate, we can perform the same vector operations, including determining length,

normalization and multiplication by a scalar value. We can also add or subtract two 4-D vectors and

determine their dot product.

Following Equation 4.26, the point normal equation of a 4-D plane is:

dwynxn yx =+ (4.32)

where the coefficients n , , and are the coefficients of the plane normal n and d is the distance

from the origin to the nearest point on the plane. The clipping plane intersection calculations are identical

to those presented in Equations 4.27 and 4.30.

x yn w

The plane normal coefficients can be determined from the 4-D clipping plane limits of Equation 4.31.

Consider the back clipping plane. Its 3-D point normal equation is 1=z , which makes it parallel to the x-y

plane. Thus, and must both be zero, and so the plane normal must lie in the z-w plane (Fig. 4.23).

A Viewing System 175
__

w

z

n

1.0

1.0

Back clipping plane

Figure 4.23 - Back clipping plane in homogeneous co-ordinates

From Equation 4.13, we know that any clipping plane in 4-D homogeneous co-ordinates must intersect

the w-axis. Thus, the back plane intercepts the origin in the z-w plane. Similarly, the 4-D plane must

intersect its equivalent 3-D clipping plane for 1=w . Thus the line must intersect the point in the z-

w plane, giving it a slope of +1. The clipping limits for the z-axis show that the plane normal in the z-w

plane must point towards the w-axis for . Finally, the 4-D length of the vector must equal one.

Therefore, the back plane normal must have homogeneous co-ordinates

{ 1,1 }

0>w

{ }21,21,0,0 − .

By applying similar arguments to the other five clipping planes, we can see that their 4-D homogeneous

normals are:

Front: { }0,1,0,0

Back: { }21,21,0,0 −
Left: { }0,0,0,1

Right: { }21,0,0,21−

Top: { }21,0,21,0 −
Bottom: { }0,0,1,0

While it may be difficult to imagine a clipping plane in four dimensions, polygon clipping in 4-D is not a

problem.

4.8.6 A 4-D Polygon Clipper Class

We can implement the Sutherland-Hodgman algorithm within the framework of our viewing system

using four new classes. First, we need a class to handle four dimensional homogeneous vectors:

176 A Viewing System
__

// VECTOR4.H - 4-D Homogeneous Co-ordinates Vector Class

#ifndef _VECTOR4_H
#define _VECTOR4_H

#include <math.h>
#include "vector3.h"

class ViewSys; // Forward reference

class Vector4 : public Space3 // 4-D vector
{
 private:
 float w; // W-axis co-ordinate

 public:
 Vector4() : Space3() { };

 Vector4(double xval, double yval, double zval, double
 wval) : Space3(xval, yval, zval)
 { w = (float) wval; }

 double GetW() { return w; }
 void SetW(double wval) { w = (float) wval; }

 // Return vector length
 double Length()
 { return sqrt(x * x + y * y + z * z + w * w); }

 // Normalize vector
 Vector4 &Norm()
 {
 double len = Length();

 if (len < MIN_VALUE)
 len = 1.0;

 x /= (float) len;
 y /= (float) len;
 z /= (float) len;
 w /= (float) len;

 return *this;
 }

 // Multiply by scalar s
 Vector4 &operator*=(double s)
 {
 x *= (float) s;
 y *= (float) s;
 z *= (float) s;
 w *= (float) s;

 return *this;
 }

 // Add vector v2 to vector v1
 friend Vector4 operator+(Vector4 &v1, Vector4 &v2)
 {
 Vector4 temp; // Temporary 4-D vector

A Viewing System 177
__

 temp.x = v1.x + v2.x;
 temp.y = v1.y + v2.y;
 temp.z = v1.z + v2.z;
 temp.w = v1.w + v2.w;

 return temp;
 }

 // Subtract vector v2 from vector v1
 friend Vector4 operator-(Vector4 &v1, Vector4 &v2)
 {
 Vector4 temp; // Temporary 4-D vector

 temp.x = v1.x - v2.x;
 temp.y = v1.y - v2.y;
 temp.z = v1.z - v2.z;
 temp.w = v1.w - v2.w;

 return temp;
 }

 // Return dot product of vectors v1 and v2
 friend double Dot(Vector4 &v1, Vector4 &v2)
 { return (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z +
 v1.w * v2.w); }

 // Premultiply point by projective matrix
 void ProjTransform(Point3 &p, double (*ptm)[4])
 {
 x = (float) (ptm[0][0] * p.GetX() + ptm[0][1] *
 p.GetY() + ptm[0][2] * p.GetZ() + ptm[0][3]);
 y = (float) (ptm[1][0] * p.GetX() + ptm[1][1] *
 p.GetY() + ptm[1][2] * p.GetZ() + ptm[1][3]);
 z = (float) (ptm[2][0] * p.GetX() + ptm[2][1] *
 p.GetY() + ptm[2][2] * p.GetZ() + ptm[2][3]);
 w = (float) (ptm[3][0] * p.GetX() + ptm[3][1] *
 p.GetY() + ptm[3][2] * p.GetZ() + ptm[3][3]);
 }

 // Premultiply vector by projective matrix
 void ProjTransform(Vector3 &p, double (*ptm)[4])
 {
 x = (float) (ptm[0][0] * p.GetX() + ptm[0][1] *
 p.GetY() + ptm[0][2] * p.GetZ() + ptm[0][3]);
 y = (float) (ptm[1][0] * p.GetX() + ptm[1][1] *
 p.GetY() + ptm[1][2] * p.GetZ() + ptm[1][3]);
 z = (float) (ptm[2][0] * p.GetX() + ptm[2][1] *
 p.GetY() + ptm[2][2] * p.GetZ() + ptm[2][3]);
 w = (float) (ptm[3][0] * p.GetX() + ptm[3][1] *
 p.GetY() + ptm[3][2] * p.GetZ() + ptm[3][3]);
 }

 // Perform perspective division on point
 void Perspective(Point3 *pp)
 {
 pp->SetX(x / w);
 pp->SetY(y / w);
 pp->SetZ(z / w);

178 A Viewing System
__

 }

 // Perform perspective division on vector
 void Perspective(Vector3 *pp)
 {
 pp->SetX(x / w);
 pp->SetY(y / w);
 pp->SetZ(z / w);
 }
};

#endif

Listing 4.3 - VECTOR4.H

Vector4 is essentially identical in form to Vector3. Not included in Vector3 are ProjTransform and

Perspective. There are two versions of each function, one for 3-D points and the other for 3-D vectors.

Ideally, these functions should be written using C++ templates. In practice, several major compiler vendors

have yet to implement templates, and so they remain as written.

Next, we need to represent polygon vertices in 4-D homogeneous co-ordinates. The following Vertex4

class is not derived from Vertex3, since we no longer have a need to link polygons together into surfaces

and instances. All we need are the vertex color and its homogeneous co-ordinates. Thus:

// VERTEX4.H - 4-D Vertex Class

#ifndef _VERTEX4_H
#define _VERTEX4_H

#include "patch3.h"
#include "vector4.h"

class Vertex4 // 4-D homogeneous co-ordinates vertex
{
 private:
 Spectra color; // Color
 Vector4 coord; // 4-D homogeneous co-ordinates

 public:
 Spectra &GetColor() { return color; }
 Vector4 &GetCoord() { return coord; }

 void Set(Point3 &p, Spectra &c, double (*ptm)[4])
 {
 // Perform projective transformation
 coord.ProjTransform(p, ptm);

 color = c;
 }

 void Set(Vector4 &v, Spectra &c)
 { coord = v; color = c; }
};

A Viewing System 179
__

#endif

Listing 4.4 - VERTEX4.H

The third class implements the pseudocode Put function and output vertex array discussed in Section

4.8.3:

// OUT_POLY.H - Output Polygon Class

#ifndef _OUT_POLY_H
#define _OUT_POLY_H

#include "vertex4.h"

// Maximum number of output vertices
static const int MaxOutVert = 10;

class OutPolygon // Output polygon
{
 private:
 class OutVertex // Output vertex
 {
 private:
 Spectra color; // Color
 Point3 posn; // 3-D position

 public:
 Point3 &GetPosn() { return posn; }
 Spectra &GetColor() { return color; }

 void Set(Vertex4 &v)
 {
 // Perform perspective division
 v.GetCoord().Perspective(&posn);

 color = v.GetColor();
 }
 }
 vertex[MaxOutVert]; // Output vertex array
 int num_vert; // Number of vertices

 void AddVertex(Vertex4 &v)
 { vertex[num_vert++].Set(v); }
 void Reset() { num_vert = 0; }

 friend class ClipEdge;
 friend class PolyClip4;

 public:
 OutPolygon() { num_vert = 0; }

 int GetNumVert() { return num_vert; }
 Point3 &GetVertexPosn(int i)
 { return vertex[i].GetPosn(); }
 Spectra &GetVertexColor(int i)
 { return vertex[i].GetColor(); }
};

180 A Viewing System
__

#endif

Listing 4.5 - OUT_POLY.H

Since an Element3 object represents either a triangular or quadrilateral polygon, the maximum number

of output vertices resulting from clipping against six planes is ten. (To see why, imagine a diamond-shaped

quadrilateral that has been clipped by the side planes into an octagon. Now, rotate this polygon horizontally

about its center so that its top and bottom edges coincide with the boundaries of the front and back clipping

planes with the top and bottom planes. A total of ten vertices will be generated. In general, the maximum

number of vertices resulting from clipping a convex polgon against n planes will be .) 6+n

This determines the constant value MaxOut and the size of the nested class OutVertex array in

OutPolygon. Only the friend classes ClipEdge and PolyClip4 (described below) are allowed to set the

contents of this array.

As was previously noted in Section 4.8.3, hardware graphics accelerators typically implement the

Sutherland-Hodgman algorithm as a pipeline. Révész [1993] noted that each stage of this pipeline can be

modeled in C++ as an object with the same member functions but different data for the clipping plane

normals. The following ClipEdge class builds on this idea by linking together an array of six “edge-plane

clipper” objects, where each object is responsible for clipping and closing a polygon against a single plane.

This class embodies most of the pseudocode shown in Figure 4.20.

Finally, we need an executive PolyClip4 class to translate Vertex3 objects into view space vertices and

to clip and close the polygon. This class is also responsible for initializing the array of ClipEdge objects.

This requires two source code files:

// P_CLIP4.H - 4-D Polygon Clipper Class

#ifndef _P_CLIP4_H
#define _P_CLIP4_H

#include "out_poly.h"

enum Plane { Front, Back, Left, Right, Top, Bottom };

class ClipEdge // Edge-plane clipper
{
 private:
 ClipEdge *pnext; // Next clipper pointer
 Vector4 normal; // Plane normal
 Vertex4 first; // First vertex
 Vertex4 start; // Start vertex
 BOOL first_inside; // First vertex inside flag

A Viewing System 181
__

 BOOL start_inside; // Start vertex inside flag
 BOOL first_flag; // First vertex seen flag

 BOOL IsInside(Vertex4 &v)
 { return (Dot(normal, v.GetCoord()) >= 0.0); }
 Vertex4 Intersect(Vertex4 &, Vertex4 &);
 void Output(Vertex4 &, OutPolygon &);

 public:
 ClipEdge() { first_flag = FALSE; }

 void Add(ClipEdge *pc) { pnext = pc; }
 void Clip(Vertex4 &, OutPolygon &);
 void Close(OutPolygon &);
 void SetNormal(Vector4 &n) { normal = n; }
};

class PolyClip4 // 4-D polygon clipper
{
 private:
 int num_vert; // Number of output vertices
 ClipEdge clipper[6]; // Clipper array
 ClipEdge *pclip; // Clipper list head pointer

 public:
 PolyClip4();

 int Clip(Element3 *, OutPolygon &, double (*)[4]);
};

#endif

Listing 4.6 - P_CLIP4.H

and:

// P_CLIP4.CPP - 4-D Polygon Clipper Class

#include "p_clip4.h"

PolyClip4::PolyClip4() // PolyClip4 class constructor
{
 Vector4 temp; // Temporary vector

 // Link edge-plane clippers
 pclip = &(clipper[Front]);
 clipper[Front].Add(&(clipper[Back]));
 clipper[Back].Add(&(clipper[Left]));
 clipper[Left].Add(&(clipper[Right]));
 clipper[Right].Add(&(clipper[Top]));
 clipper[Top].Add(&(clipper[Bottom]));
 clipper[Bottom].Add(NULL);

 // Set clipper plane normals

 temp = Vector4(0.0, 0.0, 1.0, 0.0);
 clipper[Front].SetNormal(temp.Norm());

 temp = Vector4(0.0, 0.0, -1.0, 1.0);

182 A Viewing System
__

 clipper[Back].SetNormal(temp.Norm());

 temp = Vector4(1.0, 0.0, 0.0, 0.0);
 clipper[Left].SetNormal(temp.Norm());

 temp = Vector4(-1.0, 0.0, 0.0, 1.0);
 clipper[Right].SetNormal(temp.Norm());

 temp = Vector4(0.0, -1.0, 0.0, 1.0);
 clipper[Top].SetNormal(temp.Norm());

 temp = Vector4(0.0, 1.0, 0.0, 0.0);
 clipper[Bottom].SetNormal(temp.Norm());
}

// Clip polygon
int PolyClip4::Clip(Element3 *pelem, OutPolygon &out,
 double (*ptm)[4])
{
 int i; // Loop index
 int num_vert; // Number of vertices
 Vertex3 *pvert; // 3-D world space vertex pointer
 Vertex4 hv; // 4-D homogeneous co-ord vertex

 out.Reset(); // Reset output polygon

 num_vert = pelem->GetNumVert();
 for (i = 0; i < num_vert; i++)
 {
 // Get world space vertex position pointer
 pvert = pelem->GetVertexPtr(i);

 // Set homogeneous co-ordinates vertex
 hv.Set(pvert->GetPosn(), pvert->GetExitance(), ptm);

 pclip->Clip(hv, out); // Clip polygon edge
 }

 pclip->Close(out); // Close polygon

 return out.GetNumVert();
}

// Output view space vertex
void ClipEdge::Output(Vertex4 &v, OutPolygon &out)
{
 if (pnext != NULL) // More planes ?
 pnext->Clip(v, out);
 else
 out.AddVertex(v);
}

// Calculate intersection vertex
Vertex4 ClipEdge::Intersect(Vertex4 &s, Vertex4 &e)
{
 double d, t; // Temporary variables
 Spectra color; // Temporary color
 Vector4 p, r; // Temporary vectors
 Vertex4 v; // Temporary vertex

A Viewing System 183
__

 // Calculate parameter
 r = (e.GetCoord() - s.GetCoord());
 d = Dot(normal, r);

 if (fabs(d) > MIN_VALUE)
 t = -Dot(normal, s.GetCoord()) / d;
 else
 t = 1.0;

 // Calculate intersection vertex co-ordinates
 r *= t;
 p = s.GetCoord() + r;

 // Linearly interpolate vertex color
 color = Blend(s.GetColor(), e.GetColor(), t);

 v.Set(p, color);

 return v;
}

// Clip polygon edge
void ClipEdge::Clip(Vertex4 ¤t, OutPolygon &out)
{
 BOOL curr_inside; // Current point inside flag
 Vertex4 isect; // Intersection vertex

 // Determine vertex visibility
 curr_inside = IsInside(current);

 if (first_flag == FALSE) // First vertex seen ?
 {
 first = current;
 first_inside = curr_inside;
 first_flag = TRUE;
 }
 else
 {
 // Does edge intersect plane ?
 if (start_inside ^ curr_inside)
 {
 isect = Intersect(start, current);
 Output(isect, out);
 }
 }

 if (curr_inside == TRUE)
 Output(current, out);

 start = current;
 start_inside = curr_inside;
}

// Close polygon
void ClipEdge::Close(OutPolygon &out)
{
 Vertex4 isect; // Intersection vertex

 if (first_flag == TRUE)

184 A Viewing System
__

 {
 // Does edge intersect plane ?
 if (start_inside ^ first_inside)
 {
 isect = Intersect(start, first);
 Output(isect, out);
 }

 if (pnext != NULL) // More planes ?
 pnext->Close(out);

 // Reset first vertex seen flag
 first_flag = FALSE;
 }
}

Listing 4.7 - P_CLIP4.CPP

In clipping a polygon edge, we must remember that our polygons vertices have color attributes, and the

color of a polygon may vary across its visible surface. ClipEdge::Intersect therefore linearly interpolates

the intersection vertex color from the start and end vertex colors. This assumes that we will later linearly

interpolate a polygon’s color across its surface (see Section 4.13).

ClipEdge and PolyClip4 are a more or less straightforward implementation of the Sutherland-Hodgman

algorithm. Readers interested in optimizing their code for speed should examine the C implementation

presented in Heckbert [1990b]. It is production-quality code at its finest: fast, compact and well

documented.

4.9 Wireframe Displays

We now have the tools to transform our polygons from world space to view space, perform a

perspective transformation and to clip them to a view volume. Our next step is an intermediate but very

satisfying one: to create a wireframe display of an environment.

Most computer graphics environments offer at a minimum the ability to display polygons in outline.

That is, given a polygon as an ordered list of vertices in 2-D screen space, we can usually call a C++

graphics library function that will display the polygon as a connected set of lines drawn between its

vertices. By displaying each visible polygon in the view volume, we can create a wireframe display such as

that shown in Figure 4.24.

True, these images are somewhat less than photorealistic. On the other hand, wireframe displays can be

generated very quickly. A highly complex environment may take several seconds to a minute or so to

A Viewing System 185
__

render, but most of that time will be spent reading in the environment and entity files and clipping the

polygons to the view volume. Since the same image may takes minutes to an hour or more to render using

radiosity methods, the ability to preview it using a wireframe display is often invaluable.

Figure 4.24 - A wireframe display

Creating a wireframe view of an environment can be as simple as the following:

Initialize display device
FOR each instance
 FOR each surface
 FOR each polygon
 Perform backface culling
 IF polygon is visible
 Clip polygon to view volume
 Convert polygon vertices to screen space co-ordinates
 Draw 2-D polygon
 ENDIF
 ENDFOR
 ENDFOR
ENDFOR

Figure 4.25 - Wireframe display pseudocode

where the C++ graphics library function needed to draw the 2-D polygon is compiler-dependent. We also

need to remember that the output polygon vertices generated by PolyClip4::Clip are in the normalized

device co-ordinates of our canonical view volume, and to use Equation 4.18 to convert them into screen

space co-ordinates.

While we have discussed screen space co-ordinates in terms of a video monitor, we can of course draw

polygons with a laser printer, a pen plotter, a photographic film recorder or (being somewhat ambitious

here) a video recorder to capture animated sequences of images. Regardless of which device we choose, it

186 A Viewing System
__

is a safe bet that it will require a unique set of initialization and polygon draw commands. There is no

remedy for this; drawing directly to the display device is an inherently device-specific task.

GUI-based environments such as Microsoft Windows are more forgiving. MS-Windows in particular is

designed to work with a wide variety of video display adapters, monitors and other display devices. With

this in mind, we shall temporarily abandon our device-independent approach and develop a wireframe

display capability for MS-Windows, followed by a discussion of how to emulate it in other GUI

environments.

4.10 Graphics Metafiles

Since MS-Windows is a GUI-based environment, we shall want to draw our wireframe display inside a

window. This means that the size of the “screen” we are drawing to is not fixed in terms of pixels or scan

lines, since the user can resize it at any time. We can either display a portion of the wireframe display in a

small window or redraw it each time according to the window’s size. Redrawing is a more useful approach,

since we can shrink a window to any size and still see the entire image.

The key to redrawing complex wireframe displays at interactive rates is the graphics metafile. Many

graphics programming environments support this feature (also known as display files or display lists). They

are used to temporarily or permanently store drawing instructions such as “draw polygon”. You can open a

metafile either in memory or on disk and write any number of draw instructions to it to build an image, one

instruction at a time. When you are finished, you close the file and store a metafile “handle” for it. This

allows you to later display the entire image by requesting the Windows manager to “play” the file. Finally,

you can delete the metafile when you no longer need its image.

The advantage of metafiles over writing directly to the display device is that while an image may take

the same amount of time to build, it can be redisplayed at any time with minimal delay. They also conserve

system resources–a metafile typically occupies far less memory or disk space than an equivalent bitmap

file.

The MS-Windows API (Applications Programming Interface) supports metafiles, but only as a loose

collection of C-callable functions. They can be encapsulated in a reasonably robust C++ class as follows:

// WIN_META.H - MS-Windows Metafile Class

#ifndef _WIN_META_H

A Viewing System 187
__

#define _WIN_META_H

#include <windows.h>
#include <stdio.h>

class WinMetaFile // MS-Windows metafile
{
 private:
 char file_name[144]; // File name
 BOOL file_flag; // File name flag
 HDC hmdc; // Device context handle
 HMETAFILE hmf; // Metafile handle

 public:
 WinMetaFile()
 {
 *file_name = '\0';
 file_flag = FALSE;
 hmdc = NULL;
 hmf = NULL;
 }

 ~WinMetaFile() { Erase(); }

 void Erase() // Erase metafile
 {
 Stop(); // Stop recording

 if (hmf != NULL)
 {
 DeleteMetaFile(hmf); // Delete metafile handle
 hmf = NULL;
 }

 if (file_flag == TRUE)
 {
 unlink(file_name); // Remove metafile
 file_flag = FALSE;
 }
 }

 // Play metafile to display device
 void Play(HWND hwnd, int win_w, int win_h, int view_w,
 int view_h)
 {
 HDC hdc; // Device context handle
 PAINTSTRUCT ps; // Paint structure

 if (hmf != NULL)
 {
 hdc = BeginPaint(hwnd, &ps);

 // Initialize window-to-viewport mapping mode
 SetMapMode(hdc, MM_ISOTROPIC);
 SetWindowExtEx(hdc, win_w, win_h, NULL);
 SetViewportExtEx(hdc, view_w, -view_h, NULL);
 SetViewportOrgEx(hdc, 0, view_h, NULL);

 PlayMetaFile(hdc, hmf);

188 A Viewing System
__

 EndPaint(hwnd, &ps);
 }
 }

 // Add polygon draw instruction to metafile
 BOOL Polygon(POINT *vertex, int num)
 { return ::Polygon(hmdc, vertex, num); }

 BOOL Record(char *fname) // Start metafile recording
 {
 Erase(); // Erase previous metafile

 if (fname != NULL)
 {
 // Save metafile file name
 lstrcpy(file_name, fname);
 file_flag = TRUE;

 // Create file-based metafile
 if ((hmdc = CreateMetaFile(fname)) == NULL)
 return FALSE;
 }
 else
 {
 // Create memory-based metafile
 if ((hmdc = CreateMetaFile(NULL)) == NULL)
 return FALSE;
 }

 // Select transparent brush for polygon fill
 SelectObject(hmdc, GetStockObject(NULL_BRUSH));

 return TRUE;
 }

 BOOL Stop() // Stop metafile recording
 {
 if (hmdc != NULL)
 {
 hmf = CloseMetaFile(hmdc);
 hmdc = NULL;
 }
 return (hmf != NULL) ? TRUE : FALSE;
 }
};

#endif

Listing 4.8 - WIN_META.H

As you may have noticed, WinMetaFile models a videocassette recorder. You call Record to begin

recording an image. Polygons are written to the metafile by calling (what else?) Polygon. Note the global

scope specifier used in the body of this function. Since Polygon is also the name of the MS-Windows API

A Viewing System 189
__

function, it has to be called as ::Polygon to avoid an infinite loop. Calling Stop closes the metafile, while

Play displays it in a window indicated by the parameter hwnd. Finally, Erase deletes the metafile.

It should not be too difficult to port WinMetaFile to another GUI environment. Its member functions

are almost completely generic, and the MS-Windows API functions are mostly self-explanatory. The

exception is Play, where BeginPaint initializes the window for drawing and EndPaint requests the

Windows manager to update its display. The functions SetMapMode, SetWindowExt, SetViewPort and

SetWindowOrg are responsible for telling the Windows manager how to position and scale the logical

(screen space) co-ordinates of the wireframe display in the physical co-ordinates of the window.

At worst, you may have to roll your own metafile support for your target environment. All you need is

a “draw polygon” primitive, which is presumably available from your C++ compiler’s graphics library.

The metafile can be a block of memory or a binary file that you fill with polygon records having a structure

similar to:

Number of vertices
Vertex 0 : { float x, float y }
Vertex 1 : { float x, float y }
 …
Vertex n : { float x, float y }

where each vertex field contains its floating point x-y co-ordinates. The number of vertex fields in each

polygon record is variable, depending on the value of the leading “number of vertices” field.

These records can be written to the metafile using sprintf or fprintf as required. To play the file back,

read each record using sscanf (or fscanf) and pass the retrieved values as parameters to your “draw

polygon” function.

So where is the wireframe display? Unfortunately, we need more than WIN_META.H to display an

image in an MS-Windows application. After all, displaying “Hello, World” in MS-Windows usually

requires some 200 lines of C source code (e.g., Petzold [1992]). Rather than introducing C and C++ source

code for a full-blown application at this point, we should continue on with the device-independent aspects

of our “minimal” viewing system.

190 A Viewing System
__

4.11 Bitmap File Formats

Going from a wireframe display to a photorealistic image takes less work than you might think.

However, displaying these images requires a bitmapped display. Our device-independent approach

therefore takes another detour into the intricacies of bitmap file formats.

BMP, PCX, TARGA, TIFF, JPEG … there are innumerable formats to choose from, and a number of

excellent books and technical publications which describe them. Our concern being radiosity, we will not

dwell on their relative merits and peculiarities. Instead, we will simply choose one of the simplest:

Microsoft Window’s BMP.

Yes, BMP is specific to the Microsoft Windows 3.x and NT environments. If we were to choose a more

platform-independent format, TARGA would be the likely choice. However, the 24-bit RGB version of

BMP is very simple, which makes it highly portable across environments.

Photorealistic images usually require a 24-bit (16.7 million color) RGB color display to do them full

justice. You can display them using an 8-bit (256 color) display by carefully optimizing the color palette,

but the results will not always be satisfactory. Furthermore, you have to generate a 24-bit bitmap first in

order to determine the color gamut and select the 256 colors which best represent it for an 8-bit display.

There are several techniques for color palette optimization, including the popularity and median cut

algorithms (Heckbert [1982]) and octree quantization (Gervautz and Purgathofer [1990]). The latter

technique requires the least amount of memory while still producing good quality images.

As of this writing, most desktop PCs support 8-bit rather than 24-bit color displays. Accordingly, the

diskette accompanying this book includes a standalone utility for generating 8-bit BMP files with

optimized color palettes (using octree quantization) from 24-bit BMP files.

That said, we will design our viewing system to generate 24-bit BMP files. They require more memory

and disk space than do 8-bit BMP files, but their quality is unsurpassed.

4.11.1 DIB - The Device-Independent Bitmap

BMP is actually the file extension used to identify MS-Windows device-independent bitmap files,

otherwise known as DIB files. While aficionados of other GUIs may dispute the moniker, it certainly

A Viewing System 191
__

applies within the MS-Windows environment. A 24-bit color DIB can be displayed on any 24-bit color

display device that MS-Windows supports.

Unlike some file formats such as JPEG, 24-bit DIBs are not compressed. The bitmap is a 2-D array of

RGB triples, as in:

struct DIB_RGB // DIB bitmap RGB triple
{
 BYTE blue;
 BYTE green;
 BYTE red;
};

Note carefully that this data structure reverses the normal R-G-B order of the three members.

A 24-bit DIB file consists of a file header (BITMAPFILEHEADER), a bitmap information header

(BITMAPINFOHEADER), an optional dummy palette (RGBQUAD) and the bitmap array. It has the same

representation in memory, except that the file header is removed. This simple representation make it easy

to both generate DIB files and to convert them to other file formats.

There is one minor complication. The 80x86 CPU architecture segments memory into 64K blocks.

While an array can be larger than 64K, no element of the array can span a 64K block boundary (at least for

16-bit operating systems such as MS-DOS, which underlays Windows 3.1). Each scan line in the bitmap

array must therefore be padded to a multiple of 4 bytes. For example, a bitmap that measures 498 pixels

across requires 1494 bytes of space, but the bitmap row width must be 1496 bytes.

So, assuming once again that our target environment is MS-Windows, we have the following bitmap

class:

// WIN_BMAP.H - MS-Windows Bitmap Class

#ifndef _WIN_BMAP_H
#define _WIN_BMAP_H

#include <windows.h>
#include <stdio.h>
#include "color.h"

// __huge data type is undefined for Win32
#ifdef WIN32
#define __huge
#endif

// Round number upwards to next multiple of four
#define WIDTHBYTES(i) (((i + 3) / 4) * 4)

192 A Viewing System
__

// Number of bytes per pixel (24-bit RGB)
static const int BytesPerPixel = 3;

// File write block size
static const WORD MaxWrite = 0x8000;

class WinBitmap // Device-independent bitmap (DIB)
{
 private:
 int height; // Bitmap height
 int width; // Bitmap width
 BITMAPFILEHEADER bm_file; // DIB file header
 BITMAPINFO bm_info; // DIB information
 BYTE __huge *pbm; // DIB bitmap pointer
 DWORD bm_size; // Padded bitmap size
 DWORD bm_width; // Padded bitmap width
 HANDLE hdib; // DIB bitmap handle
 HBITMAP hddb; // DDB bitmap handle

 BOOL AllocBitmap();
 BOOL WriteBitmap(int);
 void FreeBitmap();

 public:
 WinBitmap()
 {
 bm_file.bfType = 0x4d42; // 'BM' signature
 bm_file.bfSize = 0L;
 bm_file.bfReserved1 = 0;
 bm_file.bfReserved2 = 0;
 bm_file.bfOffBits = (DWORD) (sizeof(BITMAPFILEHEADER)
 + sizeof(BITMAPINFOHEADER) + sizeof(RGBQUAD));

 bm_info.bmiHeader.biSize = (DWORD)
 sizeof(BITMAPINFOHEADER);
 bm_info.bmiHeader.biWidth = 0L;
 bm_info.bmiHeader.biHeight = 0L;
 bm_info.bmiHeader.biPlanes = 1;
 bm_info.bmiHeader.biBitCount = 24;
 bm_info.bmiHeader.biCompression = BI_RGB;
 bm_info.bmiHeader.biSizeImage = 0L;
 bm_info.bmiHeader.biXPelsPerMeter = 0L;
 bm_info.bmiHeader.biYPelsPerMeter = 0L;
 bm_info.bmiHeader.biClrUsed = 0L;
 bm_info.bmiHeader.biClrImportant = 0L;

 bm_info.bmiColors[0].rgbBlue = 0;
 bm_info.bmiColors[0].rgbGreen = 0;
 bm_info.bmiColors[0].rgbRed = 0;
 bm_info.bmiColors[0].rgbReserved = 0;

 pbm = NULL;
 hdib = NULL;
 hddb = NULL;
 width = height = 0;
 }

 ~WinBitmap() { FreeBitmap(); }

 BOOL Display(HDC, POINT &, RECT &);

A Viewing System 193
__

 BOOL Open(int, int);
 BOOL Write(char *);
 int GetHeight() { return height; }
 int GetWidth() { return width; }
 void Close();
 void GetPixel(int, int, ColorRGB *);
 void SetPixel(int, int, ColorRGB &);
};

#endif

Listing 4.9 - WIN_BMAP.H

The details of the MS-Windows API structures used in this class are not important, as long as they

work. If you need to write an equivalent class for another bitmap file format, you can ignore them

altogether. As you can see, the WinBitmap function prototypes are almost completely generic. (The HDC

data type in Display is a handle to a data structure describing the display device, while POINT and RECT

describe the co-ordinates of a rectangle within the display window.) Their internal details, on the other

hand, are somewhat less so:

// WIN_BMAP.CPP - MS-Windows Bitmap Class

#include "win_bmap.h"

// Open device-independent bitmap
BOOL WinBitmap::Open(int w, int h)
{
 FreeBitmap(); // Release current bitmap (if any)
 width = w;
 height = h;
 return AllocBitmap(); // Allocate new bitmap
}

// Display the bitmap
BOOL WinBitmap::Display(HDC hdc, POINT &pos, RECT &rect)
{
 BOOL status = FALSE; // Return status
 HBITMAP holddb; // Previous DDB bitmap handle
 HDC hmemdc; // Memory device context handle

 if (hddb == NULL)
 {
 // Convert DIB to device-dependent bitmap
 if ((hddb = CreateDIBitmap(hdc, &(bm_info.bmiHeader),
 CBM_INIT, (LPSTR) pbm, &bm_info, DIB_RGB_COLORS)) ==
 NULL)
 return FALSE;
 }

 // Create memory device context
 if ((hmemdc = CreateCompatibleDC(hdc)) != NULL)
 {
 // Select bitmap

194 A Viewing System
__

 if ((holddb = SelectObject(hmemdc, hddb)) != NULL)
 {
 // Copy bitmap from memory to display device
 BitBlt(hdc, rect.left, rect.top, rect.right,
 rect.bottom, hmemdc, pos.x, pos.y, SRCCOPY);

 // Select previous bitmap
 SelectObject(hmemdc, holddb);

 status = TRUE;
 }

 // Delete memory device context
 DeleteDC(hmemdc);
 }
 return status;
}

// Write bitmap to file
BOOL WinBitmap::WriteBitmap(int hfile)
{
 DWORD remain = bm_size; // Bytes remaining
 BYTE __huge *pbuff = pbm; // Buffer pointer

 // Write buffer to file in blocks
 while (remain > (DWORD) MaxWrite)
 {
 if (_lwrite(hfile, pbuff, MaxWrite) != MaxWrite)
 return FALSE;
 remain -= MaxWrite;
 pbuff += MaxWrite;
 }

 // Write last block to file
 if ((DWORD) _lwrite(hfile, pbuff, (WORD) remain) ==
 remain)
 return TRUE;
 else
 return FALSE;
}

// Close device-independent bitmap
void WinBitmap::Close()
{
 FreeBitmap();
 width = height = 0;
}

// Allocate bitmap from global heap
BOOL WinBitmap::AllocBitmap()
{
 bm_info.bmiHeader.biWidth = (LONG) width;
 bm_info.bmiHeader.biHeight = (LONG) height;

 // Bitmap width must be multiple of DWORD (4 bytes) to
 // avoid segmentation arithmetic problems with __huge
 // pointers on 80x86 CPU
 bm_width = (DWORD) WIDTHBYTES(width * BytesPerPixel);

 bm_size = bm_width * bm_info.bmiHeader.biHeight;

A Viewing System 195
__

 bm_file.bfSize = (DWORD) (bm_file.bfOffBits + bm_size);

 // Allocate global memory for bitmap
 if ((hdib = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT,
 bm_size)) != NULL)
 {
 // Lock bitmap memory
 pbm = (BYTE __huge *) GlobalLock(hdib);
 return TRUE;
 }
 else
 return FALSE;
}

// Read 24-bit RGB pixel from bitmap
void WinBitmap::GetPixel(int x, int y, ColorRGB *pc)
{
 BYTE __huge *ppixel; // Pixel pointer

 // Get pixel pointer
 ppixel = pbm + (y * bm_width) + (x * BytesPerPixel);

 // Set pixel colors (NOTE REVERSED ORDER!)
 pc->SetBlue(ppixel[0]);
 pc->SetGreen(ppixel[1]);
 pc->SetRed(ppixel[2]);
}

// Write 24-bit RGB pixel to bitmap (NOTE REVERSED ORDER!)
void WinBitmap::SetPixel(int x, int y, ColorRGB &c)
{
 BYTE __huge *ppixel; // Pixel pointer

 ppixel = pbm + (y * bm_width) + (x * BytesPerPixel);
 ppixel[0] = c.GetBlue();
 ppixel[1] = c.GetGreen();
 ppixel[2] = c.GetRed();
}

// Write DIB as MS-Windows BMP file
BOOL WinBitmap::Write(char *fname)
{
 HFILE hfile; // File handle

 if (pbm == NULL) // Check for existing bitmap
 return FALSE;

 // Open the file
 if ((hfile = _lcreat(fname, 0)) == HFILE_ERROR)
 return FALSE;

 // Write the file header (member-by-member to avoid
 // structure alignment problems with Win32)
 _lwrite(hfile, (LPSTR) &(bm_file.bfType),
 sizeof(bm_file.bfType));
 _lwrite(hfile, (LPSTR) &(bm_file.bfSize),
 sizeof(bm_file.bfSize));
 _lwrite(hfile, (LPSTR) &(bm_file.bfReserved1),
 sizeof(bm_file.bfReserved1));

196 A Viewing System
__

 _lwrite(hfile, (LPSTR) &(bm_file.bfReserved2),
 sizeof(bm_file.bfReserved2));
 _lwrite(hfile, (LPSTR) &(bm_file.bfOffBits),
 sizeof(bm_file.bfOffBits));

 // Write the information header
 _lwrite(hfile, (LPSTR) &(bm_info.bmiHeader),
 sizeof(BITMAPINFOHEADER));

 // Write the dummy palette
 _lwrite(hfile, (LPSTR) &(bm_info.bmiColors),
 sizeof(RGBQUAD));

 WriteBitmap(hfile); // Write the bitmap
 _lclose(hfile); // Close the file

 return TRUE;
}

void WinBitmap::FreeBitmap()
{
 if (hdib != NULL) // Release DIB memory
 {
 GlobalUnlock(hdib);
 GlobalFree(hdib);
 pbm = NULL;
 hdib = NULL;
 }

 if (hddb != NULL) // Release DDB memory
 {
 DeleteObject(hddb);
 hddb = NULL;
 }

 width = height = 0;
}

Listing 4.10 - WIN_BMAP.CPP

While WinBitmap is obviously tailored to MS-Windows, you can easily create a similar class for other

environments. The _lopen, _lwrite and _lclose functions are equivalent to the unbuffered creat, open, write

and close functions available in K&R and most UNIX C compilers (but not Standard C). If you are not

fettered with 80x86 segmented architecture restrictions, you can replace them with fopen, fwrite and fclose.

Similarly, GlobalAlloc, GlobalLock, GlobalUnlock and GlobalFree can be replaced with new and delete.

MS-Windows cannot display a device-independent bitmap (DIB) directly. Instead, Display has to

convert the DIB to a device-dependent bitmap (DDB) by calling CreateDIBitmap. This bitmap is

compatible with the current display device, but it first has to be linked to a “memory device context” by

A Viewing System 197
__

calling CreateCompatibleDC before it can be “bit-blitted” to the display window. Both the DIB and DDB

are kept in memory to allow the bitmapped image to be displayed or written to a file at any time.

If you need to port Display to another environment, you will likely find that it has similar functions. If

not, you will have to find some other way of displaying the DIB. Fortunately, this should not be too

difficult–a 24-bit RGB bitmap is probably the lowest common denominator of all bitmap file formats.

That’s about it for device-dependent code. WinBitmap allows us to allocate memory for a bitmap using

Open, set individual pixels with SetPixel, create a DIB (BMP) file using Write, and release the bitmap

memory with Close when we are done. We can now look at what we why we need a bitmap class in the

first place.

4.12 Filling Polygons

Taking another step towards our goal of photorealistic images, we now consider how to draw a filled

polygon to an arbitrary bitmap. Surely this is a trivial problem! After all, all we want to do is to draw a

polygon outline and then fill its interior with pixels of whatever color we choose. Most graphics libraries

include this as a option with their draw_polygon or equivalent function.

On closer inspection though, it becomes evident that we have to be careful. While filling an isolated

polygon is not all that difficult, we need to ensure that adjacent polygons will always be drawn such that

there are no overlapping or missing pixels along their shared edges. Figure 4.26 shows a filled polygon as a

graphics library function might display it on a video monitor. However, the edge pixels of this polygon

would overlap with those of any adjacent polygons.

0

8

8
Figure 4.26 - Filling polygons - a naive approach

198 A Viewing System
__

We can avoid this problem by adopting some rigid rules regarding the plotting of edges and vertices.

Recalling Section 4.4, we convert from view space to screen space co-ordinates by truncating the floating

point view space values. A pixel with integer screen space co-ordinates { }yx, therefore has continuous co-

ordinates






 ++

2
1,

2
1 yx , and can represent any pair of view space co-ordinates ranging from x to 1+x

along the x-axis and y to along the y-axis. Based on this, we can avoid overlapping and missing

pixels if we:

1+y

1. Ignore horizontal edges.

2. Plot a polygon that extends from scan line co-ordinates to as scan lines to miny maxy miny 1max −y .

3. Plot a scan line segment that extends from pixel co-ordinates to as pixels to

.

minx maxx minx

1max −x

The first rule makes sense, since any horizontal edge will be automatically drawn by the scan line

connecting its vertices. The second rule implies that we should not draw the top scan line of a polygon,

whether it is a single pixel or a horizontal scan line. This prevents any overlap with the bottom scan line of

a polygon of an adjoining polygon. Similarly, the third rule implies that we should not draw the right edge

of a polygon, again to avoid overlapping pixels. It also implies that we should not plot a scan line where

. maxmin xx =

 It may take a few tries with pencil and paper to convince yourself, but these rules do work (e.g., Fig.

4.27). True, they do have a few shortcomings. Edge-on polygons are not displayed (which is usually

desirable), small polygons may be distorted from their true geometrical shapes, and thin polygonal slivers

may have missing pixels where . In addition, all polygons are displaced by up to one-half pixel

to the left and downwards from their true positions. While some of these deficiencies can be corrected by

employing a larger and more complex set of rules, they are usually not worth bothering about.

maxmin xx =

A Viewing System 199
__

0

8

8
Figure 4.27 - Filling polygons - a better approach

Implementing these rules can be a challenge, particularly if we allow concave polygons and polygons

with edges that cross each other. However, our polygons are invariably convex (Section 3.4), which

simplifies the problem considerably.

We begin by noting that a horizontal scan line can only intersect a convex polygon at one or two points

(i.e., a vertex or two edges). For each scan line then, we need to store information about at most two

intersection points. (This is not true for a concave polygon with an arbitrary number of edges.)

Referring to our OutPolygon class (Section 4.8.6), each output vertex has a 3-D position and a color,

where the n-axis component of its position is the pseudodepth. If a scan line intersects an edge, we can

determine the intersection’s pseudodepth by linearly interpolating between the edge’s vertices. We can

similarly determine the intersection’s color by linearly interpolating each of the three color bands between

the vertices. (We will see why we do this in the following section.) This gives us a data structure

something like:

struct ScanInfo // Scan line intersection info
{
 float x; // X-axis co-ordinate
 float z; // Pseudodepth
 Spectra color; // Color
};

Suppose we allocate an edge list, a 2-D array of ScanInfo structures, arranged as two columns (one for

each intersection) by however many scan lines (i.e., rows) are in our bitmap. Each polygon edge is

represented by a pair of adjacent vertices in its vertex array. By stepping through the vertex array, we can

compute the x-axis intersection of each scan line with each polygon edge (with appropriate allowances for

200 A Viewing System
__

Rules 1 and 2 above), interpolate the intersection pseudodepth and color, and enter the data into the edge

list.

Once all the edges have been entered (or scan converted) into the edge list, we can step through the list

and for every valid entry plot the pixels of the scan line segment between the x-axis points indicated by

each pair of ScanInfo entries (with allowance for Rule 3).

Calculating the x-axis co-ordinate of each scan line-edge intersection requires a digital differential

analyzer (DDA) algorithm. Terminology aside, this means we have to determine the floating point

incremental change in x for each integer scan line step in y for each edge. Then, given a pair of vertex co-

ordinates { and where } }sysx, { eyex, syey > , we execute the following algorithm:

sxx =
() ()syeysxexm −−=

FOR syy = TO eyy <
 SetPixel(x, y, color)
 x += m
ENDFOR

Figure 4.28 - Digital differential analyzer pseudocode

where x and m (which is the inverse slope of the edge) are floating point numbers.

An integer-only version of this algorithm is possible (Swanson and Thayer [1986]). It is much like the

classic Bresenham line scan algorithm (e.g., Foley et al. [1990]), except that only one point per scan line is

computed. The following example is adapted from Fleisher and Salesin [1992]:

// Integer-Only Differential Digital Analyzer - EXAMPLE ONLY

#include <stdio.h>
#include <stdlib.h>

class IntDDA // Integer-only DDA
{
 private:
 int xi; // X-axis intersection value
 int si;
 int r;
 int inc; // Increment value
 int dec; // Decrement value

 public:
 int FloorDiv(int, int);
 void Setup(int, int, int, int);
 void Scan(int, int);
};

int main()

A Viewing System 201
__

{
 int x0, x1, y0, y1;
 IntDDA dda;

 char buffer[80];

 printf("Enter start x: ");
 x0 = atoi(gets(buffer));
 printf("Enter start y: ");
 y0 = atoi(gets(buffer));
 printf("Enter end x: ");
 x1 = atoi(gets(buffer));
 printf("Enter end y: ");
 y1 = atoi(gets(buffer));

 if (y1 != y0)
 {
 dda.Setup(x0, y0, x1, y1);
 dda.Scan(y0, y1);
 }
 else
 printf("Horizontal line\n");

 return 0;
}

// Set up for line scan (assumes y0 != y1)
void IntDDA::Setup(int x0, int y0, int x1, int y1)
{
 int sf;
 int dx = x1 - x0;
 int dy = y1 - y0;

 si = FloorDiv(dx, dy);
 xi = x0;
 sf = dx - si * dy;
 r = 2 * sf - dy;
 inc = sf;
 dec = sf - dy;
}

// Scan line from y0 to (y1 - 1)
void IntDDA::Scan(int y0, int y1)
{
 int y = y0;

 while (y < y1)
 {
 printf("x = %d y = %d\n", xi, y++);
 if (r >= 0)
 {
 xi += si + 1;
 r += dec;
 }
 else
 {
 xi += si;
 r += inc;
 }

202 A Viewing System
__

 }
}

// Calculate floor(x,y) - assumes y > 0
int IntDDA::FloorDiv(int x, int y)
{
 if (x >= 0)
 return x / y;
 else
 return (x / y) + ((x % y) == 0 ? 0 : - 1);
}

Listing 4.11 - INT_DDA.CPP

This is an example only! While it is definitely faster than an equivalent floating point implementation

(at least for the Intel 80x86 architecture; floating point and integer calculations on RISC CPUs are typically

comparable in speed), it represents only a small part of the time needed to render a photorealistic image.

Also, the forthcoming code is going to be difficult enough to follow without it. We will use the floating

point version shown in Figure 4.28; Listing 4.11 is provided for those readers interested in improving the

completed program’s performance.

4.13 Incremental (Gouraud) Shading

Now that we can draw a filled polygon to a bitmap without overlapping or missing pixels, we can ask

what color or colors should be passed to SetPixel. Recalling our initial discussion of the radiosity approach

in Section 2.4, let us assume that we know the radiance of a polygon. More accurately, we assume that we

know its average spectral radiant exitance in each color band. Converting this into a ColorRGB class object

gives us a 24-bit color that we can use to fill the polygon when we draw it in our bitmap.

This simple approach has one major disadvantage. Adjacent polygons representing a contiguous

surface may have different colors. If the polygons are small and numerous, we will probably perceive the

surface as having a continuous gradation of color when we view it in a bitmap image. As we zoom in for a

closer look, however, the individual polygons will occupy more of the display screen. At some point the

polygon boundaries will become evident as noticeable steps in color gradation.

Henri Gouraud (Gouraud [1971]) addressed this problem by assigning individual colors to a polygon’s

vertices rather than a single color to the entire polygon. Colors are then linearly interpolated at each scan

line-edge intersection (as we just did in scan converting a polygon edge above) and also along each scan

A Viewing System 203
__

line segment between the edge intersections. The result is a smoothly varying color gradation across the

entire surface.

Gouraud shading can be formally described as:

A

B

C

D

I1 I2P

x1 x2

y1

y2

y3

y4

Figure 4.29 - Gouraud shading interpolation

where:

43
34

21
1

21
21

21
2

yy
yCyD

xx
x

yy
yDyA

xx
xP

+
∗+∗

∗
+

+
+

∗+∗
∗

+
= (4.33)

and where A, C, D and P are the Spectra color band values of interest at the polygon and vertices and

pixels. However, it is also an incremental technique that proceeds exactly as our DDA algorithm above.

Instead of x-y vertex and pixel co-ordinates, we have three Spectra color band values for each vertex.

These simply replace the x-axis co-ordinates in Figure 4.28. Implementing the linear interpolation as the

two step process described above implicitly implements Equation 4.33.

One of the primary advantages of Gouraud shading is that it is extremely simple and fast, particularly

when it can be implemented in a hardware graphics accelerator. On the downside are its disadvantages.

The worst of these is that the interpolated color of an interior point is dependent on the orientation of a

quadrilateral polygon in screen space. (Apply Equation 4.33 to a point inside a rectangle, then do the same

after rotating the rectangle through 45 and 90 degrees.) This means that different views of an environment

may result in noticeably different color gradations across large quadrilateral polygons. Fortunately,

triangular polygons do not suffer from this problem.

204 A Viewing System
__

Another problem occurs when polygons have “T-vertices”, where the vertex of one polygon lies on the

edge of another. Again, there may be undesirable color artifacts in the rendered image. Since both T-

vertices and quadrilateral polygons can be eliminated by subdividing the polygons into triangles (see

Chapter Seven), we can usually minimize these color interpolation problems.

It must be remembered, however, that Gouraud shading provides linear color interpolation only. This

can result in first derivative discontinuities across polygon edges, where the slope of the color gradation

changes abruptly. Unfortunately, the human visual system can be acutely sensitive to such changes. The

visual effect is called Mach banding (e.g., Foley et al. [1990]), and can be quite noticeable on what should

be evenly shaded surfaces. Cohen and Wallace [1993] discuss this problem and review several possible

solutions. These are advanced rendering techniques that are beyond the scope of this book. For our

purposes, Gouraud shading provides a useful and effective color rendering technique for radiosity images.

4.14 Hidden Surface Elimination

Our final problem really is a trivial one. Looking into a real 3-D environment, we see objects obscuring

one another. Backface culling eliminates those surfaces that are directed away from our line of sight, but it

does not solve the problem of hidden surface elimination. How do we determine whether a visible polygon

partially or completely hides an otherwise visible polygon behind it?

There have been numerous hidden surface elimination algorithms developed over the years–Sutherland

et al. [1974] and Rogers [1985] offer excellent summaries. In recent years, however, the availability of

sufficient memory has made a brute force technique known as the Z-buffer algorithm (Catmull [1974]) the

most popular choice.

Think of a geometrical ray extending from our eye position through a screen pixel and into the

environment (Fig. 4.30). This ray may intersect one or more visible polygons, each of which will be

projected onto the view window at the pixel co-ordinates.

A Viewing System 205
__

Figure 4.30 - Hidden surface elimination

Suppose we assign a “depth” value to the ray (or equivalently, the pixel) and initialize it to infinity.

Then, as we scan convert each visible polygon, we determine the pseudodepth of the point where the ray

intersects the polygon surface. If this value is less than the current ray depth, we plot the pixel in the

bitmap and set the ray depth to this value. In other words, the polygon is visible at this point. If, on the

other hand, the polygon’s pseudodepth at the point of intersection is equal to or greater than the current ray

depth, then the polygon is hidden at this point and we do nothing but continue on to the next pixel or

polygon.

Of course, we need a depth value for each pixel in our bitmap. This can require a lot of memory.

Assuming we use a 16-bit float data type, a 1024 × 768 bitmap will require 1.5 megabytes of RAM

memory! It should come as no surprise that graphics workstations usually have dedicated Z-buffers. For

personal desktop computers, we must either have the memory available or limit our maximum bitmap sizes

accordingly. (An alternative is to successively apply the Z-buffer algorithm to bands of scan lines. This

limits the amount of memory required, but at the expense of scanning the list of polygons to be displayed

for each band. See Rogers [1985] for implementation details.)

Much of the Z-buffer algorithm is identical in form to the polygon fill and Gouraud shading algorithms.

Similar to linear color interpolation for Gouraud shading, we can substitute the pseudodepth for the x-axis

co-ordinates in our DDA algorithm (Figure 4.28). Even better, we can combine all three algorithms into

one procedure. We can also perform color mapping (to grayscale or pseudocolor), gamma correction and

color jittering (Section 3.5) immediately before writing the pixel to the frame buffer. This gives us:

// Initialize the Z-buffer and bitmap
FOR each row y

206 A Viewing System
__

 FOR each column x
 Z_Buffer[y][x] = INFINITY
 SetPixel(x, y, BLACK)
 ENDFOR
ENDFOR

FOR each polygon
 Scan convert polygon edges
 FOR each scan line segment in edge list
 FOR each scan line pixel
 Get edge intersection information
 Linearly interpolate pixel pseudodepth Z
 Linearly interpolate pixel color
 IF (Z < Z_Buffer[y][x]
 Z_Buffer[y][x] = Z
 IF grayscale flag set
 SetMono(color)
 ELSE IF pseudocolor flag set
 SetPseudo(color)
 ELSE
 SetColor(color)
 ENDIF
 IF gamma correction enabled
 GammaCorrect(color)
 ENDIF
 IF color jittering enabled
 Reduce(color)
 ENDIF
 SetPixel(x, y, color)
 ENDIF
 ENDFOR
 ENDFOR
ENDFOR

Figure 4.31 - Polygon rendering pseudocode

The Z-buffer algorithm has one minor disadvantage. Remember that perspective projection distorts the

view space n-axis (depth), resulting in a pseudodepth scale (Section 4.3). It may happen that two distinct

floating point depth values are mapped to the same pseudodepth, due to the limited precision of the float

data type. Consequently, a polygon that should be hidden may be displayed or vice versa. This problem can

be alleviated only by increasing the number of bits used to represent the Z-buffer pseudodepth. For a C++

software implementation, this means going to a double representation, with its consequent doubling of the

Z-buffer memory requirements. (An unsigned long data type could be used for an integer-only version.)

Fortunately, typical radiosity images rarely require this level of pseudodepth precision.

A Viewing System 207
__

4.15 A Polygon Renderer

As Figure 4.31 indicates, we can incorporate our polygon fill, Gouraud shading and hidden surface

elimination algorithm in a single class that renders convex 2-D polygons:

// P_RENDER.H - Polygon Renderer Class

#ifndef _P_RENDER_H
#define _P_RENDER_H

#include <limits.h>
#include "out_poly.h"
#include "gamma.h"
#include "c_jitter.h"
#include "win_bmap.h"

#define PR_RGB 0 // RGB color
#define PR_MONO 1 // Grayscale
#define PR_PSEUDO 2 // Pseudocolor

static const float PR_Infinity = MAX_VALUE;

struct VertexInfo // Vertex information
{
 POINT screen; // Integer screen co-ordinates
 Point3 posn; // Scaled position
 Spectra color; // Spectral radiant exitance
};

struct ScanInfo // Scan line intersection info
{
 double x; // X-axis co-ordinate
 double z; // Pseudodepth
 Spectra color; // Color
};

struct EdgeInfo // Edge information
{
 BOOL first; // First intersection flag
 ScanInfo isect[2]; // Scan line intersection array
};

class PolyRender // Polygon renderer
{
 private:
 BOOL gamma_flag; // Gamma correction flag
 BOOL jitter_flag; // Color reduction flag
 int color_type; // Display color type
 int ymin; // Minimum y-axis co-ord
 int ymax; // Maximum y-axis co-ord
 int width; // Display width
 int height; // Display height
 int num_vert; // Number of vertices
 float **z_buffer; // Depth buffer pointer
 EdgeInfo *edge_list; // Edge list pointer
 Gamma gamma; // Gamma correction object
 ColorJitter jitter; // Color reduction filter

208 A Viewing System
__

 VertexInfo v_info[8]; // Vertex info table
 WinBitmap *pbmap; // Bitmap object pointer

 void GetVertexInfo(OutPolygon &);
 void ScanEdges();
 void DrawEdgeList();

 public:
 PolyRender()
 {
 gamma_flag = TRUE;
 jitter_flag = FALSE;
 color_type = PR_RGB;
 }

 BOOL GetStatus() { return jitter.GetStatus(); }
 BOOL GammaFlag() { return gamma_flag; }
 BOOL JitterFlag() { return jitter_flag; }
 BOOL Open(WinBitmap *);
 double GetGamma() { return gamma.GetGamma(); }
 int GetNoiseLevel() { return jitter.GetNoiseLevel(); }
 int GetColorType() { return color_type; }
 void Close();
 void DisableGamma() { gamma_flag = FALSE; }
 void DisableJitter() { jitter_flag = FALSE; }
 void EnableGamma() { gamma_flag = TRUE; }
 void EnableJitter() { jitter_flag = TRUE; }
 void Render(OutPolygon &);
 void SetGamma(double g) { gamma.SetGamma(g); }
 void SetNoiseLevel(int n) { jitter.SetNoiseLevel(n); }
 void SetColorType(int type) { color_type = type; }
};

#endif

Listing 4.12 - P_RENDER.H

and:

// P_RENDER.CPP - Polygon Renderer Class

#include "p_render.h"

// Open polygon renderer
BOOL PolyRender::Open(WinBitmap *pb)
{
 int row, col; // Loop indices

 pbmap = pb; // Save bitmap object pointer

 height = pbmap->GetHeight();
 width = pbmap->GetWidth();

 // Allocate edge list
 if ((edge_list = new EdgeInfo[height]) == NULL)
 return FALSE;

 // Allocate depth buffer
 if ((z_buffer = new (float (*[height]))) != NULL)
 {

A Viewing System 209
__

 for (row = 0; row < height; row++)
 {
 if ((z_buffer[row] = new float[width]) == NULL)
 {
 // Release partially allocated depth buffer
 row--;
 for (; row >= 0; row--)
 delete [] z_buffer[row];
 delete [] z_buffer;

 // Release edge list memory
 delete [] edge_list;

 return FALSE;
 }
 }
 }
 else
 {
 delete [] edge_list; // Release edge list memory
 return FALSE;
 }

 // Initialize depth buffer
 for (row = 0; row < height; row++)
 for (col = 0; col < width; col++)
 z_buffer[row][col] = PR_Infinity;

 return TRUE;
}

void PolyRender::Close() // Close polygon shader
{
 int row; // Loop index

 delete [] edge_list; // Release edge list memory

 // Delete depth buffer
 for (row = 0; row < height; row++)
 delete [] z_buffer[row];
 delete [] z_buffer;
}

// Render polygon
void PolyRender::Render(OutPolygon &out)
{
 GetVertexInfo(out); // Get vertex information
 ScanEdges(); // Scan convert edges
 DrawEdgeList(); // Draw edge list
}

// Get vertex information
void PolyRender::GetVertexInfo(OutPolygon &out)
{
 int i; // Loop index
 VertexInfo *pv; // Vertex info element pointer
 Point3 posn; // Normalized vertex position

 // Initialize polygon y-axis limits

210 A Viewing System
__

 ymax = 0;
 ymin = height - 1;

 // Get number of vertices
 num_vert = out.GetNumVert();

 for (i = 0; i < num_vert; i++)
 {
 pv = &(v_info[i]); // Get vertex info element pointer

 // Get vertex normalized view space co-ordinates
 posn = out.GetVertexPosn(i);

 // Scale view space u-v co-ordinates
 pv->posn.SetX(posn.GetX() * width);
 pv->posn.SetY(posn.GetY() * height);
 pv->posn.SetZ(posn.GetZ());

 // Convert to screen space x-y co-ordinates
 //
 // NOTE: top scan line and rightmost pixels are never
 // drawn, so there is no need to limit screen
 // co-ordinate to (width - 1) and (height - 1)
 //
 pv->screen.x = (int) pv->posn.GetX();
 pv->screen.y = (int) pv->posn.GetY();

 // Update polygon y-axis limits
 if (pv->screen.y < ymin)
 ymin = pv->screen.y;
 if (pv->screen.y > ymax)
 ymax = pv->screen.y;

 // Get vertex color
 pv->color = out.GetVertexColor(i);
 }
}

void PolyRender::ScanEdges() // Scan convert edges
{
 int i, j; // Loop indices
 double dx; // X-axis delta
 double dz; // Pseudodepth delta
 double ix; // Intersection X-axis co-ordinate
 double iz; // Intersection pseudodepth
 double y_dist; // Y-axis distance
 Spectra dc; // Intersection color delta
 Spectra ic; // Intersection color
 EdgeInfo *pedge; // Edge info pointer
 ScanInfo *pscan; // Scan line info pointer
 VertexInfo *psv; // Start vertex info pointer
 VertexInfo *pev; // End vertex info pointer
 VertexInfo *psw; // Swap vertex info pointer

 // Initialize edge list
 for (i = ymin; i < ymax; i++)
 edge_list[i].first = FALSE;

 for (i = 0; i < num_vert; i++)
 {

A Viewing System 211
__

 // Get edge vertex pointers
 psv = &(v_info[i]);
 pev = &(v_info[(i + 1) % num_vert]);

 if (psv->screen.y == pev->screen.y)
 {
 continue; // Ignore horizontal edges
 }

 if (psv->screen.y > pev->screen.y)
 {
 // Swap edge vertex pointers
 psw = psv; psv = pev; pev = psw;
 }

 // Get start vertex info
 ix = psv->posn.GetX();
 iz = psv->posn.GetZ();
 ic = psv->color;

 // Determine inverse slopes
 y_dist = (double) (pev->screen.y - psv->screen.y);

 dx = (pev->posn.GetX() - ix) / y_dist;
 dz = (pev->posn.GetZ() - iz) / y_dist;

 dc.SetRedBand((pev->color.GetRedBand() -
 psv->color.GetRedBand()) / (float) y_dist);
 dc.SetGreenBand((pev->color.GetGreenBand() -
 psv->color.GetGreenBand()) / (float) y_dist);
 dc.SetBlueBand((pev->color.GetBlueBand() -
 psv->color.GetBlueBand()) / (float) y_dist);

 // Scan convert edge
 pedge = &(edge_list[psv->screen.y]);
 for (j = psv->screen.y; j < pev->screen.y; j++)
 {
 // Determine intersection info element
 if (pedge->first == FALSE)
 {
 pscan = &(pedge->isect[0]);
 pedge->first = TRUE;
 }
 else
 pscan = &(pedge->isect[1]);

 // Insert edge intersection info
 pscan->x = ix;
 pscan->z = iz;
 pscan->color = ic;

 // Update edge intersection info
 ix += dx;
 iz += dz;
 ic.Add(dc);

 pedge++; // Point to next edge list element
 }
 }

212 A Viewing System
__

}

void PolyRender::DrawEdgeList() // Draw edge list
{
 int x, y; // Loop indices
 int sx, ex; // Scan line x-axis co-ordinates
 double dz; // Pseudodepth delta
 double iz; // Pixel pseudodepth
 double x_dist; // X-axis distance
 ColorRGB rgb; // Pixel RGB color
 Spectra dc; // Pixel color delta
 Spectra ic; // Pixel color
 EdgeInfo *pedge; // Edge info pointer
 ScanInfo *pss; // Scan line start info pointer
 ScanInfo *pse; // Scan line end info pointer
 ScanInfo *psw; // Swap scan line info pointer

 pedge = &(edge_list[ymin]);
 for (y = ymin; y < ymax; y++)
 {
 // Get scan line info pointers
 pss = &(pedge->isect[0]);
 pse = &(pedge->isect[1]);

 if (pss->x > pse->x)
 {
 // Swap scan line info pointers
 psw = pss; pss = pse; pse = psw;
 }

 // Get scan line x-axis co-ordinates
 sx = (int) pss->x;
 ex = (int) pse->x;

 if (sx < ex) // Ignore zero-length segments
 {
 // Determine scan line start info
 iz = pss->z;
 ic = pss->color;

 // Determine inverse slopes
 x_dist = pse->x - pss->x;

 dz = (pse->z - iz) / x_dist;

 dc.SetRedBand((pse->color.GetRedBand() -
 pss->color.GetRedBand()) / (float) x_dist);
 dc.SetGreenBand((pse->color.GetGreenBand() -
 pss->color.GetGreenBand()) / (float) x_dist);
 dc.SetBlueBand((pse->color.GetBlueBand() -
 pss->color.GetBlueBand()) / (float) x_dist);

 // Render scan line (Gouraud shading)
 for (x = sx; x < ex; x++)
 {
 // Check pixel visibility
 if (iz < (double) z_buffer[y][x])
 {
 z_buffer[y][x] = (float) iz; // Update Z-buffer

A Viewing System 213
__

 switch (color_type)
 {
 case PR_RGB: // RGB color
 rgb.SetColor(ic);
 break;

 case PR_MONO: // Grayscale
 rgb.SetMono(ic);
 break;

 case PR_PSEUDO: // Pseudocolor
 rgb.SetPseudo(ic);
 break;

 default:
 break;
 }

 if (gamma_flag == TRUE)
 {
 // Perform gamma correction
 gamma.Correct(rgb);
 }

 if (jitter_flag == TRUE)
 {
 // Perform color reduction
 jitter.Reduce(&rgb, x, y);
 }

 // Set bitmap pixel
 pbmap->SetPixel(x, y, rgb);
 }

 // Update pixel info
 iz += dz;
 ic.Add(dc);
 }
 }
 pedge++; // Point to next edge list element
 }
}

Listing 4.13 - P_RENDER.CPP

Ignoring the myriad details, PolyRender is a reasonably straightforward implementation of the

algorithms discussed in the previous three sections. Open dynamically allocates memory for a Z-buffer and

an edge list that are sized according to the dimensions of the bitmap, while Close releases it when it is no

longer needed.

A large bitmap may require a megabyte or more of memory for its Z-buffer. Rather than allocating this

memory in one monolithic block, Open requests it one scan line at a time. The details of this technique

(including a discussion of its advantages and disadvantages) are explained in a text file included with the

214 A Viewing System
__

diskette accompanying this book. As currently implemented, PolyRender assumes that the entire Z-buffer

will be allocated from physical memory and that it will not be paged to disk by a virtual memory manager

while DrawEdgeList is being executed. This should only be a concern for pre-emptive multitasking

environments such as Windows NT and UNIX. If paging does occur, the scan conversion execution time

may increase drastically.

4.16 Vertex Exitance Interpolation

There are two minor discrepancies between our environment and viewing system models that we need

to resolve. First, reflectance and initial exitance values are only defined for surfaces. When Parse reads an

environment data file, it sets the vertex exitances to zero. However, we need these exitances in order to

display elements using Gouraud shading.

One trivial solution is to simply copy the appropriate surface reflectance values to the exitance of each

vertex. Since vertices are shared by patches and elements but not surfaces, each surface will be displayed

as having a solid color. This will prove useful later on as a quick means of displaying color images. If

nothing else, it will let us determine whether our polygon rendering software is functioning properly.

The second discrepancy is somewhat more involved. Recalling our discussion of radiosity theory in

Chapter Two, radiosity methods generally (but not always) calculate the final exitance of each element.

Again, we need transfer these exitances to the element vertices in order to display them. The problem here,

of course, is that each vertex may be shared by one or more elements (but not adjoining surfaces).

What we are trying to model is a continuously shaded surface. Figure 4.32 shows a cross-section

through a surface with its exitance plotted as a continuously varying function above it. The vertex

exitances sample this function at the position of each vertex on the surface. Similarly, the element exitances

sample the function at the center of each element. Given only the element exitances as a result of our

radiosity calculations, we need to somehow determine the vertex exitances.

A Viewing System 215
__

Surface

Exitance
Vertex exitance
Element center exitance

Figure 4.32 - Sampling the continuous exitance distribution across a surface

This is a common problem in many different fields of mathematics and engineering (particularly finite

element methods, which are closely related to the radiosity problem). Of course, we do not know the exact

exitance distribution across the surface. All we can do is to interpolate a reasonable approximation.

The easiest solution is to use piecewise linear interpolation. In the one-dimensional example shown in

Figure 4.32, we simply draw a straight line between each pair of element exitances and interpolate the

vertex exitances where they intersect the lines (Fig. 4.33). We can clearly extend this approach to 2-D

surfaces by using piecewise bilinear interpolation. This can be applied to both triangular and quadrilateral

elements, even if they have unequal areas.

Surface

Exitance
Actual vertex exitance
Element center exitance

Interpolated vertex exitance

Figure 4.33 - Piecewise linear interpolation of vertex exitances

An even simpler approach is to assume that the elements form a regular spaced grid across the surface.

If this is true, then each vertex exitance can be interpolated by averaging the exitances of the elements that

share the vertex (Fig. 4.34). The technique is called nodal averaging. It has an advantage over bilinear

interpolation in that we do not need to account for the dimensions of each element.

216 A Viewing System
__

3 4 4

4 5 5

2 5 8

Element exitances Interpolated vertex exitances
6.53.02.0

5.75

3.0

3.5

3.0

3.5 4.0

4.0

4.0

4.5

4.0

4.5

6.5

8.0

Figure 4.34 - Interpolating vertex exitances using nodal averaging

One problem with piecewise bilinear interpolation is that the surface shading becomes discontinuous at

the element boundaries. This may lead to visible Mach bands (see Section 4.13) extending across what

should be smoothly shaded surfaces. There are several solutions to this problem, but they are beyond the

scope of this book. See Cohen and Wallace [1993] for a detailed discussion and references to the

associated literature. For our purposes, nodal averaging will generally provide quite adequate results.

4.17 Tone Reproduction Problems

Another problem we have to address is that of tone reproduction. The human eye is capable adapting to

a very wide range of average scene luminances. We can see during broad daylight as well as by starlight–a

truly astounding luminance range of nearly ten trillion to one. Unfortunately, our methods of reproducing

these scenes have luminance scales ranging from 50:1 (four-color printing) to 1000:1 (photographic

transparencies). Most computer display terminals have a dynamic range of 100:1.

Our radiosity methods will accurately calculate the exitances that we need to display a photorealistic

image. However, if these images include any light sources, that is likely all we will see. Their exitances

may be in excess of the other surfaces by a factor of 100:1 or more, in which case our display devices will

be unable to render them and the surfaces at the same time. This is not what we see when we look at a

typical scene in real life. We need to devise a tone reproduction technique that compensates for this

problem.

One ad hoc but usually satisfactory solution is to scale the vertex exitances according to the vertex with

the greatest reflected exitance. That is, each exitance value is scaled such that the greatest reflected

A Viewing System 217
__

exitance (in whichever color band of the Spectra data type) is assigned a value of slightly less than 1.0. If

the exitance of a light source exceeds this value, it is individually scaled to equal 1.0 (again in whichever

color band) as well. This ensures that the light sources will be displayed in their proper colors. They will

also appear as the “brightest” objects in the image, closely approximating what we would expect to see. We

might refer to this process as exitance normalization.

With this, we can develop the following tone reproduction class:

// TONE_REP.H - Tone Reproduction Class

#ifndef _TONE_REP_H
#define _TONE_REP_H

#include "instance.h"

// Maximum reflected exitance value
#define T_MaxExitance ((double) 254 / 255)

class ToneRep // Tone reproduction
{
 public:
 void Interpolate(Instance *);
 void Normalize(Instance *);
 void Shade(Instance *);
};

#endif

Listing 4.14 - TONE_REP.H

and:

// TONE_REP.CPP - Tone Reproduction Class

#include "tone_rep.h"

// Shade the vertex exitances
void ToneRep::Shade(Instance *penv)
{
 Instance *pinst;
 Vertex3 *pvert;

 // Walk the instance list
 pinst = penv;
 while (pinst != NULL)
 {
 // Walk the vertex list
 pvert = pinst->GetVertPtr();
 while (pvert != NULL)
 {
 // Set vertex exitance to parent surface reflectance
 pvert->SetExitance(pvert->GetElemListPtr()->
 GetElemPtr()->GetParentPtr()->GetParentPtr()->
 GetReflectance());

218 A Viewing System
__

 pvert = pvert->GetNext();
 }
 pinst = pinst->GetNext();
 }
}

// Interpolate vertex reflected exitances
void ToneRep::Interpolate(Instance *penv)
{
 int num_elem; // Number of elements
 Element3 *pelem; // Element pointer
 ElemList *pel; // Element list pointer
 Instance *pinst; // Instance pointer
 Vertex3 *pvert; // Vertex pointer

 // Walk the instance list
 pinst = penv;
 while (pinst != NULL)
 {
 // Walk the vertex list
 pvert = pinst->GetVertPtr();
 while (pvert != NULL)
 {
 // Initialize vertex reflected exitance
 pvert->GetExitance().Reset();

 // Walk the element list
 pel = pvert->GetElemListPtr();
 num_elem = 0;
 while (pel != NULL)
 {
 // Get the element pointer
 pelem = pel->GetElemPtr();

 // Add element reflected exitance
 pvert->GetExitance().Add(pelem->GetExitance());

 pel = pel->GetNext();
 num_elem++;
 }

 // Scale vertex reflected exitance according to number
 // of shared elements
 pvert->GetExitance().Scale(1.0 / (double) num_elem);

 pvert = pvert->GetNext();
 }
 pinst = pinst->GetNext();
 }
}

// Normalize vertex exitances
void ToneRep::Normalize(Instance *penv)
{
 double rmax = 0.0; // Maximum reflected color
 double emax; // Maximum color
 Instance *pinst; // Instance pointer
 Spectra emit; // Surface emittance
 Vertex3 *pvert; // Vertex pointer

A Viewing System 219
__

 // Walk the instance list
 pinst = penv;
 while (pinst != NULL)
 {
 // Walk the vertex list
 pvert = pinst->GetVertPtr();
 while (pvert != NULL)
 {
 // Find maximum reflected color band value
 rmax = max(pvert->GetExitance().GetMaxColor(), rmax);

 pvert = pvert->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Check for non-zero maximum vertex exitance
 if (rmax > MIN_VALUE)
 {
 // Walk the instance list
 pinst = penv;
 while (pinst != NULL)
 {
 // Walk the vertex list
 pvert = pinst->GetVertPtr();
 while (pvert != NULL)
 {
 // Get parent surface emittance
 emit = pvert->GetElemListPtr()->GetElemPtr()->
 GetParentPtr()->GetParentPtr()->GetEmittance();

 // Add surface initial exitance to reflected vertex
 // exitance
 pvert->GetExitance().Add(emit);

 // Scale vertex exitance
 pvert->GetExitance().Scale(T_MaxExitance / rmax);

 // Clip vertex exitance to unity
 if ((emax = pvert->GetExitance().GetMaxColor()) >
 1.0)
 pvert->GetExitance().Scale(1.0 / emax);

 pvert = pvert->GetNext();
 }
 pinst = pinst->GetNext();
 }
 }
}

Listing 4.15 - TONE_REP.CPP

ToneRep is a catch-all class that also implements the vertex shading and exitance interpolation

discussed in Section 4.16. In that it has no data members, ToneRep should not even be an independent class

at all. Unfortunately, there are no other classes that these functions can be logically assigned to.

220 A Viewing System
__

Exitance normalization has no physical justification–it simply produces results that are visually

appealing. The reality is much more complicated. We can clearly sense whether a room is dark or brightly

lit, and we can definitely tell the difference between starlight and sunlight! Unfortunately, our approach

completely ignores this ability.

Fortunately, there is a growing body of literature on tone reproduction algorithms that takes the

observer into account. Two papers of particular interest are Meyer [1986] and Tumblin and Rushmeier

[1993] (see also Barbour and Meyer [1992]). This will undoubtedly become a more important topic as

photorealistic imagery becomes more commonplace.

Finally, it is possible to store floating point color representations using 32 bits (four bytes) per pixel

(Ward [1991]). Each color is represented by an eight-bit mantissa, followed by an eight-bit exponent.

While this does not address the limited dynamic range of most display media, it does allow the user to

correct the image presentation using only a stored bitmap image.

4.18 A Synthetic Camera

That’s it–we finally have all the components we need to construct our viewing system! We can model

this system as a synthetic camera, with a wireframe display as its viewfinder and a bitmap file as its film.

As we saw in Section 4.1, changing the view distance is equivalent to changing the focal length setting of a

zoom lens.

The viewfinder image lets us preview our image, and to adjust the camera’s position and orientation.

Once we have the desired composition, we can “shoot” a fully rendered view of the environment. We can

even “crop” the image by specifying the bitmap width and height, and we can choose our film (RGB,

grayscale or pseudocolor display, plus color jittering and gamma correction).

Implementing this model requires ViewSys for the viewing system, PolyClip4 for clipping the polygons,

PolyRender to render them, WinMetaFile for the wireframe display and WinBitmap for the bitmap file

manager. The following SynCamera class provides a wrapper that makes it easier to access these classes

from our application code (which is still to come).

// SYN_CAM.H - Synthetic Camera Class

#ifndef _SYN_CAM_H
#define _SYN_CAM_H

A Viewing System 221
__

#include "instance.h"
#include "p_clip4.h"
#include "p_render.h"
#include "win_meta.h"
#include "win_bmap.h"
#include "view_sys.h"

#ifdef _NOT_WINAPP
struct POINT // Raster display point
{
 int x; // X-axis co-ordinate
 int y; // Y-axis co-ordinate
};
#endif

class SynCamera : public ViewSys // Synthetic camera
{
 private:
 // Note: angles are in degrees
 double vdv_horz; // View direction horz angle
 double vdv_vert; // View direction vert angle
 double vup_horz; // View-up vector horz angle
 double vup_vert; // View-up vector vert angle
 int height; // Window height
 int width; // Window width
 PolyClip4 clipper; // Polygon clipper
 PolyRender renderer; // Polygon renderer

 public:
 SynCamera(int w, int h, double vdvh, double vdvv,
 double vuph, double vupv) : ViewSys()
 {
 width = w; height = h;
 vdv_horz = vdvh; vdv_vert = vdvv;
 vup_horz = vuph; vup_vert = vupv;
 aspect = (double) w / (double) h;

 SetViewDirVector(vdvh, vdvv);
 SetViewUpVector(vuph, vupv);

 UpdateViewSystem();

 EnableGamma();
 }

 BOOL GammaFlag() { return renderer.GammaFlag(); }
 BOOL GetStatus() { return renderer.GetStatus(); }
 BOOL JitterFlag() { return renderer.JitterFlag(); }
 BOOL Preview(Instance *, WinMetaFile *);
 BOOL Shoot(Instance *, WinBitmap *);
 double GetGamma() { return renderer.GetGamma(); }
 double GetViewDirHorz() { return vdv_horz; }
 double GetViewDirVert() { return vdv_vert; }
 double GetViewUpHorz() { return vup_horz; }
 double GetViewUpVert() { return vup_vert; }
 int GetColorType() { return renderer.GetColorType(); }
 int GetHeight() { return height; }
 int GetWidth() { return width; }
 int GetNoiseLevel()

222 A Viewing System
__

 { return renderer.GetNoiseLevel(); }
 void DisableGamma() { renderer.DisableGamma(); }
 void DisableJitter() { renderer.DisableJitter(); }
 void EnableGamma() { renderer.EnableGamma(); }
 void EnableJitter() { renderer.EnableJitter(); }
 void SetColorType(int type)
 { renderer.SetColorType(type); }
 void SetGamma(double g) { renderer.SetGamma(g); }
 void SetHeight(int h) { height = h; }
 void SetNoiseLevel(int n)
 { renderer.SetNoiseLevel(n); }
 void SetViewDirVector(double, double);
 void SetViewUpVector(double, double);
 void SetWidth(int w) { width = w; }
 void UpdateViewSystem();
};

#endif

Listing 4.16 - SYM_CAM.H

Our ViewSys class represents the viewing system’s orientation in rectangular co-ordinates. To this

SynCamera adds a set of spherical co-ordinates, mostly as a convenience for the application program’s user

interface, and information about the width and height of the bitmap.

SynCamera also adds to ViewSys the ability to preview and shoot a view of an environment:

// SYN_CAM.CPP - Synthetic Camera Class

#include "spheric3.h"
#include "syn_cam.h"

// Record wireframe display in metafile format
BOOL SynCamera::Preview(Instance *pinst, WinMetaFile
 *pmeta)
{
 int i; // Loop index
 int num_vert; // Number of vertices
 Element3 *pelem; // Element pointer
 OutPolygon out; // Output polygon
 POINT vertex[8]; // Polygon vertex array
 Point3 posn; // Point co-ordinates
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer

 // Start wireframe metafile recording
 if (pmeta->Record(tmpnam(NULL)) == FALSE)
 return FALSE;

 // Walk the instance list
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list

A Viewing System 223
__

 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Determine patch visibility
 if (BackFaceCull(ppatch) == FALSE)
 {
 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 // Clip the 3-D element (polygon)
 num_vert = clipper.Clip(pelem, out,
 GetProjMatrix());

 // Initialize the 2-D polygon vertices array
 for (i = 0; i < num_vert; i++)
 {
 posn = out.GetVertexPosn(i);

 // Convert normalized device co-ordinates to
 // screen space co-ordinates
 vertex[i].x = (int) (posn.GetX() * width);
 vertex[i].y = (int) (posn.GetY() * height);
 }

 // Add 2-D polygon draw command to metafile
 if (pmeta->Polygon(vertex, num_vert) == FALSE)
 {
 pmeta->Erase(); // Erase metafile recording
 return FALSE;
 }

 pelem = pelem->GetNext();
 }
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }
 return pmeta->Stop(); // Stop metafile recording
}

// Record rendered display as bitmap file
BOOL SynCamera::Shoot(Instance *pinst, WinBitmap *pbmap)
{
 Element3 *pelem; // Element pointer
 OutPolygon out; // Output polygon
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer

 // Initialize polygon renderer
 if (renderer.Open(pbmap) == FALSE)
 return FALSE;

 // Walk the instance list
 while (pinst != NULL)
 {

224 A Viewing System
__

 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Determine patch visibility
 if (BackFaceCull(ppatch) == FALSE)
 {
 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 // Clip the 3-D polygon
 (void) clipper.Clip(pelem, out,
 GetProjMatrix());

 // Render the 2-D polygon
 renderer.Render(out);

 pelem = pelem->GetNext();
 }
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 renderer.Close(); // Close the polygon renderer
 return TRUE;
}

// Set view system parameters
void SynCamera::UpdateViewSystem()
{
 aspect = (double) width / (double) height;
 BuildTransform();
}

// Set view direction vector
void SynCamera::SetViewDirVector(double h, double v)
{
 Spheric3 angle; // View direction angles (radians)
 Vector3 view_dir; // View direction vector

 vdv_horz = h; vdv_vert = v;

 angle.SetVert(DegToRad(v));
 angle.SetHorz(DegToRad(h));
 angle.SpherToRect(&view_dir);

 SetViewDir(view_dir);
}

// Set view-up vector
void SynCamera::SetViewUpVector(double h, double v)

A Viewing System 225
__

{
 Spheric3 angle; // View-up vector angles (radians)
 Vector3 view_up; // View-up vector

 vup_horz = h; vup_vert = v;

 angle.SetVert(DegToRad(v));
 angle.SetHorz(DegToRad(h));
 angle.SpherToRect(&view_up);

 SetViewUp(view_up);
}

Listing 4.17 - SYN_CAM.CPP

Preview implements the wireframe display pseudocode presented in Figure 4.25 with one difference:

the “display device” is a metafile. It sets the metafile to record mode, then walks through the linked list of

polygons representing the parsed environment, performing backface culling, clipping and co-ordinate

conversion before drawing the visible polygons to the metafile. The metafile recording is stopped when all

of the polygons have been processed. Playing the completed metafile afterwards is the responsibility of the

application program.

Shoot is almost identical to Preview. Instead of drawing the visible polygons to a metafile, however, it

renders them in a bitmap. (The PolyRender class performs its own co-ordinate conversion.) Again, the

application program is responsible for saving the bitmap to a file.

Finally, UpdateViewSystem should be called to update the view system’s aspect ratio and

transformation matrix whenever any of the view system parameters are changed, either through

SetViewDirVector or SetViewUpVector, or through calling one of the ViewSys public member functions

such as ViewSys::SetOrigin.

4.19 A Viewing System for MS-Windows

We have written some 2,500 lines of C++ source code so far, but does it work? The only way to answer

this question–and to provide a non-trivial example of its use–is to build an application around it. Rather

than writing a demonstration program, we might as well bite the bullet and develop a complete user

interface for our radiosity renderer.

Our program development and target environments will be the same: Microsoft MS-Windows. The

following code is therefore completely and unabashedly concerned with MS-Windows programming. In

226 A Viewing System
__

that this book is not about MS-Windows programming tricks and techniques, the commentary will not

address Windows-specific programming issues or belabor porting the code to other environments.

The good news is that the following application program does little more than provide pull-down

menus and pop-up dialog boxes for the user. If you need to write a user interface for another platform, your

best bet is to emulate the interface of the MS-Windows executable provided on the accompanying diskette.

Porting MS-Windows source code verbatim to another GUI environment is not recommended unless you

are fully familiar with the MS-Windows API (see Petzold [1992]).

A few specifications before we begin. Naturally, our program should display both wireframe and

bitmapped images. MS-Windows does this with relative ease, with the added bonus that it is device-

independent. Unlike its underlying MS-DOS operating system, MS-Windows 3.1 is fully cognizant of its

display device’s capabilities. We thankfully do not have to concern ourselves with the many varieties of

video display adapters and their arcane programming requirements. (The same capabilities are of course

available with MS-Windows NT.)

Beyond this, we should take full advantage of the graphical user interface provided MS-Windows. In

particular, we should have pull-down menus and their options that provide the following:

Menu Options

File Open File dialog box to open world (environment) files.

 Save As dialog box to save the displayed bitmapped image as a BMP file.

 Directories dialog box to specify a path to where the entity files can be found.

Camera Camera Parameters dialog box to set the view distance, the front and back clipping plane

distances and the bitmap image width and height

View View Parameters dialog box to set the eye position, view direction vector and view-up

vector (using spherical co-ordinates).

Render Wireframe menu item to display a wireframe image of the specified view of the

environment.

 Shaded menu item to display a full-color (but not photorealistic) view of the environment.

A Viewing System 227
__

 Rendering menu item to perform the radiosity calculations and display a photorealistic view

of the environment.

 Redisplay menu item to redisplay the bitmapped image without having to repeat the radiosity

calculations.

Options Convergence dialog box to specify the maximum number of allowed iterations for solving

the radiosity equation (see Chapter Six), to specify a “stopping criterion” (see below), and to

toggle the “ambient exitance” and “positive overshoot” features (to be discussed in Chapter

Six).

 Display Parameters dialog box to enable or disable gamma correction and to specify a

gamma correction value (see Section 3.5.1), to enable or disable color jittering and to specify

a “noise level” value (see Section 3.5.2), and choose 24-bit color, grayscale or pseudocolor

display (see Section 3.5).

Help About dialog box to identify the program.

Figure 4.35 - Viewing system menu specification

This short list completely describes our user interface requirements. It accepts an environment files,

allows us to specify a view of the environment, and displays both wireframe and bitmapped images. We

can optionally save the bitmapped image as a BMP file.

As for the Rendering and Convergence menu items, we have yet to develop our radiosity rendering

code. All we can do for now is provide the following do-nothing base class:

// RAD_EQN.H - Radiosity Equation Solver Base Class

#ifndef _RAD_EQN_H
#define _RAD_EQN_H

#include "environ.h"
#include "tone_rep.h"

class RadEqnSolve // Radiosity equation solver
{
 protected:
 int step_count; // Step count
 int max_step; // Maximum number of steps
 double stop_criterion; // Stopping criterion
 double convergence; // Convergence
 double total_area; // Total patch area
 double total_flux; // Total environment flux
 double total_unsent; // Total unsent exitance

228 A Viewing System
__

 BOOL amb_flag; // Ambient exitance flag
 Environ *penv; // Environment pointer
 Patch3 *pmax; // Maximum unsent flux patch ptr
 Spectra ambient; // Ambient exitance
 Spectra irf; // Interreflection factors
 ToneRep tone; // Tone reproduction object

 void CalcAmbient();
 void CalcInterReflect();
 void InitExitance();
 void UpdateUnsentStats();

 public:
 RadEqnSolve()
 {
 amb_flag = FALSE;
 max_step = 100;
 stop_criterion = 0.001;
 }

 virtual ~RadEqnSolve() { Close(); }

 BOOL AmbientFlag() { return amb_flag; }
 BOOL Calculate() { return TRUE; }
 BOOL GetStatus() { return TRUE; }
 BOOL Open(Environ *) { return TRUE; }
 BOOL OverShootFlag() { return FALSE; }
 double GetStopCriterion() { return stop_criterion; }
 double GetConvergence() { return convergence; }
 int GetMaxStep() { return max_step; }
 int GetStepCount() { return step_count; }
 void Close() { }
 void DisableAmbient() { amb_flag = FALSE; }
 void DisableOverShoot() { }
 void EnableAmbient() { amb_flag = TRUE; }
 void EnableOverShoot() { }
 void SetMaxStep(int max) { max_step = max; }
 void SetStopCriterion(double s)
 { stop_criterion = s; }
 void Shade(Instance *pinst) { tone.Shade(pinst); }
};

#endif

Listing 4.18 - RAD_EQN.H

A quick preview: RadEqnSolve will later serve as a base class for one of several radiosity equation

solvers (described in Chapter Six). It will accept a pointer to a parsed environment and then compute the

polygon vertex colors needed to generate a photorealistic image. We call GetStatus to ensure that the

derived class object was properly constructed. If so, we call Open to initialize the equation solver. If this

function returns TRUE, we then repeatedly call Calculate until it returns TRUE.

The radiosity equation solvers are iterative procedures that begin with a trial solution and successively

refine it with each call to Calculate. The max_pass member specifies the maximum number of allowed

A Viewing System 229
__

iterations before the derived Calculate function returns TRUE. The stop_criterion member provides a

single quantity that Calculate will use to determine whether the latest solution is “close enough.”

Once Calculate returns TRUE, we can call ToneRep::Interpolate (if necessary) and

ToneRep::Normalize to generate element vertex exitances that are suitable for viewing purposes. The

details of Calculate will be discussed in Chapter Six.

Shade is not really part of a radiosity equation solver, since it only calls ToneRep::Shade to set the

vertex exitances to their parent surface reflectances (Section 4.17). Nevertheless, it is convenient to include

it with RadEqnSolve.

Finally, calling Close releases any memory that was dynamically allocated to the equation solver.

RadEqnSolve has a number of other functions whose purpose will become evident in Chapter Six. In

this base class, they essentially return dummy values that we can ignore. This requires the following set of

“stub” functions:

// RAD_TMP.H - Dummy Radiosity Equation Solver Base Class

// NOTE: This file provides TEMPORARY function stubs for the
// RadEqnSolve class.

#include "rad_eqn.h"

void RadEqnSolve::CalcAmbient() { }
void RadEqnSolve::CalcInterReflect() { }
void RadEqnSolve::InitExitance() { }
void RadEqnSolve::UpdateUnsentStats() { }

Listing 4.19 - RAD_TMP.CPP

which do nothing other than allow us to continue our development without having to come back and

change the code later on. RAD_TMP.CPP is a temporary file that will be replaced by RAD_EQN.CPP in

Chapter Six.

That’s it for platform-independent code in this chapter. The rest of our application program is entirely

concerned with user interface details.

4.19.1 A Scroll Bar Class

Our bitmapped image can be whatever size we choose, subject only to the limits of available memory.

As such, it may be larger than our display screen. To view the image in its entirety, we need to implement

scroll bars. These are traditionally implemented in C within the dreaded “big switch” statement of

230 A Viewing System
__

WinMain. (e.g., Petzold [1992]). However, the same code must be repeated for every child window that

requires scroll bars. In C++, it makes more sense to create a scroll bar control class:

// WIN_SBAR.H - MS-Windows Scroll Bar Control Class

#ifndef _WIN_SBAR_H
#define _WIN_SBAR_H

#include "general.h"

class WinScroll // Scroll bar control
{
 private:
 HWND hwnd; // Client window handle
 POINT curr_pos; // Current scroll position
 POINT max_range; // Maximum scroll range
 POINT inc; // Scroll increment
 POINT size; // Client window size

 public:
 WinScroll(HWND hw)
 {
 RECT rect; // Rectangle structure

 curr_pos.x = curr_pos.y = 0;
 max_range.x = max_range.y = 0;
 inc.x = inc.y = 0;

 hwnd = hw;
 GetClientRect(hwnd, &rect);
 size.x = rect.right;
 size.y = rect.bottom;

 Hide();
 }

 POINT Pos() { return curr_pos; }
 void Hide();
 void Horz(WPARAM, WORD);
 void Init(int, int);
 void Set(int, int);
 void Vert(WPARAM, WORD);
};

#endif

Listing 4.20 - WIN_SBAR.H

where a WinScroll object is dynamically created for each window when the WM_CREATE message is

processed and deleted under WM_DESTROY.

As for the public member functions, Pos returns the current scroll bar button positions, Hide hides the

scroll bars from view, Init initializes the scroll bars for a given bitmap image, Set reinitializes the scroll

A Viewing System 231
__

bars after the window has been resized, and Horz and Vert process messages from the mouse and

keyboard. These functions are implemented as:

// WIN_SBAR.CPP - MS-Windows Scroll Bar Control Class

#include "win_sbar.h"

// Set scroll bar positions and ranges
void WinScroll::Set(int width, int height)
{
 RECT rect;

 GetClientRect(hwnd, &rect);
 size.x = rect.right;
 size.y = rect.bottom;

 max_range.x = max(0, width - size.x);
 curr_pos.x = min(curr_pos.x, max_range.x);

 SetScrollRange(hwnd, SB_HORZ, 0, max_range.x, FALSE);
 SetScrollPos(hwnd, SB_HORZ, curr_pos.x, TRUE);

 max_range.y = max(0, height - size.y);
 curr_pos.y = min(curr_pos.y, max_range.y);

 SetScrollRange(hwnd, SB_VERT, 0, max_range.y, FALSE);
 SetScrollPos(hwnd, SB_VERT, curr_pos.y, TRUE);
}

// Initialize scroll bar positions and ranges
void WinScroll::Init(int width, int height)
{
 curr_pos.x = curr_pos.y = 0;
 Set(width, height);
}

void WinScroll::Hide() // Hide scroll bars
{
 SetScrollRange(hwnd, SB_HORZ, 0, 0, TRUE);
 SetScrollRange(hwnd, SB_VERT, 0, 0, TRUE);
}

// Process vertical scroll bar message
void WinScroll::Vert(WPARAM sb_code, WORD sb_pos)
{
 switch (sb_code)
 {
 case SB_LINEUP:
 inc.y = -1;
 break;
 case SB_LINEDOWN:
 inc.y = 1;
 break;
 case SB_PAGEUP:
 inc.y = min(-1, -size.y >> 2);
 break;
 case SB_PAGEDOWN:
 inc.y = max(1, size.y >> 2);

232 A Viewing System
__

 break;
 case SB_TOP:
 inc.y = -inc.y;
 break;
 case SB_BOTTOM:
 inc.y = max_range.y - curr_pos.y;
 break;
 case SB_THUMBPOSITION:
 inc.y = sb_pos - curr_pos.y;
 break;
 default:
 inc.y = 0;
 }

 if ((inc.y = max(-curr_pos.y, min(inc.y, max_range.y -
 curr_pos.y))) != 0)
 {
 curr_pos.y += inc.y;
 ScrollWindow(hwnd, 0, -inc.y, NULL, NULL);
 SetScrollPos(hwnd, SB_VERT, curr_pos.y, TRUE);
 UpdateWindow(hwnd);
 }
}

// Process horizontal scroll bar message
void WinScroll::Horz(WPARAM sb_code, WORD sb_pos)
{
 switch (sb_code)
 {
 case SB_LINEUP:
 inc.x = -1;
 break;
 case SB_LINEDOWN:
 inc.x = 1;
 break;
 case SB_PAGEUP:
 inc.x = min(-1, -size.x >> 2);
 break;
 case SB_PAGEDOWN:
 inc.x = max(1, size.x >> 2);
 break;
 case SB_THUMBPOSITION:
 inc.x = sb_pos - curr_pos.x;
 break;
 default:
 inc.x = 0;
 }

 if ((inc.x = max(-curr_pos.x, min(inc.x, max_range.x -
 curr_pos.x))) != 0)
 {
 curr_pos.x += inc.x;
 ScrollWindow(hwnd, -inc.x, 0, NULL, NULL);
 SetScrollPos(hwnd, SB_HORZ, curr_pos.x, TRUE);
 UpdateWindow(hwnd);
 }

A Viewing System 233
__

}

Listing 4.21 - WIN_SBAR.CPP

WinScroll can be considered much like any other set of library functions: a black box. As long as it

works, we need not concern ourselves with the details. We will see an example of its use shortly, but first

we have to consider something more general.

4.19.2 An Aside: MS-Windows Programming Issues

Developing MS-Windows applications is at heart an exercise in C programming. The MS-Windows

API is not designed for C++. Worse, the dreaded “big switch” statement in WinMain can be hidden but not

ignored. Several C++ compiler vendors market class libraries designed to make Windows development in

C++ easier, but these are at best proprietary solutions.

Lacking an industry standard C++ compiler for MS-Windows (there are currently two strong

contenders and several dark horses), we must take the traditional approach of programming in C. We

thankfully do not have to abandon our C++ code, since C and C++ can (by design) coexist quite nicely.

In fact, the only real problem lies in C++’s delightful habit of “name mangling”. While this may be

necessary in order for the linker and debugger to distinguish between class functions with the same name,

it wreaks havoc with callback functions (i.e., functions that are called by Windows rather than your own

code). You declare your callback functions (such as MainWndProc) in the EXPORTS section of your

module definition (.DEF) files. If the C++ compiler changes the names of these functions from

“func_name” to something like “?func_name@@YAHH@Z”, your linker will be unable to resolve (i.e.,

find) them later.

There are two solutions. First, you can add the _export keyword to the function prototypes and remove

the function declarations from your .DEF file. Unfortunately, this precludes using ordinals to identify the

exported functions to Windows, as in:

EXPORTS
 MainWndProc @1
 About @2

Ordinals serve two purposes. One, Windows can process them faster, since it can use the ordinal to

directly index a function pointer table instead of first matching a text string when calling the function.

234 A Viewing System
__

Two, they hide the function names from people doing reverse engineering–an important issue for

commercial applications.

You could write your program using _export, then use the EXEHDR utility to look up the C++

mangled function names, add them to your .DEF file with accompanying ordinals, remove the _export

references, and recompile. That’s the hard way.

The second and simpler solution is to write the callback functions in C and declare them as such using

C++’s extern “C” mechanism. The C++ compiler considers them to be C functions and compiles them

without name mangling. This allows you to declare them in your module definition file as is and with

ordinals.

No, this book is not about MS-Windows programming. However, finding this particular information in

the MS-Windows API documentation can be a painful experience. Enough said.

One more comment regarding programming issues. Many older books on MS-Windows 3.x

programming recommend using the medium memory model. This advice made sense when MS-Windows

3.0 could run in real mode on an Intel 80286 or 8088 CPU. However, support for this mode was thankfully

dropped from MS-Windows 3.1, which runs in standard or enhanced mode only. (Of course, there are no

memory models to worry about in the 32-bit Windows NT operating system.)

Another argument is that by using near rather than far pointers, a medium model program runs faster.

While this may be true, the difference is usually minimal. Moreover, the source code becomes

exponentially unintelligible with endless typecasts to far pointers. Worst of all, many otherwise standard C

library functions are not usable in the medium model. You have to either copy function arguments between

far and near memory or writing your own far code versions that accept near data. What a mess!

This leads to one simple recommendation for all non-trivial 16-bit MS-Windows programs:

16-BIT MS-WINDOWS: COMPILE USING THE LARGE MEMORY MODEL

4.19.3 HELIOS - A Radiosity Renderer for MS-Windows

HELIOS is our “minimal” viewing system for MS-Windows 3.1 and MS-Windows NT. None of the

following pertains directly to radiosity rendering. For those readers familiar with MS-Windows

A Viewing System 235
__

programming, it is an entirely straightforward implementation of a user interface. Otherwise, it is an

imposingly large block of inscrutable code.

Fortunately, we can view it as the proverbial black box. It works, and it provides all the user interface

support we need for our radiosity renderer. As we saw in Listing 4.18, its relation to our radiosity renderer

per se consists of a few function calls. If you must understand its details, a copy of Petzold [1992] and the

MS-Windows API documentation is highly recommended as a tour guide.

With this, we have:

// HELIOS.H - Radiosity Renderer for MS-Windows

#ifndef _HELIOS_H
#define _HELIOS_H

static const int MaxLen = 256;
static const int Offset = 2;

// Display type
#define H_NONE 0 // None
#define H_WIRE 1 // Wireframe
#define H_BMAP 2 // Bitmap

#ifdef WIN32
// WIN32 message cracking macros
#define GET_WM_COMMAND_ID(wp, lp) LOWORD(wp)
#define GET_WM_HSCROLL_POS(wp, lp) HIWORD(wp)
#define GET_WM_VSCROLL_POS(wp, lp) HIWORD(wp)
#else
// WIN16 message cracking macros
#define GET_WM_COMMAND_ID(wp, lp) (wp)
#define GET_WM_HSCROLL_POS(wp, lp) LOWORD(lp)
#define GET_WM_VSCROLL_POS(wp, lp) LOWORD(lp)
#endif

int WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int);

static BOOL InitApplication(HINSTANCE);
static BOOL InitInstance(HINSTANCE, int);
static double GetDlgItemFloat(HWND, int);
static void CalcWireDim(short, short, short *, short *);
static void DoKeyDown(HWND, WPARAM);
static void SetDlgItemFloat(HWND, int, double);

extern "C"
{
 LRESULT WINAPI MainWndProc(HWND, UINT, WPARAM,
 LPARAM);
 LRESULT WINAPI WireWndProc(HWND, UINT, WPARAM,
 LPARAM);
 BOOL CALLBACK About(HWND, UINT, WPARAM, LPARAM);
 BOOL CALLBACK SetCamera(HWND, UINT, WPARAM, LPARAM);
 BOOL CALLBACK SetConverge(HWND, UINT, WPARAM, LPARAM);
 BOOL CALLBACK SetDisplay(HWND, UINT, WPARAM, LPARAM);

236 A Viewing System
__

 BOOL CALLBACK SetEntityDir(HWND, UINT, WPARAM, LPARAM);
 BOOL CALLBACK SetView(HWND, UINT, WPARAM, LPARAM);
}

#endif

Listing 4.22 - HELIOS.H

Note the use of the extern “C” mechanism. This is the one C++ language feature makes writing MS-

Windows applications using (mostly) generic C++ possible.

Next, and with no apologies for its length, is the (again, mostly) C source for HELIOS. Thanks to the

intimate relation between C and C++, HELIOS.CPP can be compiled as a C++ program.

// HELIOS.CPP - Radiosity Renderer for MS-Windows

#include <windows.h>
#include <windowsx.h>
#include <commdlg.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include "error.h"
#include "spheric3.h"
#include "parse.h"
#include "syn_cam.h"
#include "win_meta.h"
#include "win_bmap.h"
#include "win_sbar.h"

#if (defined(_HEMI_CUBE) || defined(_CUBIC_TETRA))
#include "prog_rad.h"
#elif defined(_RAY_CAST)
#include "ray_rad.h"
#else
#include "rad_eqn.h"
#endif

#include "resource.h"
#include "helios.h"

static char EntityDir[MaxLen]; // Entity directory
static char WorldName[MaxLen]; // World file name buffer
static char BitmapName[MaxLen]; // Bitmap file name buffer
static char FileTitle[MaxLen]; // File title buffer
static char StrBuffer[MaxLen]; // Temporary string buffer
static HINSTANCE hInst; // Current instance handle
static OPENFILENAME Ofn; // Open filename structure

// Synthetic camera
static SynCamera Camera(640, 480, -180.0, 90.0, 0.0, 0.0);

static Environ Environment; // Environment
static Parse Parser; // World file parser
static WinMetaFile Wire; // Metafile manager
static WinBitmap Bitmap; // Bitmap file manager

A Viewing System 237
__

// Radiosity equation solver
#if (defined(_HEMI_CUBE) || defined(_CUBIC_TETRA))
static ProgRad Radiosity; // Progressive radiosity
#elif defined(_RAY_CAST)
static RayRad Radiosity; // Ray cast radiosity
#else
static RadEqnSolve Radiosity; // Dummy equation solver
#endif

static const char AppName[] = "HELIOS";
static const char BitmapSection[] = "Bitmap";
static const char EyeDistError[] = "Front distance is "
 "behind eye position";
static const char FrontDistError[] = "Front distance must "
 "be greater than zero";
static const char GammaError[] = "Gamma value must be "
 "greater than zero";
static const char HeightEntry[] = "Height";
static const char HorzError[] = "Horizontal angles must be "
 "between -180 and 180 degrees";
static const char InitFileName[] = "HELIOS.INI";
static const char MaxStepError[] = "Maximum number of "
 "steps must be between 1 and 2000";
static const char NoiseError[] = "Noise level must be "
 "between 0 and 8";
static const char PixelError[] = "Pixel values must be "
 "between 32 and 1024";
static const char StopError[] = "Stopping criterion must be"
 "between 0.0 and 1.0";
static const char WidthEntry[] = "Width";
static const char VertError[] = "Vertical angles must be "
 "between 0 and 180 degrees";
static const char ViewDirName[] = "View Direction";
static const char ViewDistError[] = "View distance must be "
 "greater than zero";
static const char ViewUpName[] = "View Up Vector";
static const char ViewUpError[] = "View-up vector is "
 "collinear with view direction vector";
static const char WireClass[] = "WIRE";

// File type filters
static const char InputFilterSpec[128] =
 "World Files (*.WLD)\0*.WLD\0All Files (*.*)\0*.*\0";
static const char OutputFilterSpec[128] =
 "BMP Files (*.BMP)\0*.BMP\0All Files (*.*)\0*.*\0";

static const int MaxStep = 2000;
static const int MinPixel = 32;
static const int MaxPixel = 1024;

int WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hpinst,
 LPSTR pcmdline, int cmdshow)
{
 MSG msg; // Window message

 // Other instances of application running ?
 if (!hpinst)
 if (!InitApplication(hinstance))
 return FALSE;

238 A Viewing System
__

 // Initialize current instance
 if (!InitInstance(hinstance, cmdshow))
 return FALSE;

 // Process window messages
 while (GetMessage(&msg, NULL, NULL, NULL))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 return (int) msg.wParam;
}

// Initialize window data and register window classes
static BOOL InitApplication(HINSTANCE hinstance)
{
 WNDCLASS wc; // Window class

 // Register main window class
 wc.style = CS_VREDRAW | CS_HREDRAW;
 wc.lpfnWndProc = (WNDPROC) MainWndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hinstance;
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = GetStockObject(LTGRAY_BRUSH);
 wc.lpszMenuName = "HeliosMenu";
 wc.lpszClassName = AppName;

 if (!RegisterClass(&wc))
 return FALSE;

 // Register wireframe window class
 wc.lpfnWndProc = (WNDPROC) WireWndProc;
 wc.hIcon = NULL;
 wc.hbrBackground = GetStockObject(WHITE_BRUSH);
 wc.lpszClassName = WireClass;

 return (RegisterClass(&wc) ? TRUE : FALSE);
}

// Save instance handle and create main window
static BOOL InitInstance(HINSTANCE hinstance, int
 cmdshow)
{
 HWND hwnd; // Main window handle

 hInst = hinstance; // Save current instance handle

 // Create main window for current instance
 hwnd = CreateWindow(AppName, "HELIOS Radiosity "
 "Renderer", WS_OVERLAPPEDWINDOW | WS_VSCROLL |
 WS_HSCROLL, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, hinstance,
 NULL);

 if (hwnd == 0)
 return FALSE;

A Viewing System 239
__

 // Initialize open filename structure
 Ofn.lStructSize = sizeof(OPENFILENAME);
 Ofn.hwndOwner = hwnd;
 Ofn.lpstrFilter = NULL;
 Ofn.lpstrCustomFilter = NULL;
 Ofn.nMaxCustFilter = 0;
 Ofn.nFilterIndex = 1;
 Ofn.lpstrFile = NULL;
 Ofn.nMaxFile = MaxLen;
 Ofn.lpstrInitialDir = NULL;
 Ofn.lpstrFileTitle = FileTitle;
 Ofn.nMaxFileTitle = MaxLen;
 Ofn.lpstrTitle = NULL;
 Ofn.lpstrDefExt = NULL;
 Ofn.Flags = 0;

 ShowWindow(hwnd, cmdshow); // Show the window
 UpdateWindow(hwnd); // Paint the client area

 return TRUE;
}

// Main window message handler
LRESULT WINAPI MainWndProc(HWND hwnd, UINT msg, WPARAM
 wparam, LPARAM lparam)
{
 static short xclient; // Client area width
 static short yclient; // Client area height
 static short xwire; // Wireframe window width
 static short ywire; // Wireframe window height
 static int d_type = H_NONE; // Display type
 static HWND hwnd_wire; // Wireframe window handle
 static WinScroll *pscroll; // Scroll bar manager ptr
 BOOL redraw; // Redraw flag
 FARPROC pfunc; // Exported fcn prolog ptr
 HCURSOR hcursor; // Cursor handle
 HDC hdc; // Device context handle
 HMENU hmenu; // Menu handle
 PAINTSTRUCT ps; // Window paint structure
 POINT pos; // Point co-ordinates
 RECT rc; // Rectangle co-ordinates

 switch (msg)
 {
 case WM_CREATE: // Create window
 // Instantiate scroll bar manager
 pscroll = new WinScroll(hwnd);
 break;
 case WM_SIZE: // Get client area dimensions
 xclient = LOWORD(lparam);
 yclient = HIWORD(lparam);
 switch (d_type)
 {
 case H_WIRE:
 // Update wireframe display
 CalcWireDim(xclient, yclient, &xwire, &ywire);
 MoveWindow(hwnd_wire, Offset, Offset, xwire,
 ywire, TRUE);

240 A Viewing System
__

 break;
 case H_BMAP:
 // Set scroll bar manager
 pscroll->Set(Camera.GetWidth(),
 Camera.GetHeight());
 break;
 default:
 break;
 }
 break;
 case WM_PAINT: // Paint client area
 hdc = BeginPaint(hwnd, &ps);
 if (d_type == H_BMAP) // Display bitmap ?
 {
 GetClientRect(hwnd, &rc);
 pos = pscroll->Pos();
 if (Bitmap.Display(hdc, pos, rc) == FALSE)
 {
 d_type = H_NONE;
 pscroll->Hide();
 }
 }
 EndPaint(hwnd, &ps);
 break;
 case WM_HSCROLL: // Process horz scroll bar message
 pscroll->Horz(wparam, GET_WM_HSCROLL_POS(wparam,
 lparam));
 break;
 case WM_VSCROLL: // Process vertical scroll bar msg
 pscroll->Vert(wparam, GET_WM_VSCROLL_POS(wparam,
 lparam));
 break;
 case WM_KEYDOWN: // Process key down message
 DoKeyDown(hwnd, wparam);
 break;
 case WM_COMMAND: // Process window message
 hmenu = GetMenu(hwnd); // Get menu handle
 switch (GET_WM_COMMAND_ID(wparam, lparam))
 {
 case IDM_FILEOPEN: // Open file
 Ofn.lpstrDefExt = "WLD";
 Ofn.lpstrFilter = InputFilterSpec;
 Ofn.lpstrFile = WorldName;
 Ofn.Flags = OFN_HIDEREADONLY | OFN_READONLY;
 if (GetOpenFileName((LPOPENFILENAME) &Ofn))
 {
 switch (d_type)
 {
 case H_WIRE:
 // Erase wireframe metafile
 Wire.Erase();
 d_type = H_NONE;

 // Destroy wireframe window
 DestroyWindow(hwnd_wire);
 break;
 case H_BMAP:
 Bitmap.Close(); // Close bitmap
 d_type = H_NONE;
 pscroll->Hide(); // Hide scroll bars

A Viewing System 241
__

 // Disable Save As menu item
 EnableMenuItem(hmenu, IDM_SAVEAS,
 MF_GRAYED);

 InvalidateRect(hwnd, NULL, TRUE);
 break;
 default:
 break;
 }

 // Parse environment file
 if ((Parser.ParseFile(Ofn.lpstrFile, EntityDir,
 &Environment)) == TRUE)
 {
 // Display environment statistics
 wsprintf(StrBuffer, "Number of Instances = "
 "%u\nNumber of Surfaces = %u\nNumber of"
 " Patches = %u\nNumber of Elements = %u\n"
 "Number of Vertices = %u",
 Environment.GetNumInst(),
 Environment.GetNumSurf(),
 Environment.GetNumPatch(),
 Environment.GetNumElem(),
 Environment.GetNumVert());
 MessageBox(hwnd, StrBuffer,
 "Environment Statistics", MB_OK |
 MB_ICONINFORMATION);

 // Update window title
 wsprintf(StrBuffer, "HELIOS - %s",
 Ofn.lpstrFile);
 SetWindowText(hwnd, StrBuffer);

 // Enable rendering menu items
 EnableMenuItem(hmenu, IDM_WIREFRAME,
 MF_ENABLED);
 EnableMenuItem(hmenu, IDM_SHADED,
 MF_ENABLED);
 EnableMenuItem(hmenu, IDM_RENDER,
 MF_ENABLED);

 // Disable Redisplay menu item
 EnableMenuItem(hmenu, IDM_REDISPLAY,
 MF_GRAYED);
 }
 }
 break;
 case IDM_SAVEAS: // Save BMP file
 Ofn.lpstrDefExt = "BMP";
 Ofn.lpstrFilter = OutputFilterSpec;
 Ofn.lpstrFile = BitmapName;
 Ofn.Flags = OFN_OVERWRITEPROMPT |
 OFN_HIDEREADONLY;
 if (GetSaveFileName((LPOPENFILENAME) &Ofn))
 {
 // Write bitmap file
 if (Bitmap.Write(Ofn.lpstrFile) == FALSE)
 {

242 A Viewing System
__

 sprintf(StrBuffer, "Could not save file %s",
 Ofn.lpstrFile);
 ReportError(StrBuffer);
 }
 }
 break;
 case IDM_EXIT: // Exit application
 DestroyWindow(hwnd);
 break;
 case IDM_SETCAMERA: // Set camera parameters
 pfunc = (DLGPROC) MakeProcInstance((FARPROC)
 SetCamera, hInst);
 redraw = DialogBox(hInst, "SetCamera", hwnd,
 pfunc);
 FreeProcInstance((FARPROC) pfunc);
 if (redraw == TRUE)
 {
 if (d_type == H_BMAP)
 {
 Bitmap.Close(); // Close bitmap
 d_type = H_NONE;
 pscroll->Hide(); // Hide scroll bars

 // Disable Save As menu item
 EnableMenuItem(hmenu, IDM_SAVEAS, MF_GRAYED);

 InvalidateRect(hwnd, NULL, TRUE);
 }

 if (d_type == H_WIRE)
 {
 // Record wireframe display
 Camera.Preview(Environment.GetInstPtr(),
 &Wire);

 // Resize and redraw wireframe window
 InvalidateRect(hwnd_wire, NULL, TRUE);
 CalcWireDim(xclient, yclient, &xwire, &ywire);
 MoveWindow(hwnd_wire, Offset, Offset, xwire,
 ywire, TRUE);
 }
 }
 break;
 case IDM_SETVIEW: // Specify view direction
 pfunc = (DLGPROC) MakeProcInstance((FARPROC)
 SetView, hInst);
 redraw = DialogBox(hInst, "SetView", hwnd,
 pfunc);
 FreeProcInstance((FARPROC) pfunc);
 if (redraw == TRUE)
 {
 if (d_type == H_BMAP)
 {
 Bitmap.Close(); // Close bitmap
 d_type = H_NONE;
 pscroll->Hide(); // Hide scroll bars

 // Disable Save As menu item
 EnableMenuItem(hmenu, IDM_SAVEAS, MF_GRAYED);

A Viewing System 243
__

 InvalidateRect(hwnd, NULL, TRUE);
 }

 if (d_type == H_WIRE)
 {
 // Record wireframe display
 Camera.Preview(Environment.GetInstPtr(),
 &Wire);
 InvalidateRect(hwnd_wire, NULL, TRUE);
 }
 }
 break;
 case IDM_WIREFRAME: // Wireframe display
 if (d_type != H_WIRE)
 {
 if (d_type == H_BMAP)
 {
 Bitmap.Close(); // Close bitmap
 d_type = H_NONE;
 pscroll->Hide(); // Hide scroll bars

 // Disable Save As menu item
 EnableMenuItem(hmenu, IDM_SAVEAS, MF_GRAYED);

 InvalidateRect(hwnd, NULL, TRUE);
 }

 // Create wireframe window
 CalcWireDim(xclient, yclient, &xwire,
 &ywire);
 hwnd_wire = CreateWindow(WireClass, NULL,
 WS_CHILD | WS_VISIBLE | WS_BORDER |
 WS_DISABLED, Offset, Offset, xwire, ywire,
 hwnd, NULL, hInst, NULL);
 d_type = H_WIRE;

 // Record wireframe display
 if (Camera.Preview(Environment.GetInstPtr(),
 &Wire) == FALSE)
 OutOfMemory();
 }
 break;
 case IDM_SHADED: // Shaded display
 case IDM_RENDER: // Radiosity rendering
 // Display hourglass cursor
 hcursor = SetCursor(LoadCursor(NULL, IDC_WAIT));

 if (wparam == IDM_RENDER)
 {
 // Confirm radiosity equation solver status
 if (Radiosity.GetStatus() == FALSE)
 {
 OutOfMemory();
 break;
 }

 // Initialize equation solver
 if (Radiosity.Open(&Environment) == FALSE)
 {

244 A Viewing System
__

 OutOfMemory();
 break;
 }

 // Perform radiosity calculations
 while (Radiosity.Calculate() == FALSE)
 ;

 // Close radiosity equation solver
 Radiosity.Close();

 // Disable Rendering menu item
 EnableMenuItem(hmenu, IDM_RENDER, MF_GRAYED);
 }
 else
 {
 // Set vertice exitances to parent surface
 // reflectances
 Radiosity.Shade(Environment.GetInstPtr());

 // Enable Rendering menu item
 EnableMenuItem(hmenu, IDM_RENDER, MF_ENABLED);
 }

 // Open bitmap
 if (Bitmap.Open(Camera.GetWidth(),
 Camera.GetHeight()) == TRUE)
 {
 // Record shaded display
 if (Camera.Shoot(Environment.GetInstPtr(),
 &Bitmap) == TRUE)
 {
 if (d_type == H_WIRE)
 {
 // Erase wireframe metafile (if any)
 Wire.Erase();

 // Destroy wireframe window
 DestroyWindow(hwnd_wire);
 }

 // Initialize scroll bar manager
 pscroll->Init(Camera.GetWidth(),
 Camera.GetHeight());

 // Enable bitmap Redisplay menu item
 EnableMenuItem(hmenu, IDM_REDISPLAY,
 MF_ENABLED);

 // Enable Save As menu item
 EnableMenuItem(hmenu, IDM_SAVEAS, MF_ENABLED);

 // Display bitmap (via WM_PAINT)
 InvalidateRect(hwnd, NULL, TRUE);
 d_type = H_BMAP;
 }

 SetCursor(hcursor); // Redisplay old cursor

 if (d_type == H_BMAP) // Check for error

A Viewing System 245
__

 {
 if (wparam == IDM_RENDER)
 {
 MessageBeep(MB_OK); // Signal completion

 // Display convergence statistics
 sprintf(StrBuffer, "Number of Steps = %d\n"
 "Convergence = %f",
 Radiosity.GetStepCount(),
 Radiosity.GetConvergence());

 MessageBox(hwnd, StrBuffer, "Convergence "
 "Statistics", MB_OK |
 MB_ICONINFORMATION);
 }
 }
 else
 OutOfMemory();
 }
 break;
 case IDM_REDISPLAY: // Redisplay bitmap
 // Display hourglass cursor
 hcursor = SetCursor(LoadCursor(NULL, IDC_WAIT));

 // Open bitmap
 if (Bitmap.Open(Camera.GetWidth(),
 Camera.GetHeight()) == TRUE)
 {
 // Record shaded display
 if (Camera.Shoot(Environment.GetInstPtr(),
 &Bitmap) == TRUE)
 {
 if (d_type == H_WIRE)
 {
 // Erase wireframe metafile (if any)
 Wire.Erase();

 // Destroy wireframe window
 DestroyWindow(hwnd_wire);
 }

 // Initialize scroll bar manager
 pscroll->Init(Camera.GetWidth(),
 Camera.GetHeight());

 // Enable Save As menu item
 EnableMenuItem(hmenu, IDM_SAVEAS, MF_ENABLED);

 // Display bitmap (via WM_PAINT)
 InvalidateRect(hwnd, NULL, TRUE);
 d_type = H_BMAP;
 }

 SetCursor(hcursor); // Redisplay old cursor
 }
 break;
 case IDM_DIRECTORY: // Set entity directory
 pfunc = (DLGPROC) MakeProcInstance((FARPROC)
 SetEntityDir, hInst);

246 A Viewing System
__

 DialogBox(hInst, "SetEntityDir", hwnd, pfunc);
 FreeProcInstance((FARPROC) pfunc);
 break;
 case IDM_SETCONVERGE: // Set convergence
 pfunc = (DLGPROC) MakeProcInstance((FARPROC)
 SetConverge, hInst);
 redraw = DialogBox(hInst, "SetConverge", hwnd,
 pfunc);
 FreeProcInstance((FARPROC) pfunc);
 if (redraw == TRUE)
 {
 // Enable Rendering menu item
 EnableMenuItem(hmenu, IDM_RENDER, MF_ENABLED);
 }
 break;
 case IDM_SETDISPLAY: // Set display parameters
 pfunc = (DLGPROC) MakeProcInstance((FARPROC)
 SetDisplay, hInst);
 DialogBox(hInst, "SetDisplay", hwnd, pfunc);
 FreeProcInstance((FARPROC) pfunc);
 break;
 case IDM_ABOUT: // Display About box
 pfunc = (DLGPROC) MakeProcInstance((FARPROC)
 About, hInst);
 DialogBox(hInst, "AboutBox", hwnd, pfunc);
 FreeProcInstance((FARPROC) pfunc);
 break;
 default:
 break;
 }
 break;
 case WM_DESTROY: // Destroy window
 delete pscroll; // Delete scroll bar manager
 Wire.Erase(); // Erase wireframe metafile
 Bitmap.Close(); // Release bitmap memory
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hwnd, msg, wparam, lparam);
 }
 return NULL;
}

// Wireframe window message handler
LRESULT WINAPI WireWndProc(HWND hwnd, UINT msg, WPARAM
 wparam, LPARAM lparam)
{
 static short xclient; // Client area width
 static short yclient; // Client area height

 switch (msg)
 {
 case WM_SIZE:
 xclient = LOWORD(lparam);
 yclient = HIWORD(lparam);
 break;
 case WM_PAINT: // Paint client area
 Wire.Play(hwnd, Camera.GetWidth(), Camera.GetHeight(),
 xclient, yclient);
 break;

A Viewing System 247
__

 default:
 return DefWindowProc(hwnd, msg, wparam, lparam);
 }
 return NULL;
}

// Set entities directory
BOOL CALLBACK SetEntityDir(HWND hdlg, UINT msg, WPARAM
 wparam, LPARAM lparam)
{
 switch (msg)
 {
 case WM_INITDIALOG:
 SetDlgItemText(hdlg, IDC_ENTITY, EntityDir);
 return TRUE;
 case WM_COMMAND:
 switch (GET_WM_COMMAND_ID(wparam, lparam))
 {
 case IDOK:
 GetDlgItemText(hdlg, IDC_ENTITY, EntityDir,
 sizeof(EntityDir));
 EndDialog(hdlg, TRUE);
 return TRUE;
 case IDCANCEL:
 EndDialog(hdlg, FALSE);
 return TRUE;
 default:
 break;
 }
 break;
 default:
 break;
 }
 return FALSE;
}

// Set camera parameters
BOOL CALLBACK SetCamera(HWND hdlg, UINT msg, WPARAM
 wparam, LPARAM lparam)
{
 double vpd, fpd, bpd; // Camera distances
 int w, h; // Bitmap window dimensions
 BOOL dummy; // Dummy parameter

 switch (msg)
 {
 case WM_INITDIALOG:
 // Get camera distances
 SetDlgItemFloat(hdlg, IDC_VDIST,
 Camera.GetViewDist());
 SetDlgItemFloat(hdlg, IDC_FDIST,
 Camera.GetFrontDist());
 SetDlgItemFloat(hdlg, IDC_BDIST,
 Camera.GetBackDist());

 // Get bitmap window dimensions
 SetDlgItemInt(hdlg, IDC_HPIXSZ, Camera.GetWidth(),
 FALSE);
 SetDlgItemInt(hdlg, IDC_VPIXSZ, Camera.GetHeight(),

248 A Viewing System
__

 FALSE);

 return TRUE;
 case WM_COMMAND:
 switch (GET_WM_COMMAND_ID(wparam, lparam))
 {
 case IDOK:
 // Validate distances
 vpd = GetDlgItemFloat(hdlg, IDC_VDIST);
 fpd = GetDlgItemFloat(hdlg, IDC_FDIST);
 bpd = GetDlgItemFloat(hdlg, IDC_BDIST);

 if (vpd <= 0.0)
 {
 MessageBox(hdlg, ViewDistError, AppName,
 MB_ICONEXCLAMATION | MB_OK);
 return FALSE;
 }

 if (fpd >= bpd)
 {
 MessageBox(hdlg, FrontDistError, AppName,
 MB_ICONEXCLAMATION | MB_OK);
 return FALSE;
 }

 if (fpd < -(vpd - MIN_VALUE))
 {
 MessageBox(hdlg, EyeDistError, AppName,
 MB_ICONEXCLAMATION | MB_OK);
 return FALSE;
 }

 // Validate bitmap window dimensions
 w = (int) GetDlgItemInt(hdlg, IDC_HPIXSZ, &dummy,
 FALSE);
 h = (int) GetDlgItemInt(hdlg, IDC_VPIXSZ, &dummy,
 FALSE);
 if (w < MinPixel || w > MaxPixel || h < MinPixel
 || h > MaxPixel)
 {
 MessageBox(hdlg, PixelError, AppName,
 MB_ICONEXCLAMATION | MB_OK);
 return FALSE;
 }

 // Set distances
 Camera.SetViewDist(vpd);
 Camera.SetFrontDist(fpd);
 Camera.SetBackDist(bpd);

 // Set bitmap window dimensions
 Camera.SetWidth(w);
 Camera.SetHeight(h);

 // Update view system parameters
 Camera.UpdateViewSystem();

 EndDialog(hdlg, TRUE);
 return TRUE;

A Viewing System 249
__

 case IDCANCEL:
 EndDialog(hdlg, FALSE);
 return TRUE;
 default:
 break;
 }
 break;
 default:
 break;
 }
 return FALSE;
}

// Set camera view direction
BOOL CALLBACK SetView(HWND hdlg, UINT msg, WPARAM
 wparam, LPARAM lparam)
{
 double vdvv; // View dir vert angle (degrees)
 double vdvh; // View dir horz angle (degrees)
 double vupv; // View-up vert angle (degrees)
 double vuph; // View-up horz angle (degrees)
 Point3 eye_posn; // Camera eye position
 Vector3 view_dir; // View direction vector
 Vector3 view_up; // View-up vector
 Spheric3 vdv_angle; // View direction angles (radians)
 Spheric3 vup_angle; // View-up vector angles (radians)

 switch (msg)
 {
 case WM_INITDIALOG:
 // Get camera eye position
 eye_posn = Camera.GetEyePosn();
 SetDlgItemFloat(hdlg, IDC_XPOS, eye_posn.GetX());
 SetDlgItemFloat(hdlg, IDC_YPOS, eye_posn.GetY());
 SetDlgItemFloat(hdlg, IDC_ZPOS, eye_posn.GetZ());

 // Get view direction vector angles
 SetDlgItemFloat(hdlg, IDC_VDVV,
 Camera.GetViewDirVert());
 SetDlgItemFloat(hdlg, IDC_VDVH,
 Camera.GetViewDirHorz());

 // Get view-up vector angles
 SetDlgItemFloat(hdlg, IDC_VUPV,
 Camera.GetViewUpVert());
 SetDlgItemFloat(hdlg, IDC_VUPH,
 Camera.GetViewUpHorz());

 return TRUE;
 case WM_COMMAND:
 switch (GET_WM_COMMAND_ID(wparam, lparam))
 {
 case IDOK:
 // Get eye position
 eye_posn.SetX(GetDlgItemFloat(hdlg, IDC_XPOS));
 eye_posn.SetY(GetDlgItemFloat(hdlg, IDC_YPOS));
 eye_posn.SetZ(GetDlgItemFloat(hdlg, IDC_ZPOS));

 // Validate view direction angles

250 A Viewing System
__

 vdvv = GetDlgItemFloat(hdlg, IDC_VDVV);
 vdvh = GetDlgItemFloat(hdlg, IDC_VDVH);

 if (vdvv < 0.0 || vdvv > 180.0)
 {
 MessageBox(hdlg, VertError, ViewDirName, MB_OK |
 MB_ICONEXCLAMATION);
 return FALSE;
 }

 if (vdvh < -180.0 || vdvh > 180.0)
 {
 MessageBox(hdlg, HorzError, ViewDirName, MB_OK
 | MB_ICONEXCLAMATION);
 return FALSE;
 }

 vdv_angle.SetVert(DegToRad(vdvv));
 vdv_angle.SetHorz(DegToRad(vdvh));
 vdv_angle.SpherToRect(&view_dir);

 // Validate view-up angles
 vupv = GetDlgItemFloat(hdlg, IDC_VUPV);
 vuph = GetDlgItemFloat(hdlg, IDC_VUPH);

 if (vupv < 0.0 || vupv > 180.0)
 {
 MessageBox(hdlg, VertError, ViewUpName, MB_OK |
 MB_ICONEXCLAMATION);
 return FALSE;
 }

 if (vuph < -180.0 || vuph > 180.0)
 {
 MessageBox(hdlg, HorzError, ViewUpName, MB_OK |
 MB_ICONEXCLAMATION);
 return FALSE;
 }

 vup_angle.SetVert(DegToRad(vupv));
 vup_angle.SetHorz(DegToRad(vuph));

 // Check for collinear vectors
 vup_angle.SpherToRect(&view_up);

 if ((1.0 - fabs(Dot(view_dir, view_up))) <
 MIN_VALUE)
 {
 MessageBox(hdlg, ViewUpError, AppName, MB_OK |
 MB_ICONEXCLAMATION);
 return FALSE;
 }

 // Set camera view parameters
 Camera.SetEyePosn(eye_posn);
 Camera.SetViewDirVector(vdvh, vdvv);
 Camera.SetViewUpVector(vuph, vupv);

 // Update view system parameters
 Camera.UpdateViewSystem();

A Viewing System 251
__

 EndDialog(hdlg, TRUE);
 return TRUE;
 case IDCANCEL:
 EndDialog(hdlg, FALSE);
 return TRUE;
 default:
 break;
 }
 break;
 default:
 break;
 }
 return FALSE;
}

// Set radiosity rendering convergence parameters
BOOL CALLBACK SetConverge(HWND hdlg, UINT msg, WPARAM
 wparam, LPARAM lparam)
{
 int mp; // Maximum number of steps
 double sc; // Stopping criterion
 BOOL dummy; // Dummy parameter

 switch (msg)
 {
 case WM_INITDIALOG:
 SetDlgItemInt(hdlg, IDC_MSTEP, Radiosity.GetMaxStep(),
 FALSE);
 SetDlgItemFloat(hdlg, IDC_STOPC,
 Radiosity.GetStopCriterion());
 CheckDlgButton(hdlg, IDC_AMBIENT_EN,
 Radiosity.AmbientFlag());
 if (Radiosity.OverShootFlag() == TRUE)
 CheckDlgButton(hdlg, IDC_OVER_EN, TRUE);
 return TRUE;
 case WM_COMMAND:
 switch (GET_WM_COMMAND_ID(wparam, lparam))
 {
 case IDOK:
 // Validate parameters
 mp = GetDlgItemInt(hdlg, IDC_MSTEP, &dummy, TRUE);
 sc = GetDlgItemFloat(hdlg, IDC_STOPC);

 if (mp < 1 || mp > MaxStep)
 {
 MessageBox(hdlg, MaxStepError, AppName,
 MB_ICONEXCLAMATION | MB_OK);
 return FALSE;
 }

 if (sc <= 0.0 || sc > 1.0)
 {
 MessageBox(hdlg, StopError, AppName,
 MB_ICONEXCLAMATION | MB_OK);
 return FALSE;
 }

 // Set convergence parameters

252 A Viewing System
__

 Radiosity.SetMaxStep(mp);
 Radiosity.SetStopCriterion(sc);

 if (IsDlgButtonChecked(hdlg, IDC_AMBIENT_EN) != 0)
 Radiosity.EnableAmbient();
 else
 Radiosity.DisableAmbient();

 if (IsDlgButtonChecked(hdlg, IDC_OVER_EN) != 0)
 Radiosity.EnableOverShoot();
 else
 Radiosity.DisableOverShoot();

 EndDialog(hdlg, TRUE);
 return TRUE;
 case IDCANCEL:
 EndDialog(hdlg, FALSE);
 return TRUE;
 default:
 break;
 }
 break;
 default:
 break;
 }
 return FALSE;
}

// Set display parameters
BOOL CALLBACK SetDisplay(HWND hdlg, UINT msg, WPARAM
 wparam, LPARAM lparam)
{
 double gamma; // Gamma value
 int noise; // Noise level
 BOOL dummy; // Dummy parameter
 static int c_type; // Display color type

 switch (msg)
 {
 case WM_INITDIALOG:
 c_type = Camera.GetColorType();
 CheckDlgButton(hdlg, IDC_GAMMA_EN,
 Camera.GammaFlag());
 SetDlgItemFloat(hdlg, IDC_GAMMA, Camera.GetGamma());
 CheckDlgButton(hdlg, IDC_JITTER_EN,
 Camera.JitterFlag());
 SetDlgItemInt(hdlg, IDC_JITTER,
 Camera.GetNoiseLevel(), FALSE);
 CheckRadioButton(hdlg, IDC_RGB, IDC_PSEUDO, c_type +
 IDC_RGB);
 return TRUE;
 case WM_COMMAND:
 switch (GET_WM_COMMAND_ID(wparam, lparam))
 {
 case IDC_RGB:
 case IDC_MONO:
 case IDC_PSEUDO:
 c_type = wparam - IDC_RGB;
 CheckRadioButton(hdlg, IDC_RGB, IDC_PSEUDO,
 wparam);

A Viewing System 253
__

 break;
 case IDOK:
 if (IsDlgButtonChecked(hdlg, IDC_GAMMA_EN) != 0)
 Camera.EnableGamma();
 else
 Camera.DisableGamma();

 gamma = GetDlgItemFloat(hdlg, IDC_GAMMA);

 if (gamma <= 0.0)
 {
 MessageBox(hdlg, GammaError, AppName,
 MB_ICONEXCLAMATION | MB_OK);
 return FALSE;
 }

 // Set gamma correction parameter
 Camera.SetGamma(gamma);

 if (IsDlgButtonChecked(hdlg, IDC_JITTER_EN) != 0)
 Camera.EnableJitter();
 else
 Camera.DisableJitter();

 noise = GetDlgItemInt(hdlg, IDC_JITTER, &dummy,
 TRUE);

 if (noise < 0 || noise > 8)
 {
 MessageBox(hdlg, NoiseError, AppName,
 MB_ICONEXCLAMATION | MB_OK);
 return FALSE;
 }

 // Set noise level parameter
 Camera.SetNoiseLevel(noise);

 // Set display color type
 Camera.SetColorType(c_type);

 EndDialog(hdlg, TRUE);
 return TRUE;
 case IDCANCEL:
 EndDialog(hdlg, FALSE);
 return TRUE;
 default:
 break;
 }
 break;
 default:
 break;
 }
 return FALSE;
}

// Display About dialog box
BOOL CALLBACK About(HWND hdlg, UINT msg, WPARAM wparam,
 LPARAM lparam)
{

254 A Viewing System
__

 switch (msg)
 {
 case WM_INITDIALOG:
 return TRUE;
 case WM_COMMAND:
 if (wparam == IDOK || wparam == IDCANCEL)
 {
 EndDialog(hdlg, TRUE);
 return TRUE;
 }
 break;
 default:
 break;
 }
 return FALSE;
}

// Get floating point dialog item
static double GetDlgItemFloat(HWND hdlg, int id)
{
 (void) GetDlgItemText(hdlg, id, StrBuffer,
 sizeof(StrBuffer));
 return atof(StrBuffer);
}

// Set floating point dialog item
static void SetDlgItemFloat(HWND hdlg, int id, double num)
{
 sprintf(StrBuffer, "%6.5f", num);
 SetDlgItemText(hdlg, id, StrBuffer);
}

// Calculate wireframe window dimensions
void CalcWireDim(short xclient, short yclient, short
 *pxchild, short *pychild)
{
 double client_aspect;
 double child_aspect;

 if (yclient > 0)
 {
 client_aspect = (double) xclient / (double) yclient;
 child_aspect = (double) Camera.GetWidth() / (double)
 Camera.GetHeight();
 if (client_aspect >= child_aspect)
 {
 *pychild = (short) max(yclient - Offset * 2, Offset);
 *pxchild = (short) ((double) *pychild * child_aspect);
 }
 else
 {
 *pxchild = (short) max(xclient - Offset * 2, Offset);
 *pychild = (short) ((double) *pxchild / child_aspect);
 }
 }
 else
 *pxchild = *pychild = Offset;
}

// Process WM_KEYDOWN message

A Viewing System 255
__

void DoKeyDown(HWND hwnd, WPARAM wparam)
{
 switch (GET_WM_COMMAND_ID(wparam, lparam))
 {
 case VK_HOME:
 SendMessage(hwnd, WM_VSCROLL, SB_TOP, 0L);
 break;
 case VK_END:
 SendMessage(hwnd, WM_VSCROLL, SB_BOTTOM, 0L);
 break;
 case VK_PRIOR:
 SendMessage(hwnd, WM_VSCROLL, SB_PAGEUP, 0L);
 break;
 case VK_NEXT:
 SendMessage(hwnd, WM_VSCROLL, SB_PAGEDOWN, 0L);
 break;
 case VK_UP:
 SendMessage(hwnd, WM_VSCROLL, SB_LINEUP, 0L);
 break;
 case VK_DOWN:
 SendMessage(hwnd, WM_VSCROLL, SB_LINEDOWN, 0L);
 break;
 case VK_LEFT:
 SendMessage(hwnd, WM_HSCROLL, SB_PAGEUP, 0L);
 break;
 case VK_RIGHT:
 SendMessage(hwnd, WM_HSCROLL, SB_PAGEDOWN, 0L);
 break;
 }
}

Listing 4.23 - HELIOS.CPP

Being an MS-Windows program, HELIOS needs a few additional files. Its menus and dialog boxes are

defined in its “resource script” file, HELIOS.RC. This file is compiled separately and appended to the

executable file during the linking process.

RESOURCE.H is an include file for HELIOS.RC:

// RESOURCE.H - HELIOS.RC Include File

#ifndef _RESOURCE_H
#define _RESOURCE_H

#define IDM_FILEOPEN 100
#define IDM_SAVEAS 101
#define IDM_EXIT 102
#define IDM_DIRECTORY 103
#define IDM_SETCAMERA 104
#define IDM_SETVIEW 105
#define IDM_WIREFRAME 106
#define IDM_SHADED 107
#define IDM_RENDER 108
#define IDM_REDISPLAY 109
#define IDM_SETCONVERGE 110
#define IDM_SETDISPLAY 111
#define IDM_ABOUT 112

256 A Viewing System
__

#define IDC_XPOS 1000
#define IDC_YPOS 1001
#define IDC_ZPOS 1002
#define IDC_VDVV 1003
#define IDC_VDVH 1004
#define IDC_VUPV 1005
#define IDC_VUPH 1006
#define IDC_VDIST 1007
#define IDC_FDIST 1008
#define IDC_BDIST 1009
#define IDC_HPIXSZ 1010
#define IDC_VPIXSZ 1011
#define IDC_ENTITY 1012
#define IDC_GAMMA 1013
#define IDC_GAMMA_EN 1014
#define IDC_JITTER 1015
#define IDC_JITTER_EN 1016
#define IDC_MSTEP 1017
#define IDC_STOPC 1018
#define IDC_AMBIENT_EN 1019
#define IDC_OVER_EN 1020
#define IDC_RGB 1021
#define IDC_MONO 1022
#define IDC_PSEUDO 1023
#define IDC_STATIC -1

#endif

Listing 4.24 - RESOURCE.H

The resource script itself is:

// HELIOS.RC - Resource Script

#include <windows.h>
#include "resource.h"

HELIOSMENU MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open...", IDM_FILEOPEN
 MENUITEM "&Save As...", IDM_SAVEAS, GRAYED
 MENUITEM SEPARATOR
 MENUITEM "&Directories...", IDM_DIRECTORY
 MENUITEM SEPARATOR
 MENUITEM "&Exit", IDM_EXIT
 END
 POPUP "&Camera"
 BEGIN
 MENUITEM "Set &Parameters...", IDM_SETCAMERA
 END
 POPUP "&View"
 BEGIN
 MENUITEM "Specify &View...", IDM_SETVIEW
 END
 POPUP "&Render"
 BEGIN
 MENUITEM "&Wireframe", IDM_WIREFRAME, GRAYED
 MENUITEM "&Shaded", IDM_SHADED, GRAYED

A Viewing System 257
__

 MENUITEM "&Rendering", IDM_RENDER, GRAYED
 MENUITEM "Re&display", IDM_REDISPLAY, GRAYED
 END
 POPUP "&Options"
 BEGIN
 MENUITEM "&Set Convergence...", IDM_SETCONVERGE
 MENUITEM "&Set Display...", IDM_SETDISPLAY
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About HELIOS...", IDM_ABOUT
 END
END

SETENTITYDIR DIALOG DISCARDABLE 32, 32, 255, 52
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "Directories"
FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "Entities File Path:",IDC_STATIC,6,10,60,8
 EDITTEXT IDC_ENTITY,73,8,118,12,ES_AUTOHSCROLL
 DEFPUSHBUTTON "OK",IDOK,199,6,48,16
 PUSHBUTTON "Cancel",IDCANCEL,199,26,48,16
END

SETCAMERA DIALOG DISCARDABLE 32, 32, 198, 154
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "Camera Parameters"
FONT 8, "MS Sans Serif"
BEGIN
 GROUPBOX "Camera Distances",IDC_STATIC,6,6,127,76
 LTEXT "View Distance:",IDC_STATIC,12,22,68,8
 LTEXT "Front Plane Distance:",IDC_STATIC,12,42,68,
 8
 LTEXT "Back Plane Distance:",IDC_STATIC,12,62,68,
 8
 GROUPBOX "Window Dimensions",IDC_STATIC,6,88,127,56
 LTEXT "Horizontal Pixels:",IDC_STATIC,12,104,78,8
 LTEXT "Vertical Pixels:",IDC_STATIC,12,124,78,8
 EDITTEXT IDC_VDIST,82,20,42,12,ES_AUTOHSCROLL
 EDITTEXT IDC_FDIST,82,40,42,12,ES_AUTOHSCROLL
 EDITTEXT IDC_BDIST,82,60,42,12,ES_AUTOHSCROLL
 EDITTEXT IDC_HPIXSZ,104,102,20,12,ES_AUTOHSCROLL
 EDITTEXT IDC_VPIXSZ,104,122,20,12,ES_AUTOHSCROLL
 DEFPUSHBUTTON "OK",IDOK,142,10,48,16
 PUSHBUTTON "Cancel",IDCANCEL,142,30,48,16
END

SETVIEW DIALOG DISCARDABLE 32, 32, 152, 192
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "View Parameters"
FONT 8, "MS Sans Serif"
BEGIN
 GROUPBOX "Eye Position",IDC_STATIC,6,6,81,64
 LTEXT "X-Axis:",IDC_STATIC,11,20,24,8
 LTEXT "Y-Axis:",IDC_STATIC,11,36,24,8
 LTEXT "Z-Axis:",IDC_STATIC,11,52,24,8
 GROUPBOX "View Direction",IDC_STATIC,6,78,120,48
 LTEXT "Vertical:",IDC_STATIC,11,108,36,8

258 A Viewing System
__

 LTEXT "Horizontal:",IDC_STATIC,11,92,36,8
 LTEXT "Degrees",IDC_STATIC,92,92,28,8
 LTEXT "Degrees",IDC_STATIC,92,108,28,8
 GROUPBOX "View-Up Vector",IDC_STATIC,6,134,120,48
 LTEXT "Horizontal:",IDC_STATIC,11,148,36,8
 LTEXT "Vertical:",IDC_STATIC,11,164,36,8
 LTEXT "Degrees",IDC_STATIC,92,148,28,8
 LTEXT "Degrees",IDC_STATIC,92,164,28,8
 EDITTEXT IDC_XPOS,36,18,42,12,ES_AUTOHSCROLL
 EDITTEXT IDC_YPOS,36,34,42,12,ES_AUTOHSCROLL
 EDITTEXT IDC_ZPOS,36,50,42,12,ES_AUTOHSCROLL
 EDITTEXT IDC_VDVH,48,90,38,12,ES_AUTOHSCROLL
 EDITTEXT IDC_VDVV,48,106,38,12,ES_AUTOHSCROLL
 EDITTEXT IDC_VUPH,48,146,38,12,ES_AUTOHSCROLL
 EDITTEXT IDC_VUPV,48,162,38,12,ES_AUTOHSCROLL
 DEFPUSHBUTTON "OK",IDOK,96,10,48,16
 PUSHBUTTON "Cancel",IDCANCEL,96,30,48,16
END

#ifdef _RAY_CAST
SETCONVERGE DIALOG DISCARDABLE 32, 32, 178, 74
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "Convergence Parameters"
FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "Maximum Steps:",IDC_STATIC,6,14,69,8
 LTEXT "Stopping Criterion:",IDC_STATIC,6,34,69,8
 EDITTEXT IDC_MSTEP,78,12,32,12,ES_AUTOHSCROLL
 EDITTEXT IDC_STOPC,78,32,32,12,ES_AUTOHSCROLL
 CONTROL "Ambient Exitance",IDC_AMBIENT_EN,"Button",
 BS_AUTOCHECKBOX | WS_TABSTOP,6,54,122,10
 DEFPUSHBUTTON "OK",IDOK,122,10,48,16
 PUSHBUTTON "Cancel",IDCANCEL,122,30,48,16
END
#else
SETCONVERGE DIALOG DISCARDABLE 32, 32, 178, 94
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "Convergence Parameters"
FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "Maximum Steps:",IDC_STATIC,6,14,69,8
 LTEXT "Stopping Criterion:",IDC_STATIC,6,34,69,8
 EDITTEXT IDC_MSTEP,78,12,32,12,ES_AUTOHSCROLL
 EDITTEXT IDC_STOPC,78,32,32,12,ES_AUTOHSCROLL
 CONTROL "Ambient Exitance",IDC_AMBIENT_EN,"Button",
 BS_AUTOCHECKBOX | WS_TABSTOP,6,54,122,10
 CONTROL "Positive Overshoot",IDC_OVER_EN,"Button",
 BS_AUTOCHECKBOX | WS_TABSTOP,6,74,122,10
 DEFPUSHBUTTON "OK",IDOK,122,10,48,16
 PUSHBUTTON "Cancel",IDCANCEL,122,30,48,16
END
#endif

SETDISPLAY DIALOG DISCARDABLE 32, 32, 152, 192
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "Display Parameters"
FONT 8, "MS Sans Serif"
BEGIN
 GROUPBOX "Gamma Correction",IDC_STATIC,6,6,81,48
 LTEXT "Gamma:",IDC_STATIC,12,20,36,8

A Viewing System 259
__

 EDITTEXT IDC_GAMMA,50,18,28,12,ES_AUTOHSCROLL
 CONTROL "Enabled",IDC_GAMMA_EN,"Button",
 BS_AUTOCHECKBOX | WS_TABSTOP,12,36,40,10
 GROUPBOX "Color Reduction",IDC_STATIC,6,61,81,48
 LTEXT "Noise Level:",IDC_STATIC,12,75,49,8
 EDITTEXT IDC_JITTER,66,73,12,12,ES_AUTOHSCROLL
 CONTROL "Enabled",IDC_JITTER_EN,"Button",
 BS_AUTOCHECKBOX | WS_TABSTOP,12,91,40,10
 GROUPBOX "Color Display",IDC_STATIC,5,116,81,66
 CONTROL "RGB Color",IDC_RGB,"Button",
 BS_AUTORADIOBUTTON,10,130,62,10
 CONTROL "Grayscale",IDC_MONO,"Button",
 BS_AUTORADIOBUTTON,10,147,62,10
 CONTROL "Pseudocolor",IDC_PSEUDO,"Button",
 BS_AUTORADIOBUTTON,10,165,62,10
 DEFPUSHBUTTON "OK",IDOK,96,10,48,16
 PUSHBUTTON "Cancel",IDCANCEL,96,30,48,16
END

ABOUTBOX DIALOG DISCARDABLE 32, 32, 148, 98
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About HELIOS"
FONT 8, "MS Sans Serif"
BEGIN
 CTEXT "HELIOS Radiosity Renderer",IDC_STATIC,26,8,
 96,8
#if defined(_HEMI_CUBE)
 CTEXT "Version 1.00A/HC",IDC_STATIC,26,24,96,8
#elif defined(_CUBIC_TETRA)
 CTEXT "Version 1.00A/CT",IDC_STATIC,26,24,96,8
#elif defined(_RAY_CAST)
 CTEXT "Version 1.00A/RC",IDC_STATIC,26,24,96,8
#else
 CTEXT "Version 1.00A/SH",IDC_STATIC,26,24,96,8
#endif
 CTEXT "Copyright 1994 byHeart Software Ltd.",
 IDC_STATIC,8,40,132,8
 CTEXT "All Rights Reserved",IDC_STATIC,39,56,70,8
 DEFPUSHBUTTON "OK",IDOK,50,72,48,16
END

Listing 4.25 - HELIOS.RC

Finally, we need a “module definition” file, HELIOS.DEF, to instruct the linker on how HELIOS is to

be linked:

NAME Helios
DESCRIPTION 'HELIOS Radiosity Renderer'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
STACKSIZE 5120
EXPORTS
 MAINWNDPROC @1
 WIREWNDPROC @2
 SETENTITYDIR @3
 SETCAMERA @4

260 A Viewing System
__

 SETVIEW @5
 SETCONVERGE @6
 SETDISPLAY @7
ABOUT @8

Listing 4.26 - HELIOS.DEF

4.19.4 C++ Compiler Quirks and Foibles

A few comments regarding compilation and linking HELIOS may be helpful. First, you need to specify

the large memory model–this is essential. The WinText class (Section 3.13) in particular assumes that its

functions use far pointers.

Second, be sure to compile and link the necessary files, using either a “make” file or a project file from

within an integrated development environment (IDE). The complete list consists of:

HELIOS Version 1.00A/SH

 16-bit memory model: Large

 Source code file list:
 c_jitter.cpp error.cpp gamma.cpp helios.cpp
 helios.def helios.rc p_clip4.cpp p_render.cpp
 parse.cpp patch3.cpp rad_tmp.cpp syn_cam.cpp
 tone_rep.cpp vector3.cpp view_sys.cpp win_bmap.cpp win_sbar.cpp

Figure 4.36 - HELIOS project files

Other files will be added to this list in later chapters. However, no changes to HELIOS.CPP will be

needed, since the necessary hooks have already been included via the conditional compilation directives

_HEMI_CUBE and _CUBIC_TETRA (in HELIOS.CPP) and _RAY_CAST (in HELIOS.CPP and

HELIOS.RC). None of these directives should be defined at this time!

Third, a C++ compiler run from an IDE may assume a default stack size that conflicts with that

specified in HELIOS.DEF. If so, the linker will be certain to complain about it. You can either clear this

value or remove the STACKSIZE statement from HELIOS.DEF.

Fourth but not finally, you may see inscrutable error messages such as:

Fatal error RW1031: Segment 1 and its relocation information is too large for load optimization. Make
the segment LOADONCALL or rerun RC using the -K switch if the segment must be preloaded.

This particular message came from an IDE resource compiler. It occurred using the default compiler

settings when the build mode was set to include debugging information. Setting the build mode to “release”

(i.e., no debugging information) allowed the program to compile and link successfully. It took an

A Viewing System 261
__

unreasonably long time to find that load optimization could be turned off from within the IDE. On the

other hand, the compiler then made an incorrect assumption about pointer aliasing that caused the program

to fail at run-time. The joys of software development …

HELIOS was developed and tested using the Microsoft Visual C++ Version 1.5 and Borland C++

Version 4.0 compilers. Command-line “make” files for these compilers are included on the diskette

accompanying this book. If you use either of these products, you should have no problems. Otherwise, you

may encounter an embarrassment of error messages when you first attempt to compile and link HELIOS.

As MS-Windows programmers, it is a price we all have to pay. Curse freely, try different options and

perhaps even read the printed IDE documentation. Take heart, for it will compile eventually.

4.19.5 Using HELIOS

We now have some 3,700 lines of C and C++ source code. Once you successfully compile and link

HELIOS, you can use it to view both wireframe and full-color bitmap images on any personal computer

that can run MS-Windows 3.1 or MS-Windows NT, including monochrome laptops (in grayscale, of

course).

What is there to view? Well, COL_CUBE.WLD (Listing 3.17) presents two colored cubes floating in

space. For something with a bit more visual interest (one of the chairs shown in Figure 4.24), you can try

the following:

WORLD chair
COMMENT seat
col_cube.ent
< 2.0 2.0 0.1>
< 0.0 0.0 0.0 >
< -1.0 -1.0 -0.05 >
COMMENT back
col_cube.ent
< 2.0 0.2 3.0 >
< 0.0 0.0 0.0 >
< -1.0 -1.0 0.05 >
COMMENT leg #1
col_cube.ent
< 0.2 0.1 2.5 >
< 0.0 0.0 0.0 >
< -0.85 -0.8 -2.55 >
COMMENT leg #2
col_cube.ent
< 0.2 0.1 2.5 >
< 0.0 0.0 0.0 >
< -0.85 0.8 -2.55 >
COMMENT leg #3

262 A Viewing System
__

col_cube.ent
< 0.2 0.1 2.5 >
< 0.0 0.0 0.0 >
< 0.75 -0.8 -2.55 >
COMMENT leg #4
col_cube.ent
< 0.2 0.1 2.5 >
< 0.0 0.0 0.0 >
< 0.75 0.8 -2.55 >
END_FILE

Listing 4.27 - CHAIR.WLD

To display a wireframe image of this chair, first make sure that COL_CUBE.ENT and CHAIR.WLD

are in the same directory, then run HELIOS as an MS-Windows program. Once its main window is

displayed, you can:

1. Choose File from the menu bar.

2, Choose the Open… menu item to display the Open common dialog box.

3. Select the CHAIR.WLD file.

An Environment Statistics dialog box will then appear with an enumeration of the instances, surfaces,

polygons and vertices in the environment.

If the COL_CUBE.ENT file is not in the same directory as CHAIR.WLD, an error message will appear

in a dialog box. Rather than exiting HELIOS, you can:

1. Choose File from the menu bar.

2. Choose the Directories… menu item to display the Directories dialog box.

3. Enter the correct file path in the Entities File Path edit control.

and follow the above three steps to select the CHAIR.WLD file again.

With the environment file parsed and loaded into memory, you can now:

1. Choose Camera from the menu bar.

2. Choose the Set Parameters menu item to display the Camera Parameters dialog box.

3. Enter “2.5” in the View Distance edit control.

4. Enter “240” in the Horizontal Pixels edit control.

5. Enter “320” in the Vertical Pixels edit control.

This sets the camera view distance at 2.5 units, giving a field of view roughly equivalent to a 50 mm

lens on a 35 mm camera. It also tells HELIOS to display the image as a vertically-oriented bitmap of

A Viewing System 263
__

320240× pixels. You can change this to whatever size you want, from a minimum of 32 pixels to a

maximum of 2048 pixels.

The synthetic camera’s position and orientation must be specified next:

1. Choose View from the menu bar.

2. Choose the Specify View… menu item to display the View Parameters dialog box.

3. Enter “4” in the Eye Position X-Axis edit control.

4. Enter “5” in the Eye Position Y-Axis edit control.

5. Enter “6” in the Eye Position Z-Axis edit control.

6. Enter “-125” (note the minus sign) in the View Direction Horizontal Degrees edit control.

7. Enter “130” in the View Direction Vertical Degrees edit control.

The View-Up Vector edit controls remain unchanged.

The synthetic camera is now set up to display an image, starting with:

1. Choose Render from the menu bar.

2. Choose the Wireframe menu item.

(Note that the Render menu items are grayed (deactivated) until an environment data file is read into

memory.)

A wireframe image of the chair will be displayed. This image will automatically resize itself whenever

the display window size is changed. You can also go back and change any of the previous entries to change

the view or camera parameters; the wireframe image will update itself accordingly.

To display a full-color bitmap image:

1. Choose Render from the menu bar.

2. Choose the Shaded menu item.

It may take a few seconds to display the image, depending on the CPU speed and whether a math

coprocessor is present. If the window’s client (display) area is smaller than the specified horizontal or

vertical pixels, scroll bars will appear.

To redisplay the image in grayscale or pseudocolor, you can:

1. Choose Options from the menu bar.

264 A Viewing System
__

2. Choose the Set Display… menu item to display the Display Parameters dialog box.

3. Select either the Grayscale or Pseudocolor radio button.

4. Select the OK button.

5. Choose Render from the menu bar.

6. Choose the Redisplay menu item.

(The other parameters in the Display Parameters dialog box and the parameters in the Convergence

Parameters dialog box accesible from the Set Convergence… menu item do not have any discernable

effect for shaded images.)

You can also choose Rendering from the Render menu item. However, only a blank bitmap will appear

on the screen, along with a Convergence Statistics dialog box. Choose Render and Shaded again to

redisplay the image.

To save this image to a BMP file:

1. Choose File from the menu bar.

2. Choose the Save As… menu item to display the Save As common dialog box.

and specify an appropriate directory and file name. The file can later be viewed using Microsoft Paintbrush

or any other BMP-compatible graphics program.

Finally, you can:

1. Choose Help from the menu bar.

2. Choose the About Helios… menu item to display the About HELIOS dialog box.

to view the program’s copyright notice, version number (which should be “1.00A/SH”, where “SH” stands

for “SHaded”) and so forth.

If all of the above actions work as described, congratulations! HELIOS is alive and well.

4.20 Conclusions

What began as a “minimal” viewing system somehow grew into a major component of this book. Even

so, our MS-Windows implementation is far from being production quality. It lacks any sort of on-line help,

it provides a minimal number of error messages, and it does not offer the currently fashionable “chiseled-

in-steel” look for its dialog boxes.

A Viewing System 265
__

The platform-independent portions of our code are also less than perfect. No attempt has been made to

profile the code to identify those components that should be rewritten by hand using assembly language.

PolyRender should be rewritten using integer-only DDA algorithms (see Section 4.12) for the Intel 80x86

platform and other CPUs with slow floating point implementations. This includes not only scan conversion

for the polygon edges, but also pseudodepth and RGB color interpolation for Gouraud shading. (See also

Blinn [1992] for further details and comments on Gouraud shading and perspective projection).

There is more, of course. Support should be added for other bitmap file formats. Antialiasing should be

added to minimize the “jaggies” on diagonally-oriented polygon edges (Fleisher and Salesin [1992] offer a

very effective solution for polygons, including C source code). The list goes on and on.

Somewhere, however, we have to stop. HELIOS is a minimal but effective viewing system that can

help us investigate a variety of radiosity methods. It’s time to move on.

References

ANSI [1988]. American National Standard for Information Processing Systems–Programmer’s

Hierarchical Interactive Graphics System (PHIGS) Functional Description, Archive File Format, Clear-

Text Encoding of Archive File, ANSI X3.144-1988, American National Standards Institute, New York,

NY.

Arvo, J. [1991]. Graphics Gems II, Academic Press, San Diego, CA.

Barbour, C.G. and G.W. Meyer [1992]. “Visual Cues and Pictorial Limitations for Computer Generated

Photorealistic Images”, The Visual Computer 9, 151 - 165.

Blinn, J.F. [1992]. “Hyperbolic Interpolation”, IEEE Computer Graphics & Applications 12:4, 89 - 94.

Bono, P.R. and I. Herman, Eds. [1987]. GKS Theory and Practice, Springer-Verlag, Berlin, Germany.

Bresenham, J.E. [1965]. “Algorithm for Computer Control of a Digital Plotter”, IBM Systems Journal 4:1,

25 - 30.

Burkett, A. and S. Noll [1988]. “Fast Algorithm for Polygon Clipping with 3D Windows”, Eurographics

‘88 (Proc. European Computer Graphics Conference and Exhibition), D.A. Duce and P. Jancene, Eds.,

Elsevier Sciences Publishers B.V. (North-Holland), Amsterdam, 405 - 419.

266 A Viewing System
__

Cohen, M.F. and J.R. Wallace [1993]. Radiosity and Realistic Image Synthesis, Academic Press, San

Diego, CA.

Fleisher, K. and D. Salesin [1992]. “Accurate Polygon Scan Conversion Using Half-Open Intervals”, in

Kirk [1992], 362 - 365, 599 - 605.

Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes [1990]. Computer Graphics: Principles and Practice

(Second Edition), Addison-Wesley, Reading, MA.

Gervautz, M. and W. Purgathofer [1990]. “A Simple Method for Color Quantization: Octree

Quantization”, in Glassner [1990], 287 - 293.

Glassner, A.S. [1990]. Graphics Gems, Academic Press, San Diego, CA.

Gouraud, H. [1971]. “Illumination for Computer Generated Pictures”, Comm. ACM 18:6, 311 - 317.

Heckbert, P..S. [1982]. “Color Image Quantization for Frame Buffer Display”, Computer Graphics 16:3

(Proc. ACM SIGGRAPH ‘82), 297 - 307.

Heckbert, P.S. [1990a]. “What are the Coordinates of a Pixel?”, in Glassner [1990], 246 - 248.

Heckbert, P.S. [1990b]. “Generic Convex Polygon Scan Conversion and Clipping”, in Glassner [1990], 84

- 86, 667 - 680.

Hill, F.S., Jr. [1990]. Computer Graphics, Macmillan, New York, NY.

ISO [1988]. International Standard Information Processing Systems–Computer Graphics–Graphical

Kernel System for Three Dimensions (GKS-3D) Functional Description, ISO Document Number

8805:1988(E), American National Standards Institute, New York, NY.

Kirk, D. [1992]. Graphics Gems III, Academic Press, San Diego, CA.

Liang, Y. and B.A. Barsky [1983]. “An Analysis and Algorithm for Polygon Clipping”, Comm. ACM
26:11, 868 - 877, and Corrigenda, Comm. ACM 27:2, 151 and Comm. ACM 27:4, 383.

Meyer , G.W., H.E. Rushmeier, M.F. Cohen, D.P. Greenberg and K.E. Torrance [1986]. “An Experimental

Evaluation of Computer Graphics Imagery”, ACM Trans. Graphics 5:1, 30 - 50.

Newman, W.M. and R.F. Sproull [1979]. Principles of Interactive Computer Graphics, 2nd Edition,

McGraw-Hill, New York, NY.

Petzold, C. [1992]. Programming Windows 3.1, Third Edition, Microsoft Press, Redmond, WA.

Plauger, P.J. and J. Brodie [1989]. Standard C, Microsoft Press, Redmond, WA.

A Viewing System 267
__

Révész, T. [1993]. “Clipping Polygons with Sutherland-Hodgman’s Algorithm”, The C Users Journal 11:8

(August), 23 - 34 and 11:9 (September), 135 - 136.

Rogers, D.F. [1985]. Procedural Elements for Computer Graphics, McGraw-Hill, New York, NY.

Singleton, K. [1987]. “An Implementation of the GKS-3D/PHIGS Viewing Pipeline”, in Bono and Herman

[1987].

Swanson, R.W. and L.J. Thayer [1986]. “A Fast Shaded-Polygon Renderer”, Computer Graphics 20:4, 107

- 116.

Sutherland, I.E. and G.W. Hodgman [1974]. “Reentrant Polygon Clipping”, Comm. ACM 17:1, 32 - 42.

Sutherland, I.E., R.F. Sproull and R. Schumacker [1974]. “A Characterization of Ten Hidden-Surface

Algorithms”, Computing Surveys 6:1, 1 - 55.

Tumblin, J. and H.E. Rushmeier [1993]. “Tone Reproduction for Realistic Images”, IEEE Computer

Graphics & Applications 13:6, 42 - 48.

Vatti, B.R. [1992]. “A Generic Solution to Polygon Clipping”, Comm. ACM 35:7, 57 - 63.

Ward, G. [1991]. “Real Pixels”, in Arvo [1991], 80 - 83.

Weiler, K. and P. Atherton [1977]. “Hidden Surface Removal Using Polygon Area Sorting”, Computer

Graphics 11:2 (Proc. ACM SIGGRAPH ‘77), 214 - 222.

 P A R T

III
Radiosity and Realism

.

This world is but a canvas to our imaginations.

A Week on the Concord and Merrimack Rivers [1849]
Henry David Thoreau

Our canvas is a 3-D viewing system, carefully constructed to support the needs of radiosity-based

rendering. We can now begin to paint …

Chapter Five investigates the art and science of form factor determination as an essential component of

the radiosity approach. If the way seems long and tortuous, it is. The problem of form factor determination

is simply stated but not easily solved.

 Chapter Six looks at the variety of approaches we can take to solving the radiosity equation. From

them are derived not one but three fully functional radiosity-based rendering programs. Our dragons

reappear in the form of matrix mathematics, but they are harmless.

… and yes, there is art in radiosity, or rather an art to it. More than anything else, choosing an

appropriate polygon mesh for radiosity-based images requires experience and skill. Chapter Seven

considers the conundrums of meshing and substructuring techniques for complex environments.

Finally, Chapter Eight looks at extending the capabilities of our tools and the future of radiosity. There

are still exciting times to come.

Radiosity does indeed … model light.

Chapter 5
Form Factor Determination

5.0 Introduction

Having developed a graphics toolkit to manage and display 3-D polygons, we can take some

satisfaction in being half way to our goal of a functional radiosity-based rendering program (Fig. 5.1). In

this chapter, we will address the problem of determining form factors between polygons in our

environments.

1. Build the environment

2. Determine the form factors

3. Solve the radiosity equation

4. Render the environment

Figure 5.1 - Radiosity-based rendering program outline

Form factors are an essential component of the radiosity approach, as much so as geometrical rays are

essential to ray tracing. As we saw in Chapter Two, a form factor is a dimensionless constant

representing the fraction of radiant flux leaving a Lambertian emitter that is intercepted by another

surface element (or patch) (Fig. 5.2). It is based solely on the geometry and geometric relation between

the two surface patches; no surface properties are involved.

ijF

iE

jE

272 Form Factor Determination
__

Ei

Ej
ni

nj

Φ ij

F = Φ / Φ ij ij i θ

θ

i

j

r

Figure 5.2 - Patch Ej receiving flux Φij from Lambertian emitter Ei (from Fig. 2.5)

Successfully solving the radiosity equation requires accurate form factors. Unfortunately, form factor

determination for a complex environment containing several thousand possibly occluded patches can be

difficult and extremely time consuming. Pietrek [1993] and others have commented that form factor

calculations can consume up to ninety percent of the time required to solve the radiosity equation. It is

therefore vitally important that we optimize these calculations, first through a careful choice of algorithms,

and second through a carefully crafted C++ implementation.

5.1 Solving A Knotted Problem

Despite their apparent simplicity, form factors are notoriously difficult to solve using analytic methods.

Johann Lambert, a pioneer researcher in photometry and likely the first person to consider the problem,

wrote (Lambert [1760]):

Although this task appears very simple, its solution is considerably more knotted than one would expect
... the highly laborious computation would fill even the most patient with disgust and drive them away
...

which does not bode well for our own investigations!

Lambert expressed this opinion in reference to the problem (discussed below) of two perpendicular

rectangles sharing a common edge. However, his comments apply equally well to form factor

determination in general. As we saw in Section 2.5, the form factor from a finite area patch to another

finite area patch is given by the double area integral equation:

iE

jE

ij
A A

ji

i
ij dAdA

rA
F

i j

∫ ∫= 2

coscos1
π

θθ
 (5.1)

Form Factor Determination 273
__

where and are the areas of patches and respectively (Fig. 5.2). This equation cannot be

solved directly. Instead, we must either find an analytic solution (that is, transform Equation 5.1 into one

that does not involve integration) or solve it using numerical integration techniques.

iA jA iE jE

We will examine a few analytic (or “closed form”) solutions, but only to see why numerical integration

is the more useful approach. Don’t let the mathematics deter you! If nothing else, keep in mind that:

Form factor determination requires no more than high school trigonometry.

5.2 Contour Integration

Following Lambert’s pioneering efforts, it took 230 years to find an exact solution for the general case

of two arbitrary but unoccluded polygons (Schröder and Hanrahan [1993]). Schröder reported that it took

Mathematica (a symbolic mathematics program) only fifteen minutes to solve ninety percent of the

problem; the remaining ten percent took eight months of research. As you might have guessed, their “non-

elementary” solution is far too complex for practical use.

Sparrow [1963] found that by applying Stokes’ Theorem to Equation 5.1, it could be converted to a

double contour integral, namely:

() () () jijijiC Ci
ij dzdzrdydyrdxdxr

A
F

i j
lnlnln

2
1

++= ∫ ∫π
 (5.2)

where C and are the patch boundaries. While this equation can be solved for many polygons and

other shapes (see for example Siegel and Howell [1992]), it is quite impracticable for our purposes. It does

however have some historical interest: it was used in one of the two papers that introduced radiosity to the

computer graphics community (Goral et al. [1984]).

i jC

Note that Equations 5.1 and 5.2 assume that patches and are fully visible to one another. In

other words, the form factor determination method used by Goral et al. [1984] is only applicable to simple

unoccluded environments. It cannot be extended to handle our complex environments with possibly

occluded polygons.

iE jE

274 Form Factor Determination
__

5.3 Special Cases

A second approach is to consider special cases for which closed form solutions to Equation 5.1 can be

derived. Mechanical and aeronautics engineers have long used published tables of formulae for specific

area-to-area geometries in their radiant heat transfer studies, including those by Howell [1982], Siegel and

Howell [1992] and Sparrow and Cess [1978]. These include simple shapes such as parallel and

perpendicular rectangles, circles and hollow tubes. More complex geometries can be analyzed using form

factor algebra (Section 2.5) to geometrically add and subtract these shapes and their associated form

factors.

Despite their availability, these tables are not particularly useful for complex environments. Consider

one of the simplest geometries, that of two adjoining and perpendicular rectangles (Fig. 5.3).

C

A

B

H = A / C

W = B / C
Ej

Ei

Figure 5.3 - Form factor geometry between perpendicular rectangles

While the geometry may be simple, the following equation for its form factor from to is

anything but!

ijF iE jE

(














+
∗+−






∗+






∗=

22

22 1arctan1arctan1arctan1

WH
WH

H
H

W
W

W
Fij π

 (5.3)

()() ()
()()

()
()() 























++
++

∗












++
++

∗
++
++

+

22

222

222

222

222

22

22

1
1

1
1

1
11ln

4
1

HW

HWH
HWH

HWW
HWW

HW
HW

Remember, this is a “simple” example! Lambert [1760] was clearly justified in his comments. Not shown

is the equation for two adjoining but non-perpendicular rectangles–it fills an entire page.

Form Factor Determination 275
__

Even if we had closed form solutions for a useful set of patch geometries, it would not do us much

good. Like the contour integration approach, these solutions assume that the patches are fully visible to one

another. This makes them generally unsuitable for complex environments.

5.4 A Simplified Approach

We can simplify our problem by considering the form factor from a differential area patch to a

finite area patch . In other words, we can model our luminous surface emitter as a point source of light.

As we saw in Section 2.5, the form factor is given by the area integral equation:

idE

jE

EjdEiF −

j
A

ji

A
dEjdEiEjdEi dA

r
dFF

jj

∫∫ == −− 2

coscos

π

θθ
 (5.4)

Again, this equation cannot be solved directly for an arbitrary patch . However, there is a

surprisingly simple analytic solution for planar convex polygons (Lambert [1760]), which is just what we

need. Referring to Figure 5.4, it is:

jE

k

n

k
kEjdEiF αβ

π
cos

2
1 1

0
∑

−

=
− = (5.5)

or equivalently:

()(nkki

n

k
kEjdEiF %1

1

02
1

+

−

=
− ×⋅= ∑ rrnβ

π
) (5.6)

where n is the number of polygon edges, kβ is the angle (in radians) between the vectors r and

defined from to each pair of vertices k and (k+1)%n (where “%” is the modulo arithmetic operator),

αk is the angle (again in radians) between the plane of and the triangle formed by and the kth

edge, and ni is the normal of .

k

i

() nk %1+r

idE

idE dE

idE

Actually, Equation 5.6 is the contour integration approach applied to the special case of a differential

area emitter and a planar convex polygon receiver. It was used to calculate form factors in the second paper

that introduced radiosity to the computer graphics community (Nishita and Nakamae [1984]). While it is

certainly simpler than the general contour integration approach used by Goral et al. [1984], it too assumes

that the patches are fully visible to one another.

276 Form Factor Determination
__

0

1
2

3

n

dEi

Ej

r0
r1

r2

r3

β 0

α 3

i

Figure 5.4 - Differential area to polygon form factor geometry idE jE

But wait! The emitting patch is an infinitesimally small point source. If an intervening polygon

partially occludes , we can subdivide into convex polygons that are either fully visible to or

completely hidden from (e.g., Fig. 5.5). We can then apply Equation 5.6 to each visible polygon; the

form factor from to is the sum of their individual form factors.

idE

jE

idE

jE

idE

jE

This is essentially a hidden surface problem. Seen from , what polygons in the environment are

visible to it, and what other polygons partially or fully occlude each one? What we need is an area

subdivision algorithm for hidden surface elimination, such as Warnock’s Algorithm (e.g., Sutherland et al.

[1974]), that successively divides polygons into smaller and smaller polygons until each one is either fully

visible or completely hidden from some reference point.

idE

Unfortunately, area subdivision algorithms are at least an order of magnitude more complex than the

Z-buffer algorithm presented in the previous chapter (see Rogers [1985] for implementation details of

Warnock’s Algorithm). While Nishita and Nakamae [1984] demonstrated that their technique works for

complex environments with partially occluded polygons, numerical integration offers a simpler approach.

Form Factor Determination 277
__

dEi

Ej2 Ek

Ej1

dEi-Ej dEi-Ej1 dEi-Ej2F = F + F

Figure 5.5 - Area subdivision of partially occluded polygon into and jE 1jE 2jE

5.5 The Five-Times Rule

Our simplified approach led to an analytic solution for planar convex polygons. Given two arbitrary

patches, however, are we justified in modeling the emitter as a point source?

In general, no. If a small but finite polygon is placed parallel to and an infinitesimal distance above a

large emitter, it will clearly intercept only a small fraction of the emitted flux. Modeling the emitter as a

point source, however, would lead us to conclude that it intercepts nearly all of the emitted flux. Wrong!

So, our simplified approach is an approximation. We therefore need to consider the consequences of

this approximation, and under what conditions we are justified in modeling a luminous patch as a point

source.

It is a thorny question, since the differences between approximate and actual form factors are not

directly manifested in the rendered image. The predicted distribution of light within the environment will

be subtly different from what it would be in real life, but there are many other approximations in the

rendering process that can overshadow these differences (e.g., Meyer et al. [1986]).

Murdoch [1981] investigated this problem as part of a theoretical study in illumination engineering. He

demonstrated that modeling a Lambertian luminous rectangle as a point source results in worst-case

illuminance prediction errors (using the inverse square law) of less than 1± percent if the distance from the

illuminated point to the rectangle is at least five times its maximum projected width. In other words, the

278 Form Factor Determination
__

luminous rectangle should subtend an angle of less than 0.2 radians, or approximately 11.5 degrees, as seen

from the illuminated point. (Note the caveat projected width: a long but narrow light source will subtend a

smaller angle when viewed from one end.)

This Five-Times Rule (Fig. 5.6) has been used by illumination engineers for nearly a century. If the

maximum dimension of a lighting fixture is less than five times its distance from a surface being

illuminated, then the fixture is modeled as a point source and the inverse square law for point sources (Eqn.

1.7) can be applied.

> 5

1 < 11.5 deg.

Light source Receiving surface

Figure 5.6 - Illumination engineering’s Five-Times Rule

There have been several other detailed studies of form factor calculation errors, including Saraiji and

Mistrick [1992], Emery et al. [1991], Baum et al. [1989], Max and Troutman [1993] and Sbert [1993].

While there is no firm consensus on the topic, it appears that the Five-Times Rule can be applied to form

factor calculations as follows:

The Five-Times Rule:

A finite area Lambertian emitter should be modeled as a point source only when the distance to the

receiving surface is greater than five times the maximum projected width of the emitter.

We should keep in mind that this does not limit the applicability of our simplified approach. If the Five-

Times Rule is violated for any two patches, we can always subdivide the emitting patch until the rule is

satisfied for each subdivided area. Of course, this fails for the two adjoining patches shown in Figure 5.3–

we would be subdividing forever as we approach their common edge. We need a heuristic rule that stops

subdividing when the patches become too small to be significant in any rendered image of the

environment. These, however, are details for Chapter Seven.

Form Factor Determination 279
__

5.6 Nusselt’s Analogy

We can take yet another approach to solving Equation 5.4. Imagine being centered on the base of

an imaginary hemisphere with unit radius (Fig. 5.7). Tracing geometric rays from to , we can

project the outline of onto the surface of the hemisphere. We can then trace rays from this projection

directly down onto the base of the hemisphere to outline the area A. From this, the form factor is given

by:

idE

idE jE

jE

ijF

π
AF EjdEi =− (5.7)

This entirely geometric solution is known as Nusselt’s analogy (Nusselt [1928]). While it strictly

applies only when is a differential area, it serves as a useful approximation for any two finite patches

 and where is much smaller than either or the distance between them (i.e., the Five-Times

Rule applies).

idE

iEiE jE jE

dEi
A

radius = 1

n
Ej

Figure 5.7 - Nusselt’s analogy

Nusselt’s analogy works as follows. Suppose is a differential patch, . Recalling once again the

discussion of solid angles and projected areas from Chapter One, we can see that the solid angle

jE jdE

ωd

subtended by as seen from (Fig. 5.8) is: jdE idE

2cos rdAd jjθω = (5.8)

280 Form Factor Determination
__

where dA is the differential area of . (This is in part the discussion presented in Section 2.5, but it

bears repeating here.)

j jdE

dE

dE

i

j

n

n

i

j

d ω
r

θ

θ

i

j

Figure 5.8 - Differential area form factor geometry (from Fig. 2.6)

The solid angle ωd is equal to the area of the projection of onto the unit hemisphere’s surface;

this accounts for the factor

jdE

2cos rjθ in Equation 5.4. The iθcos term comes from the second projection

onto the base. Thus:

2coscoscos rdAddA jjii θθωθ == (5.9)

where dA is the (now differential) projected area on the hemisphere base. Finally, the denominator of π

comes from the base’s area (a unit circle). We obtain the finite projected area A by integrating Equation 5.9

over the finite area of . jE

Unlike our previous contour integration approach, Nusselt’s analogy applies to any finite area patch

, regardless of its outline. Unfortunately, it leaves us with the problem of projecting the polygon’s

outline onto the hemisphere’s surface and thence onto its base.

jE

In the past, illumination engineers have relied on mechanical and photographic contrivances (e.g.,

Cherry et al. [1939] and O’Brien [1963]) to perform these projections and measure form factors for real-

life objects such as windows and building skylights. More usefully, Bian [1992] and Bian et al. [1992]

show how to project n-sided polygons onto the surface of a hemisphere and analytically calculate their

form factors. Once again, however, we need an accompanying area subdivision algorithm to solve the

hidden surface elimination problem for partially occluded polygons.

Form Factor Determination 281
__

To summarize, analytic solutions require complicated hidden surface elimination algorithms to

determine form factors in complex environments. Rather than pursue this issue any further, we should

instead investigate numerical integration techniques.

5.7 The Hemi-cube Algorithm

In considering Nusselt’s Analogy, Cohen and Greenberg [1985] realized that patches that have the

same projected area on a hemisphere will occupy the same solid angle as seen from the emitting patch (Fig.

5.9). In other words, both patches have the same form factor. This is perfectly sensible, since both patches

will receive the same emitted flux if either one has an unobstructed view of the emitter.

Ek

Ej

dEi

Figure 5.9 - Patches Ej and Ek have same form factor from patch dEi

Suppose then that we replace Nusselt’s hemisphere with a hemi-cube1. As Figure 5.10 shows, we can

equally well project a patch onto the surface of the hemi-cube. Suppose further that each surface (or face)

of the hemi-cube is divided into a grid of small cells2. If we can determine their individual form factors

(called delta form factors, ∆F), we can determine the form factor of the projected patch simply by

summing the delta form factors of those cells it covers.

1If a hemisphere is half of a sphere, then a hemi-cube is half of a cube. There are two commonly used
spellings: "hemi-cube" and "hemicube". Cohen and Greenberg [1985] used "hemi-cube" in their original
paper, but Cohen and Wallace [1993] later chose "hemicube" for their book. The spelling used here was
chosen by flipping a coin.

2The computer graphics literature also confusingly refers to hemi-cube cells as “elements”, “pixels” and
“patches”. The terms “elements” and “patches” are unfortunate, since they are so easily confused with the

282 Form Factor Determination
__

dEi

Ej

Figure 5.10 - Projecting patch onto the cells of a hemi-cube jE

That is, we have:

∑∆≈− coveredEjdEi FF (5.10)

where ∆Fcovered refers to the delta form factors of those cells covered by the projection of onto one

or more of the hemi-cube faces.

jE

The accuracy of Equation 5.10 is clearly dependent on the hemi-cube’s grid spacing. This spacing is

measured in terms of the number of cells on the top face (256256 × cells, for example), and is referred to

as the hemi-cube’s resolution. Typical resolutions used by researchers have ranged from 32 to

 cells (Cohen and Wallace [1993]).

32×

10241024 ×

The hemi-cube algorithm is a classic example of a numerical integration technique known as numerical

quadrature, where function f(x) is integrated over some interval a to b as:

() ()j

n

j
j

b

a

xfwdxxf ∑∫
−

=

≈
1

0
 (5.11)

and where f(x) (called the kernel of the integral function) is evaluated at a series of n distinct sample points

, with being a “weight” determined by the size of the interval between the sample points. { 10 ,, −nxx K }

iw

surface elements and patches introduced in Chapter Three. The terms “cells” follows Cohen and Wallace
[1993].

Form Factor Determination 283
__

The approximation clearly improves as the interval between the sample points decreases. (Further details

are available in any good text on numerical analysis.) Substituting Equation 5.9 into Equation 5.7, we get:

j
ji

EjdEi A
r

F ∆≈∆ − 2

coscos

π

θθ
 (5.12)

where now refers to a hemi-cube cell and is its area as a finite fraction of the entire face. The

approximation is due to the substitution of the finite cell area

jE jA∆

jA∆ for the differential area in

Equation 5.9. (See Section 2.5 for an alternate derivation.) The kernel f(x) of Equation 5.11 is composed of

the two cosine terms, the square of the distance r and the factor π; the weight w

jdA

j is the cell’s area, . jA∆

Cohen and Wallace [1993] examine a number of fascinating mathematical properties relating to form

factors and numerical integration. Fortunately, these issues are not essential to our understanding of the

hemi-cube algorithm’s theory. Indeed, all we need to remember is that the hemi-cube is analogous to

Nusselt’s hemisphere. Given this and an understanding of the reasoning behind Figures 5.9 and 5.10, what

remains are mostly implementation details.

5.7.1 Delta Form Factors

The hemi-cube algorithm will only be useful if we can easily calculate its delta form factors. Happily,

we can. Consider the hemi-cube cell shown on the top face3 in Figure 5.11. It does not matter what the

actual dimensions of the hemi-cube are, since we are only interested in the solid angle subtended by each

cell. If we choose a height of one unit for computational convenience, we can see that:

122 ++= vur (5.13)

and

rji 1coscos == θθ (5.14)

From Equation 5.12 then, we have:

3It should be noted that most discussions of hemi-cubes use a right-handed x-y-z co-ordinate system.
However, since we are "looking" outwards from the surface of into the environment, we instead use a
left-handed u-v-n co-ordinate system to emphasize that we are in the patch's “view space”. Apart from a
change of axis labels, the equations remain the same. The origin, however, is located at rather than the
hemi-cube face (see Section 5.11).

idE

idE

284 Form Factor Determination
__

()2222
1

coscos

++

∆
=∆≈∆

vu

A
A

r
F top

top
ji

top
ππ

θθ
 (5.15)

where ∆ is the hemi-cube cell area as a fraction of the top face area of four square units. topA

u
v

r

N

V

U
1

∆ A

θ
θ

i
j

dEi

Figure 5.11 - Top face hemi-cube cell form factor

For side face cells where v (Fig. 5.12), we have: = ±1

r u n= + +
2 2

1 (5.16)

and

r
rn

j

i

1cos
cos

=
=

θ
θ

 (5.17)

Thus:

()2222
1

coscos

++

∆
=∆≈∆

nu

An
A

r
F side

side
ji

side
ππ

θθ
 (5.18)

and similarly for side face cells where u = ±1 by substituting v for u. The hemi-cube cell area is

once again a fraction of the full side face area of four square units, including the bottom half hidden below

the hemi-cube base plane.

sideA∆

Form Factor Determination 285
__

u

r

N

V

U

1
∆ A

θ

θ

i

jn

-1

dEi

Figure 5.12 - Side face hemi-cube cell form factor (v = −1)

Figures 5.11 and 5.12 show that the hemi-cube’s n-axis is always aligned with the plane normal of

. By the same token, the orientation of u and v with respect to the world co-ordinate system is entirely

arbitrary. That is, we can arbitrarily rotate the hemi-cube about its n-axis when positioning it over a patch

in the environment. Having chosen an orientation, we can substitute the world co-ordinates of u, v and n

axes into Equations 4.8 and 4.9 to derive a view space transformation matrix for the hemi-cube. This

allows us to transform the world co-ordinates of any other patch into the hemi-cube’s “view space”.

idE

jE

One of the advantages of the hemi-cube algorithm is that the delta form factors can be precalculated

and stored in a lookup table (Cohen and Greenberg [1985]). Even better, the hemi-cube top has an eight-

fold symmetry, while each side has two-fold symmetry. That is, the delta form factors in each octant of the

hemi-cube top face are identical, and similarly for each vertical half of the four side faces. If we add these

up and consider a hemi-cube resolution of n n× cells, we can see that we need to store only 3 floating

point values.

8
2

n

The hemi-cube algorithm is probably the most widely used and popular method of form factor

determination among radiosity researchers. This is not to say, however, that it is the most efficient or even

the most elegant algorithm available. In keeping with our promise of “a careful choice of algorithms”, we

should investigate at least one alternative in depth. Besides providing further insights into the hemi-cube

algorithm, implementing both algorithms will give us a valuable sanity check. While the two algorithms

286 Form Factor Determination
__

will not provide identical form factor estimates, their answers should at least be comparable within some

reasonable error limit for any given pair of polygons.

5.8 The Cubic Tetrahedral Algorithm

Compared to Nusselt’s hemisphere, Cohen and Greenberg’s hemi-cube provides a very simple

geometry for polygon projection and form factor determination. However, there is one nagging asymmetry:

the top face and the four side faces have different geometries and delta form factor equations. This means

that we have to project every polygon onto five separate faces, a considerable nuisance for a complex

environment with thousands of polygons. It also means that we will probably need different sets of

functions for the top and side faces.

Can we remedy this situation? Yes! There is nothing sacrosanct about the hemi-cube. All we need is a

simple geometrical object with planar surfaces to project our polygons onto. The simplest possible three-

dimensional object is a triangular pyramid, otherwise known as a tetrahedron.

Beran-Koehn and Pavicic [1991] observed that we can think of the hemi-cube as a cube that has been

bisected by the polygon it rests on (Fig. 5.13). Suppose we rotate this cube and its view space co-ordinate

system such that the polygon intersects three of its vertices (Fig. 5.14). This results in a geometrical object

known as a cubic tetrahedron).

N

U

V

Polygon

Figure 5.13 - The hemi-cube as a bisected cube

Again, we are only interested in the solid angle subtended by each cell, and so the size of the cube is

immaterial. It will be convenient to use a cube measuring 3 units across each face. This places the cubic

Form Factor Determination 287
__

tetrahedron’s base vertices , and v at 0v 1v 2 { }2,1,1 − , { }1,2,1 − and { }1,1,2− respectively. Its

apex vertex A is exactly one unit directly above the cubic tetrahedron center at { }1,1,1 . (Note that the

origin–the polygon center–is not at the center of the cube.)

N

U

V

v2

v0

v1

v0 = { 1, 1, -2 }

v1 = { 1, -2, 1 }

v2 = { -2, 1, 1 }

A

Polygon

Figure 5.14 - Rotating the cube creates a cubic tetrahedron

We now have three identical but triangular faces to project our polygons onto. More importantly, this

was accomplished without unduly complicating the underlying theory of the hemi-cube algorithm. All else

being equal, this should substantially increase the performance of our form factor determination code.

How much of an increase we can expect is an open question that depends in part on how carefully we

craft our C++ code. While we could quantify the maximum possible improvement on theoretical grounds,

it will be easier to perform experimental timing measurements on our completed implementations. Before

then, we need to examine a few details, beginning with delta form factor calculations for cubic

tetrahedrons.

5.8.1 Delta Form Factors Revisited

The geometry of a cubic tetrahedron cell is shown in Figure 5.15, where is the differential patch

located at the center of the cubic tetrahedron (that is, the polygon’s view space origin) and is the cell

whose form factor we are interested in. Recalling Equation 5.12, we have:

idE

jE

j
ji

EjdEi A
r

F ∆≈∆ − 2

coscos

π

θθ
 (5.19)

where ∆ is the area of . jA jE

288 Form Factor Determination
__

dE

E

i

j

n

n

i

j

r θ

θ

i

j
S

Figure 5.15 - Cubic tetrahedron cell geometry

Following the development presented in Beran-Koehn and Pavicic [1992], the term iθcos is given by:

r
ii

i
nS

S
nS ⋅

=
⋅

=θcos (5.20)

where S is the bound vector from the origin to the cell center and r is its length. Expressed in terms of the

cubic tetrahedron’s view space co-ordinate system, the polygon normal is described by the vector in









3
1,

3
1,

3
1 . This means that:

3
cos

r
sss nvu

i
++

=θ (5.21)

For cells on the cubic tetrahedron face perpendicular to the v-axis, the term cos is given by: jθ

r
jj

j
nS

S
nS ⋅−

=
⋅−

=θcos (5.22)

where the cell normal is described by the vector jn { }0,1,0 − . Also, the face lies on the plane v . Thus: 1=

rr
sv

j
1cos ==θ (5.23)

The same result can be derived for the other two faces. Thus, for any cubic tetrahedron cell , we

have:

jE

j
nvu

EjdEi A
r

sss
F ∆

++
=∆ −

34π
 (5.24)

Form Factor Determination 289
__

However, , and for each face, one of , or will always be one. Thus: 2222
nvu sssr ++= us vs ns

() jEjdEi A
yx

yxF ∆
++

++
=∆ −

31

1
222π

 (5.25)

where x and y range from 1 to -2 (Fig. 5.14). (Note that these co-ordinates do not refer to the world x-y-z

co-ordinate system.)

Equation 5.25 describes the delta form factors for square cubic tetrahedron cells. It does not consider

the triangular cells at the base of each face (Fig. 5.16). Beran-Koehn and Pavicic [1992] noted that we have

two choices. If our resolution is sufficiently high, we can simply ignore these cells –their contribution to

the summed form factor will be minuscule. Otherwise, we must include them, but recognize that their areas

(∆A in Equation 5.25) are half that of the other cells.

Figure 5.16 - Polygon projection onto a cubic tetrahedron face

The symmetry of the cubic tetrahedron is such that we only need to store delta form factors for one half

of one face. For a resolution of cells on one full face of the underlying cube, we need to store nn × 42n

floating point values. This is less than the 82n3 values required for a hemi-cube with the same resolution.

Moreover, the cubic tetrahedron has 23 2n cells; the equivalent hemi-cube has cells. 23n

But are they equivalent? Beran-Koehn and Pavicic [1992] noted that a hemi-cube samples its

environment with twice the number of cells as a cubic tetrahedron with the same resolution. It can be

shown that the average delta form factor is the same for both geometries when they have the same number

290 Form Factor Determination
__

of cells. Thus, a cubic tetrahedron must have a resolution of nn ∗×∗ 22 cells in order to be equivalent

to a hemi-cube with a resolution of cells. nn ×

Details aside, the cubic tetrahedron is an uncomplicated variant of the hemi-cube. Except where noted,

the following discussions referring to hemi-cubes and the hemi-cube algorithm also apply to cubic

tetrahedrons.

5.9 Numerical Integration Errors

Before eulogizing either the hemi-cube or cubic tetrahedral algorithm as the solution to form factor

determination, we should consider their limitations. Most importantly, we must remember that these

algorithms can only estimate the form factor between any two patches. There will always be some error

due to the approximate nature of numerical integration.

A very thorough study of this problem with respect to hemi-cubes (but not cubic tetrahedrons) is

presented in Max and Troutman [1993]. We will not attempt to review this study or otherwise quantify

these errors here. Instead, we will examine their causes and effects. This knowledge will later prove useful

in visually assessing the results of our radiosity renderer. It will also highlight some of the fundamental

limitations of the hemi-cube and similar numerical quadrature algorithms.

If we choose a hemi-cube or cubic tetrahedron resolution that is too coarse, we may end up with

annoyingly visible aliasing artifacts in our images. Consider Figure 5.17, where the surface S is discretized

into a regular array of patches and projected onto a hemi-cube centered over patch . (A cubic

tetrahedron could also be used; the following arguments remain the same.) Some of the patches cover two

cells while the others cover only one each. If the hemi-cube patch is emitting light, these patches may

“receive” (according to their calculated form factors) approximately twice as much flux as their neighbors.

iE

This problem is particularly evident when the discretization of a surface into polygons is such that their

projection onto the hemi-cube nearly matches that of the spacing of the hemi-cube cells. It can be further

aggravated by moving the hemi-cube to patches adjacent to and repeating the process. Depending on

the spacing between these patches relative to S, the erroneous distribution of flux on S may be reinforced.

Displayed in an image, the surface will appear to have a distinctly plaid-like variation in shading.

iE

Form Factor Determination 291
__

2 2

Ei

S

1 2 1 1 2 1
Figure 5.17 - Hemi-cube aliasing

A partial solution is to randomly vary the hemi-cube’s orientation about the surface normal as it is

moved from patch to patch (Wallace et al. [1987]). While this will not solve the aliasing problem for

individual patches, the likelihood of their shading patterns reinforcing one another will be greatly

diminished. The sum of these patterns will appear as low contrast, random noise, to which our eyes are

fairly insensitive.

A second, more serious problem is that small patches may cover less than one cell, in which case they

will be missed entirely. This can seriously affect small but highly luminous patches in an environment,

particularly high intensity light sources. Reversing roles with the patch beneath the hemi-cube as a

receiver, it may “receive” no flux at all from the emitting patch, even though both are fully visible to one

another.

We can of course alleviate this problem by increasing the hemi-cube resolution. However, the hemi-

cube algorithm has a time complexity (Section 2.6) of approximately O(n2), where n is the hemi-cube

resolution (e.g., Vilaplana and Pueyo [1992]). In other words, doubling the hemi-cube resolution

approximately quadruples the algorithm’s execution time. This also applies to the cubic tetrahedral

algorithm. It is the inevitable tradeoff in radiosity rendering between image quality and rendering time.

5.10 Form Factors and Radiosity

Before proceeding any further, we should consider the role of form factors in solving the radiosity

equation. Figure 5.18 shows one surface (labeled “source”) illuminating another (labeled “receiver”). Both

surfaces are divided into patches and elements as explained in Section 3.7. So far, it appears as if we must

292 Form Factor Determination
__

determine the form factors between each pair of elements. For an environment with 50,000 elements, this

means 2,500 million form factors!

Φ ij

Source Receiver

Patch
Element

Figure 5.18 - Radiant flux transfer between surfaces

The surfaces in an environment should be discretized into patches and elements such that Gouraud

shading each element does not result in objectionable aliasing artifacts. The elements must be closely

spaced in order to capture the fine shading details across surfaces in a rendered image, particularly at

shadow boundaries. (This will be discussed in detail in Chapter Seven). We will eventually have to

calculate the radiant exitance of each of these elements.

However, this is primarily a visual criterion. In terms of calculating the flux transfer between two

surfaces, we need to apply the Five-Times Rule (Section 5.5). Suppose the receiving surface in Figure 5.18

is discretized into patches and elements such that each patch of the emitting surface satisfies the Five-

Times Rule. If so, then we can safely model each patch as a point source. This means that we only need to

determine the form factor from the source patch to the receiving element. There is no point in considering

element-to-element form factors; the calculated flux transfer between the elements of a source patch and a

receiving element will be (approximately) the same as that calculated between the patch itself and the

receiving element (Cohen et al. [1986]).

This explains why we created a two-level hierarchy of patches and elements in Section 3.7. If we have

an environment consisting of m patches and n elements, we only need to determine form factors

between patches and elements. As an example, an environment with 5,000 patches and 50,000 elements

requires “only” 250 million form factors.

nm ×

Form Factor Determination 293
__

Fortunately, this is not as bad as it looks: the hemi-cube algorithm calculates form factors from a patch

to all elements in the environment in parallel. An environment with 5,000 patches therefore requires only

one hemi-cube calculation per patch. Furthermore, we will see in the next chapter that we only need to

store one form factor per element.

There are other computational advantages to using a two-level hierarchy of patches and elements.

These will be examined in detail in Chapter Six. Before then, however, we need to implement the hemi-

cube and cubic tetrahedral algorithms.

5.11 Just Another Viewing System

The hemi-cube algorithm is much easier to explain than it is to implement in software. Seen in

isolation, the myriad details tend to overshadow and obscure the underlying algorithm. Like our viewing

system, it becomes difficult to see the logic for the code.

Fortunately, we have already seen most of these details before–it’s our viewing system! Consider the

similarities:

Hemi-cube algorithm Viewing system

Differential area emitter Eye position idE
Hemi-cube face View plane window / screen
Hemi-cube cell Screen pixel

The hemi-cube algorithm is essentially a polygon scan conversion process. Suppose we want to

determine the form factor from a polygon to another polygon in an environment. Each hemi-

cube face defines a view volume whose back clipping plane is at plus infinity and whose front clipping

plane is (almost) at the hemi-cube’s center (Fig. 5.19a). In other words, it defines an essentially infinite

four-sided pyramid. (The cubic tetrahedron’s view volume shown Figure 5.19b is similar, except that it

defines a three-sided pyramid.)

ijF iE jE

If we position the hemi-cube over , we can perform a perspective projection of onto each of its

faces. Filling the projected polygon on each face allows us to determine which hemi-cube cells are covered

by the projection. Once this is done, the approximate form factor is given by Equation 5.10.

iE jE

ijF

294 Form Factor Determination
__

Figure 5.19a - Hemi-cube face view volumes

Figure 5.19b - Cubic tetrahedron view volumes

One difference is that the viewing system described in Chapter Four has its origin centered on the view

plane window, while the hemi-cube’s u-v-n co-ordinate system is centered on the eye position (Fig 5.20).

A moment’s reflection, however, will reveal that the two systems are essentially equivalent; the only

difference is that the hemi-cube’s origin has been translated a distance of one unit along the n-axis with

respect to our viewing system’s origin. Allowing for this, we can treat the hemi-cube face no differently

from a view plane window. In particular, we can reuse much of our viewing system code from Chapter

Four to implement the hemi-cube algorithm.

Form Factor Determination 295
__

n

Eye position

v

u

1

Hemi-cube face

Figure 5.20 - Hemi-cube face co-ordinate system

Unlike our previous attempts at form factor determination, the hemi-cube algorithm trivially solves the

polygon occlusion problem by using a variation of the Z-buffer algorithm presented in Section 4.14.

Instead of storing the closest polygon color for each screen pixel in a frame buffer, we can store an

identifier for the closest polygon in an equivalent item buffer, with one entry for each hemi-cube cell. A

depth array entry is similarly assigned to each cell.

Suppose we assign a unique identifier to each polygon in the environment, after which we initialize the

depth array to INFINITY and set the item buffer entries to NONE. As we project each visible polygon in the

environment onto the hemi-cube, we compare its depth at each covered hemi-cube cell with the current

depth array entry. If it is closer than the current depth, we update the entry and assign the polygon

identifier to the item buffer entry. When all of the polygons in the environment have been considered, we

scan the item buffer and calculate the form factor for each polygon using Equation 5.10.

Thus, given a polygon , the hemi-cube algorithm calculates the form factors from to all other

polygons in the environment. We can express this algorithm in the following pseudocode (from

Rushmeier et al. [1991]):

iE ijF iE

jE

FOR each hemi-cube cell k // Precalculate delta form factors
 Calculate delta form factor kF∆
ENDFOR

FOR each hemi-cube face // Initialize hemi-cube cells
 FOR each hemi-cube cell k
 cell_depth(k) = INFINITY
 polygon_id(k) = NONE

296 Form Factor Determination
__

 ENDFOR
ENDFOR

FOR each polygon jE j // Initialize polygon form factors
 0=ijF

ENDFOR

FOR each hemi-cube face
 Transform co-ordinates to (hemi-cube) view space jE iE
 FOR each polygon jE j // Scan convert polygon jE
 IF is visible jE
 Clip to hemi-cube face view volume jE
 IF clipped polygon is inside view volume
 Project polygon onto hemi-cube face
 FOR each hemi-cube face cell k
 IF cell k is covered
 IF depth of at cell k < cell_depth(k) jE
 cell_depth(k) = depth of at cell k jE
 polygon_id(k) = j
 ENDIF
 ENDIF
 ENDFOR
 ENDIF
 ENDIF
 ENDFOR

 FOR each hemi-cube face cell k // Sum delta form factors
 m = polygon_id(k)
 kimim FFF ∆+=
 ENDFOR
ENDFOR

Figure 5.21 - Hemi-cube algorithm

The pseudocode for cubic tetrahedral algorithm is essentially identical. All we have to do is substitute

the words “cubic tetrahedron” where “hemi-cube” appears. This similarity will be reflected in our C++

implementation, where the common features will be encapsulated in an abstract “form factor” class.

5.12 Delta Form Factor Calculations

Our first requirement is to precalculate the delta form factors and store the results in a lookup table. For

a resolution of cells, we need to store a minimum of nn × 83 2n floating point values for hemi-cubes.

The equivalent cubic tetrahedron has a resolution of mm × cells, where nm ∗= 2 . It therefore requires

24 22 nm = values. Assuming and four-byte float data type as an example, this translates to 15

Kbytes and 20 Kbytes of memory respectively.

100=n

Form Factor Determination 297
__

These are minimum values, however. For the hemi-cube, we need a square array of 42n cells to store

the delta form factors for the side faces. Unfortunately, the 82n delta form factors for the top face of the

hemi-cube form a triangular array. We will want to access this array using an cell’s integer u-v co-ordinates

as quickly as possible. Rather than perform a complex mapping between these co-ordinates and offsets into

some sort of compacted array, it is usually better to allocate memory for two quadrants of delta form

factors (one for the top face and another for the side faces). This requires n floating point values, or 20

Kbytes for the above example. This is a fairly insignificant amount of memory, at least for a radiosity

rendering program. We can allocate a static array in memory and initialize it at program startup.

2
2

The cubic tetrahedron is more problematic. We only need to store delta form factors for one half of one

face, but this again leads to a triangular array. Storing these values in a static array implies that we must

allocate 40 Kbytes for the above example. If we increased the resolution to 400=n (that is, 566

cells), we would be wasting 313 Kbytes of memory. (In fact, we need to store slightly more than

566×

42m

values. Figure 5.22 demonstrates that for 8=m , we need to allocate space for 202 =+ m42m unique

values. The array remains triangular with 2m rows of varying size.)

x

y

Figure 5.22 - Unique delta form factor values for a cubic tetrahedron face

Fortunately, one of the more subtle features of the C++ programming language comes to our rescue.

We can easily allocate a static (or, if we prefer, dynamic) triangular array with no wasted memory and

relatively little overhead. All we have to do is to allocate a one-dimensional array for each row and an

298 Form Factor Determination
__

array of pointers to the rows. C++ (and its progenitor, C) allow us to access this construct exactly as if it

were a two-dimensional array. The details are described in a text file on the accompanying diskette.

For now, we have our first C++ code:

// FF_DELTA.H- Delta Form Factors

#ifndef _FF_DELTA_H
#define _FF_DELTA_H

// Delta form factor resolution (must be an even number)
#if defined(_CUBIC_TETRA)
static const int FF_ArrayRes = 142;
#else
static const int FF_ArrayRes = 100;
#endif

#endif

Listing 5.1 - FF_DELTA.H

A resolution of 100 cells for hemi-cubes provides a reasonable tradeoff between execution speed

and minimization of aliasing artifacts. (A resolution of 142

100×

142× cells is required for an equivalent cubic

tetrahedron.) You can experiment with different resolutions (such as 50 50× or cells) by

redefining FF_ArrayRes and recompiling. The only restriction is that FF_ArrayRes must be an even

number. (A further restriction applies to MS-Windows 3.1 in that the allocated array size cannot exceed 64

Kbytes unless the arrays are declared as _huge–something that should only be done as a last resort.)

200200 ×

5.12.1 Hemi-cube Form Factor Calculations

FF_DELTA.H simply specifies the delta form factor resolution. We can use the following C++ class to

precalculate and store the delta form factors for our hemi-cube:

// HC_DELTA.H - Hemi-cube Delta Form Factor Class

#ifndef _HC_DELTA_H
#define _HC_DELTA_H

#include "general.h"
#include "ff_delta.h"

static const int HC_ArrayDim = FF_ArrayRes / 2;

class HemiDelta // Hemi-cube delta form factors
{
 private:
 static float side_array[HC_ArrayDim][HC_ArrayDim];
 static float top_array[HC_ArrayDim][HC_ArrayDim];

 public:

Form Factor Determination 299
__

 HemiDelta();

 // Get top face cell form factor
 float GetTopFactor(int row, int col)
 {
 if (row >= HC_ArrayDim)
 row -= HC_ArrayDim;
 else
 row = HC_ArrayDim - row - 1;

 if (col >= HC_ArrayDim)
 col -= HC_ArrayDim;
 else
 col = HC_ArrayDim - col - 1;

 return top_array[row][col];
 }

 // Get side face cell form factor
 float GetSideFactor(int row, int col)
 {
 if (col >= HC_ArrayDim)
 col -= HC_ArrayDim;
 else
 col = HC_ArrayDim - col - 1;

 return side_array[row - HC_ArrayDim][col];
 }
};

#endif

Listing 5.2 - HC_DELTA.H

GetTopFactor and GetSideFactor map a cell’s integer co-ordinates to indices for the static delta form

factor arrays before returning the appropriate value. The arrays are initialized at program startup by:

// HC_DELTA.CPP - Hemi-cube Delta Form Factor Class

#include "hc_delta.h"

// Static delta form factor arrays
float HemiDelta::side_array[HC_ArrayDim][HC_ArrayDim];
float HemiDelta::top_array[HC_ArrayDim][HC_ArrayDim];

HemiDelta::HemiDelta() // Class constructor
{
 int i, j; // Loop indices
 double da; // Cell area
 double dx, dy, dz; // Cell dimensions
 double r, x, y, z; // Cell co-ordinates

 // Initialize cell dimensions and area
 dx = dy = dz = 2.0 / (float) FF_ArrayRes;
 da = 4.0 / ((float) FF_ArrayRes * (float) FF_ArrayRes);

 // Calculate top face delta form factors
 x = dx / 2.0;
 for (i = 0; i < HC_ArrayDim; i++)

300 Form Factor Determination
__

 {
 y = dy / 2.0;
 for (j = 0; j < HC_ArrayDim; j++)
 {
 r = x * x + y * y + 1.0;
 top_array[j][i] = (float) (da / (PI * r * r));
 y += dy;
 }
 x += dx;
 }

 // Calculate side face delta form factors
 x = dx / 2.0;
 for (i = 0; i < HC_ArrayDim; i++)
 {
 z = dz / 2.0;
 for (j = 0; j < HC_ArrayDim; j++)
 {
 r = x * x + z * z + 1.0;
 side_array[j][i] = (float) (z * da / (PI * r * r));
 z += dy;
 }
 x += dx;
 }
}

Listing 5.3- HC_DELTA.CPP

Only one global instance of HemiDelta is required in a radiosity rendering program. If you want to

experiment with different hemi-cube resolutions without recompiling, HemiDelta should be modified such

that it dynamically allocates and initializes its delta form factor arrays.

5.12.2 Cubic Tetrahedron Form Factor Calculations

Our C++ code for precalculating and later accessing delta form factor values for cubic tetrahedrons is

based on a C implementation presented in Beran-Koehn and Pavicic [1992]. Translated into C++, it

becomes:

// CT_DELTA.H- Cubic Tetrahedron Delta Form Factor Class

#ifndef _CT_DELTA_H
#define _CT_DELTA_H

#include "general.h"
#include "ff_delta.h"

// Delta form factor array size
static const CT_DeltaDim = FF_ArrayRes / 2;
static const int CT_FormDim = CT_DeltaDim * CT_DeltaDim +
 CT_DeltaDim;

// Cubic tetrahedron face co-ordinate limits
static const double CT_MinCoord = -2.0;
static const double CT_MaxCoord = 1.0;

Form Factor Determination 301
__

class CubicDelta // Cubic tetrahedron delta form factors
{
 private:
 // Delta form factor row pointer array
 static float *delta_array[CT_DeltaDim];

 // Delta form factor array
 static float ff_array[CT_FormDim];

 public:
 CubicDelta();

 // Get delta form factor
 float GetFactor(int row, int col)
 {
 int temp; // Temporary variable

 if (row > col)
 {
 temp = row;
 row = col;
 col = temp;
 }

 return delta_array[row][col - row];
 }
};

#endif

Listing 5.4- CT_DELTA.H

and:

// CT_DELTA.CPP- Cubic Tetrahedron Delta Form Factor Class

#include "ct_delta.h"

// Static delta form factor row pointer array
float *CubicDelta::delta_array[CT_DeltaDim];

// Static delta form factor array
float CubicDelta::ff_array[CT_FormDim];

CubicDelta::CubicDelta() // Class constructor
{
 int i = 0; // Form factor array index
 int left, right, top, bottom; // Index boundaries
 int row, col; // Current indices
 double delta; // Cell width
 double diag_delta; // Diagonal cell width
 double area; // Cell area
 double diag_area; // Diagonal cell area
 double y, z; // Cell center
 double diag_y, diag_z; // Diagonal cell center
 double r2; // Cell distance squared

 // Initialize index boundaries
 left = top = 0;

302 Form Factor Determination
__

 right = FF_ArrayRes - 1;
 bottom = FF_ArrayRes / 2;

 // Initialize cell values
 delta = (CT_MaxCoord - CT_MinCoord) / FF_ArrayRes;
 diag_delta = delta / 2.0;
 area = delta * delta;
 diag_area = area / 2.0;
 y = z = CT_MaxCoord - diag_delta;

 // Calculate delta form factors
 for (row = top; row < bottom; row++)
 {
 // Save delta form factor array row pointer
 delta_array[row] = &(ff_array[i]);

 for (col = left; col < right; col++)
 {
 // Calculate square of cell distance
 r2 = y * y + z * z + 1;

 // Calculate cell delta form factor
 ff_array[i++] = (float) (area * (y + z + 1) / (PI * r2
 * r2 * sqrt(3.0)));

 y -= delta;
 }

 // Calculate square of diagonal cell distance
 diag_y = y + diag_delta;
 diag_z = z + diag_delta;
 r2 = diag_y * diag_y + diag_z * diag_z + 1;

 // Calculate diagonal cell delta form factor
 ff_array[i++] = (float) (diag_area * (diag_y + diag_z +
 1) / (PI * r2 * r2 * sqrt(3.0)));

 left++;
 right--;
 y = z -= delta;
 }
}

Listing 5.5- CT_DELTA.CPP

Unlike HemiDelta, CubicDelta dynamically allocates a two-dimensional triangular array for its delta

form factor values. The details of this technique are discussed in a text file on the accompanying diskette.

A similar discussion is presented in Ashdown [1988].

Like our previous HemiDelta class, only one global instance of CubicDelta is required in a radiosity

rendering program. Moreover, we should choose between the two at some point, since only one is required

for form factor determination. Right now, we have some more work to do.

Form Factor Determination 303
__

5.13 A Polygon Vertex Array Class

In an ideal world with truly intelligent optimizing compilers, we could simply derive an implementation

of the hemi-cube algorithm from our previous implementation of the Sutherland-Hodgman algorithm in

PolyClip4 (Section 4.8.6). The C++ compiler would then rewrite our code to remove the extraneous

components, reorder our mathematical calculations for improved efficiency, and so forth. In more realistic

terms, the two applications are sufficiently different that we are better off rewriting PolyClip4 expressly for

clipping polygons against hemi-cubes and cubic tetrahedrons.

Following the development of PolyClip4, we first need a polygon vertex array class that is very similar

to our OutPolygon class in Listing 4.5. This becomes:

// FF_POLY.H - Form Factor Polygon Class

#ifndef _FF_POLY_H
#define _FF_POLY_H

#include "patch3.h"
#include "vector4.h"

// Maximum number of output vertices
static const int MaxVert = 10;

class FormPoly // Form factor polygon
{
 private:
 Point3 posn[MaxVert]; // Output vertex array
 int num_vert; // Number of vertices
 WORD ident; // Polygon identifier

 void AddVertex(Vector4 &v)
 { v.Perspective(&(posn[num_vert++])); }

 void Reset(WORD id)
 {
 num_vert = 0;
 ident = id;
 }

 friend class FormClipEdge;
 friend class FormClip;

 public:
 FormPoly()
 {
 num_vert = 0;
 ident = 0;
 }

 int GetNumVert() { return num_vert; }
 Point3 &GetVertex(int i)
 { return posn[i]; }

304 Form Factor Determination
__

 WORD GetPolyId() { return ident; }
};

#endif

Listing 5.6 - FF_POLY.H

The ident member holds the identifier of the polygon currently being projected onto the hemi-cube.

Unlike our OutPolygon class, we only need to store the position for each polygon vertex. This considerably

simplifies the class’s internal details.

We will need five instances of FormPoly, one for each hemi-cube face. Thus:

// HC_POLY.H - Hemi-cube Polygon Class

#ifndef _HC_POLY_H
#define _HC_POLY_H

#include "ff_poly.h"

// Hemi-cube face identifiers
enum HC_Face
{
 HC_TopFace = 0, // n = +1.0
 HC_FrontFace = 1, // v = +1.0
 HC_RightFace = 2, // u = +1.0
 HC_BackFace = 3, // v = -1.0
 HC_LeftFace = 4 // u = -1.0
};

#endif

Listing 5.7 - HC_POLY.H

HC_POLY.H defines the enumerated HC_Face data type. Its values are used to arbitrarily but

consistently label the hemi-cube faces according to their orientation with respect to the hemi-cube’s view

space co-ordinate system, as shown in Figure 5.23.

Right

Left Front

Back

Top

v

u

n

Figure 5.23 - Hemi-cube face naming conventions

Form Factor Determination 305
__

We will similarly need three instances of FormPoly for our cubic tetrahedron. This becomes:

// CT_POLY.H - Cubic Tetrahedron Polygon Class

#ifndef _CT_POLY_H
#define _CT_POLY_H

#include "ff_poly.h"

// Cubic tetrahedron face identifiers
enum CT_Face
{
 CT_TopFace = 0, // n = +1.0
 CT_RightFace = 1, // u = +1.0
 CT_LeftFace = 2 // v = +1.0
};

#endif

Listing 5.8 - CT_POLY.H

where the cubic tetrahedron faces are labeled according to the conventions shown in Figure 5.24.

n

u

v

Left
Right

Top

Figure 5.24 - Cubic tetrahedron face naming conventions

5.14 Hemi-cube Orientation

We saw in Section 5.9 that the hemi-cube should be randomly oriented (or jittered) about its n-axis

when it is placed over the center of a polygon in order to minimize aliasing artifacts. We can do this by

first generating a random vector r using C++’s rand function for each co-ordinate. From this, we derive a

random u-axis vector with: HCu

rnu ×= PHC (5.26)

306 Form Factor Determination
__

where n is the polygon normal. (We may have to generate another random vector and repeat this

calculation if the length of u is zero.) After normalizing u , the v-axis vector is calculated

from:

HCP n=

HC HC HCv

HCHCHC nuv ×= (5.27)

This gives us the hemi-cube’s view space in world co-ordinates. We will need to reorient this system to

align it with each face before we can project polygons against them. Fortunately, the hemi-cube’s

symmetry makes this particularly easy to do. Following a suggestion by Vilaplana and Pueyo [1992], we

can simply swap co-ordinates and change signs as required for our viewing axes; no other floating point

operations are necessary. Given a hemi-cube’s view space axes u , and expressed in world

co-ordinates (Fig. 5.23), the hemi-cube face view spaces can be determined from:

HC HCv HCn

Top: HCTHCTHCT nnvvuu === ,,
Front: HCFHCFHCF vnnvuu ==−= ,,
Right: HCRHCRHCR unnvvu === ,, (5.28)
Back: HCBHCBHCB vnnvuu −=== ,,
Left: HCLHCLHCL unnvvu −==−= ,,

Positioning and orienting the cubic tetrahedron’s viewing system is a more involved procedure than it

is for the hemi-cube. We can use Equations 5.26 and 5.27 to generate a randomly oriented viewing system

whose normal is collinear with the polygon normal and whose origin coincides with the polygon center.

We can think of this as the polygon’s view space, with its axes expressed in world co-ordinates as the unit

vectors , and n . Pu Pv P

From here, we need to align the cubic tetrahedron’s view space such that the polygon normal has the

view space co-ordinates








3
1,

3
1,

3
1 . In terms of the polygon’s view space, the tetrahedron’s view

space axes then have the co-ordinates:









−+=
3

1,
2
1

32
1,

2
1

32
1

CTu









+−=
3

1,
2
1

32
1,

2
1

32
1

CTv (5.29)







 −−

=
3

1,
3
1,

3
1

CTn

Form Factor Determination 307
__

Expressed in world co-ordinates, these become:

PPPCT cba nvuu ∗−∗+∗=

PPPCT cab nvuv ∗−∗+∗= (5.30)

PPPCT ccc nvun ∗−∗+∗=

where the constants a, b and c are:

2
1

32
1

+=a

2
1

32
1

−=b (5.31)

3
1−

=c

This gives us the cubic tetrahedron’s view space in world co-ordinates. Looking out from the polygon

center through each face, we see a triangular view plane window (Fig. 5.25a). It will be convenient when

we later come to polygon scan conversion to have this window oriented as shown in Figure 5.25b. This can

be done by negating the u-axis and v-axis co-ordinate values.

v v

u u

n n

{0,0,1} {0,0,1}

{1,-2,1}

{-2,1,1} {1,1,1}

{2,-1,1}

{-1,2,1}

{-1,-1,1}

Figure 5.25a - Top view window Figure 5.25b - Rotated top view window

Combining this with our earlier approach for hemi-cubes, we can reorient the cubic tetrahedron’s view

space to that of each face with the following:

Top: CTTCTTCTT nnvvuu =−=−= ,,
Left: CTLCTLCTL vnnvuu =−=−= ,, (5.32)
Right: CTRCTRCTR unnvvu =−=−= ,,

308 Form Factor Determination
__

5.15 View Space Transformations

We now have a hemi-cube or cubic tetrahedron face view space expressed as vectors u, v and n in

world co-ordinates. With these, we can use Equations 4.8 and 4.9 to determine the view transformation

matrix M needed to transform a polygon vertex’s world co-ordinates to this view space. To repeat those

equations here:



















=

1000
zzyx

yzyx

xzyx

tnnn
tvvv
tuuu

M (5.33)

where:

zzyyxxz

zzyyxxy

zzyyxxx

nononot

vovovot

uououot

∗−∗−∗−=

∗−∗−∗−=

∗−∗−∗−=

 (5.34)

and where the bound vector o (expressed in world co-ordinates) represents the view space origin (i.e., the

polygon center).

Recalling that the origin lies at the eye position (Fig. 5.20), we need to translate the view space one unit

along the n-axis to place the origin in the center of the face. From Equation 4.4, the necessary translation

matrix is:



















−
=

1000
1100

0010
0001

T (5.35)

We also need to perform the usual perspective and normalization transformations. The perspective

transformation matrix is given by Equation 4.14. Since the view distance is exactly minus one, we have:



















=

1100
0100
0010
0001

P (5.36)

The normalization matrix is given by Equations 4.16 and 4.17. However, we have to be careful here,

since the hemi-cube and cubic tetrahedron faces will require different normalization transformations.

Form Factor Determination 309
__

Consider the hemi-cube faces: our view plane window is a square, even for the side faces–we are

simply choosing to ignore the bottom half of the view from these windows. Therefore, the aspect ratio is

unity, and so 21== vu ss . This gives us:



















=

1000
00

210210
210021

nn
HC rs

N (5.37)

where and are determined by our choices for the front and back clipping planes distances F and B. ns nr

Unlike our viewing system in Chapter Four, there is no reason to clip against a front and back plane. If

we set the back clipping plane distance to plus infinity (represented in our code as MAX_VALUE), we can

dispense with a back plane clipping operation altogether.

The front clipping plane distance is more problematic. Ideally, we should locate it as close to the eye

position as possible in order to include in the view volume everything above the polygon surface. This

suggests a value of to ensure that we will not have a divide-by-zero error for a point

exactly on or behind the polygon surface. Recalling Section 4.3, however, we are reminded that

perspective projection distorts the n-axis values. In particular, placing the front plane distance too close to

the eye position degrades the Z-buffer pseudodepth resolution (Section 4.14). A more reasonable value is -

0.99 units, assuming that no two polygons in our environment will be closer together than this. (This is

generally a reasonable assumption, at least for form factor calculations.)

1_ −VALUEMIN

These arguments for the front and back clipping planes also apply to the cubic tetrahedron faces.

However, Equation 4.16 no longer applies. We instead have:



















=

1000
00

310310
310031

nn
CT rs

N (5.38)

where and are as given before (Eqn. 4.17). Referring to Figure 5.25b, this transformation translates

the view plane window one unit along the u-axis and v-axis and scales it in these directions by one-third.

The view volume is scaled along the n-axis as before, resulting in the canonical parallel view volume

shown in Figure 5.26.

ns nr

310 Form Factor Determination
__

0

+1

+1

+1

u

v

n

Figure 5.26 - Canonical parallel view volume for cubic tetrahedrons

We can concatenate these transformation matrices to obtain the 3-D projective transformation matrix

for our hemi-cube or cubic tetrahedron faces. That is, similar to Equation 4.19, we have:



















=



















1
z

y

x

n

v

u

p
p
p

w
P
P
P

NPTM (5.39)

where { }zyx ppp ,, are the world co-ordinates of a polygon vertex p. This provides us with the 4-D

homogeneous co-ordinates we need for polygon clipping. All we need now is a framework in which to

implement these equations.

5.16 Polygon Clipping Revisited

It is clear that we shall need separate polygon clipping strategies for our hemi-cube and cubic

tetrahedron view volumes, if only because of their different clipping planes. At the same time, these

strategies will have much in common. It makes sense then to develop an abstract polygon clipper class and

derive our two polygon clippers from it.

Much of the following code is an adaptation of PolyClip4, with the addition of components from our

ViewSys class (Listings 4.1 and 4.2). Thus:

// FF_CLIP.H - Form Factor Polygon Clipper Class

#ifndef _FF_CLIP_H
#define _FF_CLIP_H

#include "ff_poly.h"

Form Factor Determination 311
__

// View normalization parameters
static const double FPD = -0.99;
static const double BPD = MAX_VALUE;
static const double EYE = -1.0;
static const double SN = (EYE - BPD) * (EYE - FPD) / (EYE *
 EYE * (BPD - FPD));
static const double RN = FPD * (EYE - BPD) / (EYE * (FPD -
 BPD));

class FormClipEdge // Edge-plane clipper
{
 private:
 FormClipEdge *pnext; // Next clipper pointer
 Vector4 normal; // Plane normal
 Vector4 first; // First vertex
 Vector4 start; // Start vertex
 BOOL first_inside; // First vertex inside flag
 BOOL start_inside; // Start vertex inside flag
 BOOL first_flag; // First vertex seen flag

 BOOL IsInside(Vector4 &v)
 { return (Dot(normal, v) >= 0.0); }
 Vector4 Intersect(Vector4 &, Vector4 &);
 void Output(Vector4 &, FormPoly &);

 public:
 FormClipEdge() { first_flag = FALSE; }

 void Add(FormClipEdge *pc) { pnext = pc; }
 void Clip(Vector4 &, FormPoly &);
 void Close(FormPoly &);
 void SetNormal(Vector4 &n) { normal = n; }
};

class FormClip // Form factor polygon clipper
{
 protected:
 int num_vert; // # of polygon vertices
 Vector3 u, v, n; // View system co-ordinates
 double vtm[4][4]; // Transformation matrix
 FormClipEdge clipper[5]; // Clipper array
 FormClipEdge *pclip; // Clipper list head pointer
 Point3 center; // Polygon center

 Vector3 RandomVector() // Generate random vector
 {
 Vector3 temp; // Temporary vector

 temp.SetX(GetNormRand() * 2.0 - 1.0);
 temp.SetY(GetNormRand() * 2.0 - 1.0);
 temp.SetZ(GetNormRand() * 2.0 - 1.0);

 return temp;
 }

 public:
 BOOL BackFaceCull(Patch3 *ppatch)
 {
 Vector3 view; // View vector

312 Form Factor Determination
__

 // Calculate view vector
 view = Vector3(ppatch->GetVertexPtr(0)->GetPosn(),
 center);

 // Indicate whether patch is backface
 return (Dot(ppatch->GetNormal(), view) < MIN_VALUE) ?
 TRUE : FALSE;
 }

 int Clip(Element3 *, FormPoly &, WORD);
};

#endif

Listing 5.9 - FF_CLIP.H

FF_CLIP.H is very similar to P_CLIP4.H (Listing 4.6). The only major changes are in the derivation of

FormClipEdge from the ClipEdge class. These are:

• the polygon center (center), the view system axis co-ordinates (u, v and n) and a view transformation

matrix (vtm) have been added to assist in reorienting the view system for each hemi-cube or cubic

tetrahedron face.

• backface culling of patches to be projected onto a face is provided by BackFaceCull, which is an

adaptation of ViewSys::BackFaceCull from Listing 4.2. (If a planar surface patch faces away from the

eye position, then logically all of its elements will do the same.)

• random vectors are generated by RandomVector.

Since the view distance, front and back clipping planes distances are now constant, EYE, FPD and BPD

are provided to compute SN and RN in accordance with Equation 4.17. These constants will be used later to

implement the normalization transformations (Eqn. 5.37 and 5.38).

The remainder of our abstract polygon clipper class is adapted from P_CLIP4.CPP (Listing 4.7):

// FF_CLIP.CPP - Form Factor Polygon Clipper Class

#include "ff_clip.h"

// Clip element
int FormClip::Clip(Element3 *pelem, FormPoly &out, WORD
 poly_id)
{
 int i; // Loop index
 int num_vert; // Number of vertices
 Vertex3 *pvert; // 3-D world space vertex pointer
 Vector4 hv; // 4-D homogeneous co-ord vertex

 out.Reset(poly_id); // Reset output polygon

Form Factor Determination 313
__

 num_vert = pelem->GetNumVert();
 for (i = 0; i < num_vert; i++)
 {
 // Get world space vertex position pointer
 pvert = pelem->GetVertexPtr(i);

 // Set homogeneous co-ordinates vertex
 hv.ProjTransform(pvert->GetPosn(), vtm);

 pclip->Clip(hv, out); // Clip polygon edge
 }

 pclip->Close(out); // Close polygon

 return out.GetNumVert();
}

// Output view space vertex
void FormClipEdge::Output(Vector4 &v, FormPoly &out)
{
 if (pnext != NULL) // More planes ?
 pnext->Clip(v, out);
 else
 out.AddVertex(v);
}

// Calculate intersection vertex
Vector4 FormClipEdge::Intersect(Vector4 &s, Vector4 &e)
{
 double d, t; // Temporary variables
 Vector4 r; // Temporary vector

 // Calculate parameter
 r = (e - s);
 d = Dot(normal, r);

 if (fabs(d) > MIN_VALUE)
 t = -Dot(normal, s) / d;
 else
 t = 1.0;

 // Calculate intersection vertex co-ordinates
 r *= t;

 return (s + r);
}

// Clip polygon edge
void FormClipEdge::Clip(Vector4 ¤t, FormPoly &out)
{
 BOOL curr_inside; // Current point inside flag
 Vector4 isect; // Intersection vertex

 // Determine vertex visibility
 curr_inside = IsInside(current);

 if (first_flag == FALSE) // First vertex seen ?
 {
 first = current;
 first_inside = curr_inside;

314 Form Factor Determination
__

 first_flag = TRUE;
 }
 else
 {
 // Does edge intersect plane ?
 if (start_inside ^ curr_inside)
 {
 isect = Intersect(start, current);
 Output(isect, out);
 }
 }

 if (curr_inside == TRUE)
 Output(current, out);

 start = current;
 start_inside = curr_inside;
}

// Close polygon
void FormClipEdge::Close(FormPoly &out)
{
 Vector4 isect; // Intersection vertex

 if (first_flag == TRUE)
 {
 // Does edge intersect plane ?
 if (start_inside ^ first_inside)
 {
 isect = Intersect(start, first);
 Output(isect, out);
 }

 if (pnext != NULL) // More planes ?
 pnext->Close(out);

 // Reset first vertex seen flag
 first_flag = FALSE;
 }
}

Listing 5.10 - FF_CLIP.CPP

The changes here are relatively minor. The class constructor PolyClip4::PolyClip4 has been removed,

since it depends on the number and orientation of the clipping planes. Also, FormClip::Intersect has been

simplified by removing the vertex color interpolation that was performed by PolyClip4::Intersect.

5.16.1 A Polygon Clipping Class for Hemi-cubes

We can now derive a polygon clipping class expressly for hemi-cubes from FormClip as follows:

// HC_CLIP.H - Hemi-cube Polygon Clipper Class

#ifndef _HC_CLIP_H
#define _HC_CLIP_H

#include "hc_poly.h"

Form Factor Determination 315
__

#include "ff_clip.h"

// Clipping plane identifiers
enum HC_Plane
{ HC_Front, HC_Left, HC_Right, HC_Top, HC_Bottom };

// Hemi-cube polygon clipper
class HemiClip : public FormClip
{
 private:
 void BuildTransform(Vector3 &, Vector3 &, Vector3 &);

 public:
 HemiClip();

 void SetView(Patch3 *);
 void UpdateView(int);
};

#endif

Listing 5.11 - HC_CLIP.H

and:

// HC_CLIP.CPP - Hemi-cube Polygon Clipper Class

#include "hc_clip.h"

HemiClip::HemiClip() // HemiClip class constructor
{
 Vector4 temp; // Temporary vector

 // Link edge-plane clippers
 pclip = &(clipper[HC_Front]);
 clipper[HC_Front].Add(&(clipper[HC_Left]));
 clipper[HC_Left].Add(&(clipper[HC_Right]));
 clipper[HC_Right].Add(&(clipper[HC_Top]));
 clipper[HC_Top].Add(&(clipper[HC_Bottom]));
 clipper[HC_Bottom].Add(NULL);

 // Set clipper plane normals

 temp = Vector4(0.0, 0.0, 1.0, 0.0);
 clipper[HC_Front].SetNormal(temp.Norm());

 temp = Vector4(1.0, 0.0, 0.0, 0.0);
 clipper[HC_Left].SetNormal(temp.Norm());

 temp = Vector4(-1.0, 0.0, 0.0, 1.0);
 clipper[HC_Right].SetNormal(temp.Norm());

 temp = Vector4(0.0, -1.0, 0.0, 1.0);
 clipper[HC_Top].SetNormal(temp.Norm());

 temp = Vector4(0.0, 1.0, 0.0, 0.0);
 clipper[HC_Bottom].SetNormal(temp.Norm());
}

// Choose random hemi-cube orientation

316 Form Factor Determination
__

void HemiClip::SetView(Patch3 *ppatch)
{
 Vector3 rv; // Random vector

 // Get eye position (hemi-cube center)
 center = ppatch->GetCenter();

 n = ppatch->GetNormal(); // Get patch normal

 do // Get valid u-axis vector
 {
 // Select random vector for hemi-cube orientation
 rv = RandomVector();

 u = Cross(n, rv);
 }
 while (u.Length() < MIN_VALUE);

 u.Norm(); // Normalize u-axis
 v = Cross(u, n); // Determine v-axis
}

void HemiClip::BuildTransform(Vector3 &nu, Vector3 &nv,
 Vector3 &nn)
{
 Vector3 origin; // View space origin

 origin = Vector3(center);

 // Set view transformation matrix
 vtm[0][0] = nu.GetX();
 vtm[0][1] = nu.GetY();
 vtm[0][2] = nu.GetZ();
 vtm[0][3] = -(Dot(origin, nu));

 vtm[1][0] = nv.GetX();
 vtm[1][1] = nv.GetY();
 vtm[1][2] = nv.GetZ();
 vtm[1][3] = -(Dot(origin, nv));

 vtm[2][0] = nn.GetX();
 vtm[2][1] = nn.GetY();
 vtm[2][2] = nn.GetZ();
 vtm[2][3] = -(Dot(origin, nn));

 vtm[3][0] = 0.0;
 vtm[3][1] = 0.0;
 vtm[3][2] = 0.0;
 vtm[3][3] = 1.0;

 // Premultiply by translation matrix
 vtm[2][3] -= 1.0;

 // Premultiply by perspective transformation matrix
 vtm[3][0] += vtm[2][0];
 vtm[3][1] += vtm[2][1];
 vtm[3][2] += vtm[2][2];
 vtm[3][3] += vtm[2][3];

 // Premultiply by normalization matrix

Form Factor Determination 317
__

 vtm[0][0] = 0.5 * (vtm[0][0] + vtm[3][0]);
 vtm[0][1] = 0.5 * (vtm[0][1] + vtm[3][1]);
 vtm[0][2] = 0.5 * (vtm[0][2] + vtm[3][2]);
 vtm[0][3] = 0.5 * (vtm[0][3] + vtm[3][3]);

 vtm[1][0] = 0.5 * (vtm[1][0] + vtm[3][0]);
 vtm[1][1] = 0.5 * (vtm[1][1] + vtm[3][1]);
 vtm[1][2] = 0.5 * (vtm[1][2] + vtm[3][2]);
 vtm[1][3] = 0.5 * (vtm[1][3] + vtm[3][3]);

 vtm[2][0] = SN * vtm[2][0] + RN * vtm[3][0];
 vtm[2][1] = SN * vtm[2][1] + RN * vtm[3][1];
 vtm[2][2] = SN * vtm[2][2] + RN * vtm[3][2];
 vtm[2][3] = SN * vtm[2][3] + RN * vtm[3][3];
}

// Update hemi-cube view transformation matrix
void HemiClip::UpdateView(int face_id)
{
 Vector3 nu, nv, nn; // View space co-ordinates

 switch (face_id) // Exchange co-ordinates
 {
 case HC_TopFace:
 nu = u; nv = v; nn = n;
 break;
 case HC_FrontFace:
 nu = -u; nv = n; nn = v;
 break;
 case HC_RightFace:
 nu = v; nv = n; nn = u;
 break;
 case HC_BackFace:
 nu = u; nv = n; nn = -v;
 break;
 case HC_LeftFace:
 nu = -v; nv = n; nn = -u;
 break;
 default:
 break;
 }

 // Build new view transformation matrix
 BuildTransform(nu, nv, nn);
}

Listing 5.12 - HC_CLIP.CPP

The derivation of HemiClip from our abstract FormClip class completes the adaptation of PolyClip4.

The class constructor is identical to PolyClip4::PolyClip4, except that the back clipping plane has been

removed.

In addition to the functionality provided by its progenitor, HemiClip provides several functions specific

to hemi-cubes. SetView positions the hemi-cube over the polygon center and chooses a random orientation

318 Form Factor Determination
__

about the polygon normal, then stores the hemi-cube view system axis world co-ordinates in the protected

members u, v and n. UpdateView reorients these axes to the current face before calling BuildTransform,

which initializes the view transformation matrix.

BuildTransform is an adaptation of ViewSys::BuildTransform. (Listing 4.2). The only changes are the

addition of a translation transformation (Eqn. 5.35) to shift the origin from the polygon center to the hemi-

cube face and the replacement of the front and back clipping plane distance variables with the constants SN

and RN.

In terms of production-quality code, BuildTransform should really be rewritten to concatenate the view,

translation, perspective and normalization transformations into one matrix. On the other hand, the function

is not called all that often, and its present form is more amenable to debugging.

5.16.2 A Polygon Clipping Class for Cubic Tetrahedrons

Our polygon clipping class for cubic tetrahedrons will be almost–but not quite–like HemiClip. The

most notable difference is the canonical view volume shown in Figure 5.26. We need to know the normal

co-ordinates of the diagonal clipping plane, but what does it look like in four homogeneous dimensions?

The answer comes from realizing that this plane is parallel to the n-axis. This means that the third co-

ordinate of the plane normal must be zero. It also means that we can plot the plane in three dimensions as

shown in Figure 5.27. It has the plane equation u wv =+ , and we can see by inspection that the plane

normal in 4-D homogeneous co-ordinates must be { }31,0,31,31 −− .

w

v

u 0 1

1

1
u + v = w

Figure 5.27 - Diagonal clipping plane for cubic tetrahedron face

Form Factor Determination 319
__

With this, our polygon clipping class becomes:

// CT_CLIP.H - Cubic Tetrahedron Polygon Clipper Class

#ifndef _CT_CLIP_H
#define _CT_CLIP_H

#include "ct_poly.h"
#include "ff_clip.h"

// Clipping plane identifiers
enum CT_Plane { CT_Front, CT_Left, CT_Bottom, CT_Diag };

// Cubic tetrahedron polygon clipper
class CubicClip : public FormClip
{
 private:
 void BuildTransform(Vector3 &, Vector3 &, Vector3 &);

 public:
 CubicClip();

 void SetView(Patch3 *);
 void UpdateView(int);
};

#endif

Listing 5.13 - CT_CLIP.H

and:

// CT_CLIP.CPP - Cubic Tetrahedron Polygon Clipper Class

#include "ct_clip.h"

CubicClip::CubicClip() // CubicClip class constructor
{
 Vector4 temp; // Temporary vector

 // Link edge-plane clippers
 pclip = &(clipper[CT_Front]);
 clipper[CT_Front].Add(&(clipper[CT_Left]));
 clipper[CT_Left].Add(&(clipper[CT_Bottom]));
 clipper[CT_Bottom].Add(&(clipper[CT_Diag]));
 clipper[CT_Diag].Add(NULL);

 // Set clipper plane normals

 temp = Vector4(0.0, 0.0, 1.0, 0.0);
 clipper[CT_Front].SetNormal(temp.Norm());

 temp = Vector4(1.0, 0.0, 0.0, 0.0);
 clipper[CT_Left].SetNormal(temp.Norm());

 temp = Vector4(0.0, 1.0, 0.0, 0.0);
 clipper[CT_Bottom].SetNormal(temp.Norm());

 temp = Vector4(-1.0, -1.0, 0.0, 1.0);
 clipper[CT_Diag].SetNormal(temp.Norm());

320 Form Factor Determination
__

}

// Choose random cubic tetrahedron orientation
void CubicClip::SetView(Patch3 *ppatch)
{
 double a, b, c; // Temporary variables
 Vector3 rv; // Random vector
 Vector3 patch_u; // Patch view space u-axis vector
 Vector3 patch_v; // Patch view space v-axis vector
 Vector3 patch_n; // Patch view space n-axis vector

 // Get eye position (cubic tetrahedron center)
 center = ppatch->GetCenter();

 patch_n = ppatch->GetNormal(); // Get patch normal

 do // Get valid u-axis vector
 {
 // Select random vector for patch view space orientation
 rv = RandomVector();

 patch_u = Cross(patch_n, rv);
 }
 while (patch_u.Length() < MIN_VALUE);

 patch_u.Norm(); // Normalize u-axis
 patch_v = Cross(patch_u, patch_n); // Determine v-axis

 // Rotate cubic tetrahedron view space co-ordinate system
 // to align it with respect to patch view space such
 // that:
 //
 // u = a * patch_u + b * patch_v - c * patch_n
 // v = b * patch_u + a * patch_v - c * patch_n
 // n = c * patch_u + c * patch_v - c * patch_n
 //
 // where:
 //
 // a = 1 / (2 * sqrt(3)) + 1 / 2
 // b = 1 / (2 * sqrt(3)) - 1 / 2
 // c = -1 / sqrt(3)

 c = -1.0 / sqrt(3.0);
 a = (c * -0.5) + 0.5;
 b = (c * -0.5) - 0.5;

 u = a * patch_u + b * patch_v - c * patch_n;
 v = b * patch_u + a * patch_v - c * patch_n;
 n = c * patch_u + c * patch_v - c * patch_n;
}

void CubicClip::BuildTransform(Vector3 &nu, Vector3 &nv,
 Vector3 &nn)
{
 Vector3 origin; // View space origin

 origin = Vector3(center);

 // Set view transformation matrix
 vtm[0][0] = nu.GetX();

Form Factor Determination 321
__

 vtm[0][1] = nu.GetY();
 vtm[0][2] = nu.GetZ();
 vtm[0][3] = -(Dot(origin, nu));

 vtm[1][0] = nv.GetX();
 vtm[1][1] = nv.GetY();
 vtm[1][2] = nv.GetZ();
 vtm[1][3] = -(Dot(origin, nv));

 vtm[2][0] = nn.GetX();
 vtm[2][1] = nn.GetY();
 vtm[2][2] = nn.GetZ();
 vtm[2][3] = -(Dot(origin, nn));

 vtm[3][0] = 0.0;
 vtm[3][1] = 0.0;
 vtm[3][2] = 0.0;
 vtm[3][3] = 1.0;

 // Premultiply by translation matrix
 vtm[2][3] -= 1.0;

 // Premultiply by perspective transformation matrix
 vtm[3][0] += vtm[2][0];
 vtm[3][1] += vtm[2][1];
 vtm[3][2] += vtm[2][2];
 vtm[3][3] += vtm[2][3];

 // Premultiply by normalization matrix

 vtm[0][0] = (vtm[0][0] + vtm[3][0]) / 3.0;
 vtm[0][1] = (vtm[0][1] + vtm[3][1]) / 3.0;
 vtm[0][2] = (vtm[0][2] + vtm[3][2]) / 3.0;
 vtm[0][3] = (vtm[0][3] + vtm[3][3]) / 3.0;

 vtm[1][0] = (vtm[1][0] + vtm[3][0]) / 3.0;
 vtm[1][1] = (vtm[1][1] + vtm[3][1]) / 3.0;
 vtm[1][2] = (vtm[1][2] + vtm[3][2]) / 3.0;
 vtm[1][3] = (vtm[1][3] + vtm[3][3]) / 3.0;

 vtm[2][0] = SN * vtm[2][0] + RN * vtm[3][0];
 vtm[2][1] = SN * vtm[2][1] + RN * vtm[3][1];
 vtm[2][2] = SN * vtm[2][2] + RN * vtm[3][2];
 vtm[2][3] = SN * vtm[2][3] + RN * vtm[3][3];
}

// Update cubic tetrahedron view transformation matrix
void CubicClip::UpdateView(int face_id)
{
 Vector3 nu, nv, nn; // View space co-ordinates

 switch (face_id) // Exchange co-ordinates
 {
 case CT_TopFace:
 nu = -u; nv = -v; nn = n;
 break;
 case CT_RightFace:
 nu = -v; nv = -n; nn = u;
 break;
 case CT_LeftFace:

322 Form Factor Determination
__

 nu = -u; nv = -n; nn = v;
 break;
 default:
 break;
 }

 // Build new view transformation matrix
 BuildTransform(nu, nv, nn);
}

Listing 5.14 - CT_CLIP.CPP

CubicClip::SetView differs from its HemiClip equivalent in that it aligns the cubic tetrahedron view

space with respect to the polygon view space as discussed in Section 5.14 (Equations 5.30 and 5.31).

Similarly, UpdateView is based on Equation 5.32, and BuildTransform uses Equation 5.38 for its

normalization transformation.

Again, CubicClip::BuildTransform is not production-quality code. Like its sibling

HemiClip::BuildTransform, it should really be rewritten to concatenate the view, translation, perspective

and normalization transformations into one matrix. Make sure, however, that you understand how it works

first!

5.17 Polygon Scan Revisited

We can derive polygon scan conversion classes for hemi-cubes and cubic tetrahedrons from our

previous PolyRender class. Unlike PolyClip4 and its associated classes, PolyRender requires relatively few

modifications. In fact, all we need to do is to combine the pseudodepth and frame buffers into one “cell

information” buffer that holds the polygon depth and identifier for each hemi-cube face cell, eliminate the

Gouraud shading functionality, and add a HemiDelta class object.

We also need to consider triangular frame buffers for our cubic tetrahedron faces. While this is not as

difficult as it might first appear, it does require an abstract class that we can derive our two polygon scan

conversion classes from. Starting from P_RENDER.H (Listing 4.12) then, we have:

// FF_SCAN.H - Form Factor Scan Conversion Class

#ifndef _FF_SCAN_H
#define _FF_SCAN_H

#include "ff_poly.h"

static const float FF_Infinity = MAX_VALUE;
static const WORD FF_None = 0;

struct FormCellInfo // Face cell information

Form Factor Determination 323
__

{
 float depth; // Polygon cell depth
 WORD id; // Polygon identifier
};

struct FormVertexInfo // Vertex information
{
 struct // Face cell array offsets
 {
 int x; // Width offset
 int y; // Height offset
 }
 face;
 Point3 posn; // Scaled position
};

struct FormScanInfo // Scan line intersection info
{
 double x; // X-axis co-ordinate
 double z; // Pseudodepth
};

struct FormEdgeInfo // Edge information
{
 BOOL first; // First intersection flag
 FormScanInfo isect[2]; // Scan line intersection array
};

// Form factor polygon scan conversion (abstract class)
class FormScan
{
 protected:
 BOOL status; // Object status
 int ymin; // Minimum y-axis co-ord
 int ymax; // Maximum y-axis co-ord
 int num_vert; // Number of vertices
 FormCellInfo **cell_buffer; // Cell info buffer ptr
 FormEdgeInfo *edge_list; // Edge list pointer
 FormVertexInfo v_info[8]; // Vertex info table
 WORD poly_id; // Polygon identifier

 virtual void DrawEdgeList() = 0;
 void GetVertexInfo(FormPoly &);
 void ScanEdges();

 public:
 virtual ~FormScan() { };

 BOOL GetStatus() { return status; }
 void Scan(FormPoly &);
};

#endif

Listing 5.15 - FF_SCAN.H

The cell information buffer pointed to by elem_buffer replaces the Z-buffer and bitmap object pointers

maintained by PolyRender. The buffer itself will be allocated and initialized by one of the derived classes.

324 Form Factor Determination
__

Since the buffer size is fixed at compile time by the delta form factor resolution, FormScan dispenses with

the Open and Close functions required by PolyRender.

Note that DrawEdgeList has been made a pure virtual function in FormScan. This is what makes

FormScan an abstract class; there is no function body defined for DrawEdgeList. Instead, it must be

defined by a derived class.

One of the problems with virtual functions in C++ is that they are accessed at run-time through a virtual

function table pointer. While this may require only two to four additional machine instructions per function

call, these additional instructions may slow an otherwise small and fast function that could otherwise be

placed inline by the compiler. A second problem is that every object derived from a virtual class has a

hidden pointer to the virtual function table. As a rule of thumb, virtual functions should be used sparingly

and only where necessary.

DrawEdgeList is an example where a virtual function is required. It is called by Scan, which does not

know what type of frame buffer it should draw to. The code could be rewritten to avoid this situation, but it

would lose some of its elegance with no significant increase in performance.

On the other hand, the function is virtual only because we are implementing two separate form factor

determination algorithms. In its completed form, our radiosity renderer will only use one of these. In terms

of production-quality code, it would then make sense to merge FormScan with its derived class and

implement DrawEdgeList as a non-virtual function.

Incidentally, any base class with virtual functions should have a virtual destructor declared for it. This

explains the pure virtual class destructor ~FormScan. It ensures that the appropriate destructor will be

called for any derived class.

Returning from the intricacies of C++ programming rules, we have:

// FF_SCAN.CPP - Form Factor Scan Conversion Class

#include "ff_delta.h"
#include "ff_scan.h"

// Scan convert polygon
void FormScan::Scan(FormPoly &poly)
{
 poly_id = poly.GetPolyId(); // Get polygon identifier
 GetVertexInfo(poly); // Get vertex information
 ScanEdges(); // Scan convert edges
 DrawEdgeList(); // Draw edge list

Form Factor Determination 325
__

}

// Get vertex information
void FormScan::GetVertexInfo(FormPoly &poly)
{
 int i; // Loop index
 FormVertexInfo *pv; // Vertex info element pointer
 Point3 posn; // Normalized vertex position

 // Initialize polygon y-axis limits
 ymax = 0;
 ymin = FF_ArrayRes - 1;

 // Get number of vertices
 num_vert = poly.GetNumVert();

 for (i = 0; i < num_vert; i++)
 {
 pv = &(v_info[i]); // Get vertex info element pointer

 // Get vertex normalized view space co-ordinates
 posn = poly.GetVertex(i);

 // Scale view space u-v co-ordinates
 pv->posn.SetX(posn.GetX() * FF_ArrayRes);
 pv->posn.SetY(posn.GetY() * FF_ArrayRes);
 pv->posn.SetZ(posn.GetZ());

 // Convert to cell array x-y co-ordinates
 pv->face.x = (int) pv->posn.GetX();
 pv->face.y = (int) pv->posn.GetY();

 // Update polygon y-axis limits
 if (pv->face.y < ymin)
 ymin = pv->face.y;
 if (pv->face.y > ymax)
 ymax = pv->face.y;
 }
}

void FormScan::ScanEdges() // Scan convert edges
{
 int i, j; // Loop indices
 double dx; // X-axis delta
 double dz; // Pseudodepth delta
 double ix; // Intersection X-axis co-ordinate
 double iz; // Intersection pseudodepth
 double y_dist; // Y-axis distance
 FormEdgeInfo *pedge; // Edge info pointer
 FormScanInfo *pscan; // Scan line info pointer
 FormVertexInfo *psv; // Start vertex info pointer
 FormVertexInfo *pev; // End vertex info pointer
 FormVertexInfo *psw; // Swap vertex info pointer

 // Initialize edge list
 for (i = ymin; i < ymax; i++)
 edge_list[i].first = FALSE;

 for (i = 0; i < num_vert; i++)
 {

326 Form Factor Determination
__

 // Get edge vertex pointers
 psv = &(v_info[i]);
 pev = &(v_info[(i + 1) % num_vert]);

 if (psv->face.y == pev->face.y)
 {
 continue; // Ignore horizontal edges
 }

 if (psv->face.y > pev->face.y)
 {
 // Swap edge vertex pointers
 psw = psv; psv = pev; pev = psw;
 }

 // Get start vertex info
 ix = psv->posn.GetX();
 iz = psv->posn.GetZ();

 // Determine inverse slopes
 y_dist = (double) (pev->face.y - psv->face.y);

 dx = (pev->posn.GetX() - ix) / y_dist;
 dz = (pev->posn.GetZ() - iz) / y_dist;

 // Scan convert edge
 pedge = &(edge_list[psv->face.y]);
 for (j = psv->face.y; j < pev->face.y; j++)
 {
 // Determine intersection info element
 if (pedge->first == FALSE)
 {
 pscan = &(pedge->isect[0]);
 pedge->first = TRUE;
 }
 else
 pscan = &(pedge->isect[1]);

 // Insert edge intersection info
 pscan->x = ix;
 pscan->z = iz;

 // Update edge intersection info
 ix += dx;
 iz += dz;

 pedge++; // Point to next edge list element
 }
 }
}

Listing 5.16 - FF_SCAN.CPP

Once you remove the polygon color components from GetVertexInfo and ScanEdges, there is very little

difference between these functions and their PolyRender equivalents.

Form Factor Determination 327
__

5.17.1 Polygon Scan Conversion for Hemi-cubes

Deriving a polygon scan conversion class for hemi-cubes from FormScan completes our adaptation of

PolyRender. In addition to implementing the minimal changes required, we need to examine the cell

information buffer after scan conversion and sum the delta form factors. This results in the following C++

class:

// HC_SCAN.H - Hemi-Cube Scan Conversion Class

#ifndef _HC_SCAN_H
#define _HC_SCAN_H

#include "ff_scan.h"
#include "hc_delta.h"

// Hemi-cube polygon scan conversion
class HemiScan : public FormScan
{
 private:
 HemiDelta dff; // Delta form factors

 public:
 HemiScan();

 ~HemiScan();

 void InitBuffer();
 void DrawEdgeList();
 void SumDeltas(float *, int);
};

#endif

Listing 5.17 - HC_SCAN.H

and:

// HC_SCAN.CPP - Hemi-Cube Scan Conversion Class

#include "hc_poly.h"
#include "hc_scan.h"

HemiScan::HemiScan() // Class constructor
{
 int row; // Loop index

 status = TRUE; // Initialize object status

 // Allocate edge list
 if ((edge_list = new FormEdgeInfo[FF_ArrayRes]) != NULL)
 {
 // Allocate cell information buffer
 if ((cell_buffer = new (FormCellInfo (*[FF_ArrayRes])))
 != NULL)
 {
 for (row = 0; row < FF_ArrayRes; row++)

328 Form Factor Determination
__

 {
 if ((cell_buffer[row] =
 new FormCellInfo[FF_ArrayRes]) == NULL)
 {
 // Release partially allocated buffer
 row--;
 for (; row >= 0; row--)
 delete [] cell_buffer[row];
 delete [] cell_buffer;

 // Release edge list memory
 delete [] edge_list;

 status = FALSE;
 break;
 }
 }
 }
 }
 else
 {
 delete [] edge_list; // Release edge list memory
 status = FALSE;
 }
}

HemiScan::~HemiScan() // Class destructor
{
 int row; // Loop index

 delete [] edge_list; // Release edge list memory

 // Delete cell information buffer
 for (row = 0; row < FF_ArrayRes; row++)
 delete [] cell_buffer[row];
 delete [] cell_buffer;
}

// Initialize cell information buffer
void HemiScan::InitBuffer()
{
 int row, col; // Loop indices

 for (row = 0; row < FF_ArrayRes; row++)
 for (col = 0; col < FF_ArrayRes; col++)
 {
 cell_buffer[row][col].depth = FF_Infinity;
 cell_buffer[row][col].id = FF_None;
 }
}

void HemiScan::DrawEdgeList() // Draw edge list
{
 int x, y; // Loop indices
 int sx, ex; // Scan line x-axis co-ordinates
 double dz; // Pseudodepth delta
 double iz; // Element pseudodepth
 double x_dist; // X-axis distance
 FormEdgeInfo *pedge; // Edge info pointer
 FormScanInfo *pss; // Scan line start info pointer

Form Factor Determination 329
__

 FormScanInfo *pse; // Scan line end info pointer
 FormScanInfo *psw; // Swap scan line info pointer

 pedge = &(edge_list[ymin]);
 for (y = ymin; y < ymax; y++)
 {
 // Get scan line info pointers
 pss = &(pedge->isect[0]);
 pse = &(pedge->isect[1]);

 if (pss->x > pse->x)
 {
 // Swap scan line info pointers
 psw = pss; pss = pse; pse = psw;
 }

 // Get scan line x-axis co-ordinates
 sx = (int) pss->x;
 ex = (int) pse->x;

 if (sx < ex) // Ignore zero-length segments
 {
 // Determine scan line start info
 iz = pss->z;

 // Determine inverse slopes
 x_dist = pse->x - pss->x;

 dz = (pse->z - iz) / x_dist;

 // Enter scan line
 for (x = sx; x < ex; x++)
 {
 // Check element visibility
 if (iz < (double) cell_buffer[y][x].depth)
 {
 // Update Z-buffer
 cell_buffer[y][x].depth = (float) iz;

 // Set polygon identifier
 cell_buffer[y][x].id = poly_id;
 }

 // Update element pseudodepth
 iz += dz;
 }
 }
 pedge++; // Point to next edge list element
 }
}

// Sum delta form factors
void HemiScan::SumDeltas(float *ff_array, int face_id)
{
 WORD poly_id; // Polygon identifier
 int row, col; // Face cell indices

 if (face_id == HC_TopFace)
 {
 // Scan entire face buffer

330 Form Factor Determination
__

 for (row = 0; row < FF_ArrayRes; row++)
 for (col = 0; col < FF_ArrayRes; col++)
 {
 if ((poly_id = cell_buffer[row][col].id) !=
 FF_None)
 ff_array[poly_id - 1] +=
 dff.GetTopFactor(row, col);
 }
 }
 else
 {
 // Scan upper half of face buffer only
 for (row = HC_ArrayDim; row < FF_ArrayRes; row++)
 for (col = 0; col < FF_ArrayRes; col++)
 {
 if ((poly_id = cell_buffer[row][col].id) != FF_None)
 ff_array[poly_id - 1] +=
 dff.GetSideFactor(row, col);
 }
 }
}

Listing 5.18- HC_SCAN.CPP

The cell information buffer is the equivalent of the Z-buffer and bitmap (frame buffer) used by

PolyRender. PolyRender::Open is responsible for allocating and initializing a Z-buffer whose dimensions

are determined by the bitmap being written to. The size of the cell information buffer, on the other hand, is

determined by the hemi-cube resolution. This being a constant, we can allocate the buffer once at program

startup through the class constructor. This replaces PolyRender::Open; the class destructor replaces

PolyRender::Close.

HemiScan::HemiScan uses two arrays to allocate the cell information buffer one row at a time. This

allows us to minimize the possibility of running out of memory due to memory fragmentation. It also

allows us to specify hemi-cube resolutions in excess of 128 128× cells under MS-Windows 3.1. If there is

insufficient memory available, the object status flag is set to FALSE.

InitBuffer is responsible for initializing the cell information buffer. It must be called before each

polygon scan conversion.

DrawEdgeList is nearly identical to PolyRender::DrawEdgeList. The only significant difference is that

the vertex color has been replaced with the polygon identifier.

Finally, SumDeltas does precisely what its name suggests. It scans the cell information buffer looking

for covered face cells. When it finds one, it looks up the associated delta form factor and increments the

Form Factor Determination 331
__

indicated polygon’s form factor by that amount. It must be called after each pass through the environment,

since the cell information buffer is reused for the five hemi-cube faces.

5.17.2 Polygon Scan Conversion for Cubic Tetrahedrons

Deriving a polygon scan conversion class for cubic tetrahedrons from FormScan results in code that is

a near clone of HemiScan. The only difference is that we now have to allocate and access a triangular cell

information buffer. Fortunately, the changes are quite minor:

// CT_SCAN.H - Cubic Tetrahedron Scan Conversion Class

#ifndef _CT_SCAN_H
#define _CT_SCAN_H

#include "ff_scan.h"
#include "ct_delta.h"

// Cubic tetrahedron polygon scan conversion
class CubicScan : public FormScan
{
 private:
 CubicDelta dff; // Delta form factors

 public:
 CubicScan();

 ~CubicScan();

 void InitBuffer();
 void DrawEdgeList();
 void SumDeltas(float *);
};

#endif

Listing 5.19- CT_SCAN.H

and:

// CT_SCAN.CPP - Cubic Tetrahedron Scan Conversion Class

#include "ff_delta.h"
#include "ff_scan.h"
#include "ct_scan.h"

CubicScan::CubicScan() // Class constructor
{
 int row; // Loop index
 int width; // Scan line width

 status = TRUE; // Initialize object status

 // Allocate edge list
 if ((edge_list = new FormEdgeInfo[FF_ArrayRes]) != NULL)
 {

332 Form Factor Determination
__

 // Allocate cell information buffer
 if ((cell_buffer =
 new (FormCellInfo (*[FF_ArrayRes]))) != NULL)
 {
 width = FF_ArrayRes;
 for (row = 0; row < FF_ArrayRes; row++)
 {
 if ((cell_buffer[row] = new FormCellInfo[width])
 == NULL)
 {
 // Release partially allocated buffer
 row--;
 for (; row >= 0; row--)
 delete [] cell_buffer[row];
 delete [] cell_buffer;

 // Release edge list memory
 delete [] edge_list;

 status = FALSE;
 break;
 }
 width--; // Decrement scan line width
 }
 }
 }
 else
 {
 delete [] edge_list; // Release edge list memory
 status = FALSE;
 }
}

CubicScan::~CubicScan() // Class destructor
{
 int row; // Loop index

 delete [] edge_list; // Release edge list memory

 // Delete cell information buffer
 for (row = 0; row < FF_ArrayRes; row++)
 delete [] cell_buffer[row];
 delete [] cell_buffer;
}

// Initialize cell information buffer
void CubicScan::InitBuffer()
{
 int row, col; // Loop indices
 int width; // Scan line width

 width = FF_ArrayRes;
 for (row = 0; row < FF_ArrayRes; row++)
 {
 for (col = 0; col < width; col++)
 {
 cell_buffer[row][col].depth = FF_Infinity;
 cell_buffer[row][col].id = FF_None;
 }
 width--; // Decrement scan line width

Form Factor Determination 333
__

 }
}

void CubicScan::DrawEdgeList() // Draw edge list
{
 int x, y; // Loop indices
 int sx, ex; // Scan line x-axis co-ordinates
 double dz; // Pseudodepth delta
 double iz; // Element pseudodepth
 double x_dist; // X-axis distance
 FormEdgeInfo *pedge; // Edge info pointer
 FormScanInfo *pss; // Scan line start info pointer
 FormScanInfo *pse; // Scan line end info pointer
 FormScanInfo *psw; // Swap scan line info pointer

 pedge = &(edge_list[ymin]);
 for (y = ymin; y < ymax; y++)
 {
 // Get scan line info pointers
 pss = &(pedge->isect[0]);
 pse = &(pedge->isect[1]);

 if (pss->x > pse->x)
 {
 // Swap scan line info pointers
 psw = pss; pss = pse; pse = psw;
 }

 // Get scan line x-axis co-ordinates
 sx = min((int) pss->x, FF_ArrayRes - y);
 ex = min((int) pse->x, FF_ArrayRes - y);

 if (sx < ex) // Ignore zero-length segments
 {
 // Determine scan line start info
 iz = pss->z;

 // Determine inverse slopes
 x_dist = pse->x - pss->x;

 dz = (pse->z - iz) / x_dist;

 // Enter scan line
 for (x = sx; x < ex; x++)
 {
 // Check element visibility
 if (iz < (double) cell_buffer[y][x].depth)
 {
 // Update Z-buffer
 cell_buffer[y][x].depth = (float) iz;

 // Set polygon identifier
 cell_buffer[y][x].id = poly_id;
 }

 // Update element pseudodepth
 iz += dz;
 }
 }
 pedge++; // Point to next edge list element

334 Form Factor Determination
__

 }
}

// Sum delta form factors
void CubicScan::SumDeltas(float *ff_array)
{
 WORD poly_id; // Polygon identifier
 int row, col; // Face cell indices
 int width; // Scan line width

 width = FF_ArrayRes;
 for (row = 0; row < FF_ArrayRes; row++)
 {
 for (col = 0; col < width; col++)
 {
 if ((poly_id = cell_buffer[row][col].id) !=
 FF_None)
 ff_array[poly_id - 1] += dff.GetFactor(row, col);
 }
 width--; // Decrement scan line width
 }
}

Listing 5.20- CT_SCAN.CPP

You have to look closely to see the differences between CubicScan and HemiScan. The class

constructor CubicScan::CubicScan allocates the cell information buffer one row at a time as before.

However, the row length is decremented with each succeeding row to allocate the necessary triangular

buffer. Similarly, CubicScan::DrawEdgeList uses the row index when calculating the scan line x-axis co-

ordinates. This ensures that there is no possibility of the column index exceeding the current row length.

The only other difference is CubicScan::SumDeltas, which only needs to access one face type. As such,

it does not need a face identifier parameter.

5.18 A Hemi-cube Algorithm Class

We now have the necessary components to implement the hemi-cube algorithm as a C++ class.

Following the algorithm pseudocode presented in Figure 5.21, the implementation becomes almost trivial:

// HEMICUBE.H - Hemi-Cube Class

#ifndef _HEMICUBE_H
#define _HEMICUBE_H

#include "parse.h"
#include "hc_clip.h"
#include "hc_scan.h"

static int HemiFaceNum = 5;

class HemiCube // Hemi-cube
{

Form Factor Determination 335
__

 private:
 FormPoly out; // Output polygon
 HemiClip clip; // Polygon clipper
 HemiScan scan; // Polygon scan conversion

 public:
 BOOL GetStatus() { return scan.GetStatus(); }
 void CalcFormFactors(Patch3 *, Instance *, float *,
 WORD);
};

typedef HemiCube FormFactor; // Class alias

#endif

Listing 5.21 - HEMICUBE.H

The function GetStatus should be called once to ensure that the HemiScan object was able to obtain

enough memory for its cell information buffer. Assuming it was successful, CalcFormFactors can then be

called to determine the form factors from a selected polygon to all other polygons in its environment. This

function is implemented as:

// HEMICUBE.CPP - Hemi-Cube Class

#include "hemicube.h"

void HemiCube::CalcFormFactors(Patch3 *pp, Instance *pi,
 float *ff_array, WORD num_elem)
{
 int i; // Loop index
 BOOL hidden; // Patch visibility flag
 BOOL self; // Self patch flag
 WORD j; // Loop index
 WORD elem_id; // Element identifier
 Element3 *pelem; // Element pointer
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer

 // Clear the form factors array
 for (j = 0; j < num_elem; j++)
 ff_array[j] = 0.0;

 // Set the hemi-cube view transformation matrix
 clip.SetView(pp);

 // Project environment onto each hemi-cube face
 for (i = 0; i < HemiFaceNum; i++)
 {
 // Update view transformation matrix
 clip.UpdateView(i);

 scan.InitBuffer(); // Reinitialize depth buffer

 // Walk the instance list
 elem_id = 1;

336 Form Factor Determination
__

 pinst = pi;
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Check for self patch
 self = (ppatch == pp) ? TRUE : FALSE;

 // Determine patch visibility
 hidden = clip.BackFaceCull(ppatch);

 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 if (hidden == FALSE && self == FALSE)
 {
 // Clip element to face view volume
 if (clip.Clip(pelem, out, elem_id) > 0)
 {
 scan.Scan(out); // Scan convert polygon
 }
 }
 pelem = pelem->GetNext();
 elem_id++;
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Sum delta form factors
 scan.SumDeltas(ff_array, i);
 }
}

Listing 5.22 - HEMICUBE.CPP

5.18.1 A Character-Mode Test Program

Another 1,200 or so lines of source code for our growing library of C++ classes–it is time for another

character-mode test program:

// TEST_2.CPP - Hemi-cube Test Program

// NOTE: _NOT_WIN_APP must be globally defined for this
// program to be successfully compiled

#include <stdio.h>
#include <stdlib.h>

Form Factor Determination 337
__

#include <iostream.h>
#include <time.h>
#include "error.h"
#include "parse.h"
#include "hemicube.h"

// Default entity directory path
static char NoEntityDir[] = "";

static HemiCube Hemi; // Hemi-cube
static Parse Parser; // World file parser
static Environ Environment; // Environment

double Calculate(float *, WORD, BOOL);

int main(int argc, char **argv)
{
 char *pentdir; // Entity directory path
 float *ff_array; // Form factor array
 WORD num_elem; // Number of elements

 // Check hemi-cube status
 if (Hemi.GetStatus() != TRUE)
 {
 OutOfMemory();
 return 1;
 }

 // Get entity directory path (if any)
 if (argc > 2)
 pentdir = argv[2];
 else
 pentdir = NoEntityDir;

 // Parse the environment file
 if (Parser.ParseFile(argv[1], pentdir, &Environment) ==
 FALSE)
 return 1;

 // Allocate form factor array
 num_elem = Environment.GetNumElem();
 if ((ff_array = new float[num_elem]) == NULL)
 {
 OutOfMemory();
 return 1;
 }

 // Seed the random number generator
 srand((unsigned) time(NULL));

 // Calculate and display form factors
 (void) Calculate(ff_array, num_elem, TRUE);

 // Recalculate form factors and display execution time
 cout << endl << "Resolution = " << FF_ArrayRes << " x "
 << FF_ArrayRes << " cells" << endl;
 cout << "Execution time = "<< Calculate(ff_array,
 num_elem, FALSE) << " seconds";

 delete [] ff_array; // Delete form factor array

338 Form Factor Determination
__

 return 0;
}

// Calculate form factors
double Calculate(float *ff_array, WORD num_elem, BOOL
 ff_flag)
{
 clock_t start, end; // Execution time variables
 Instance *penv; // Environment pointer
 Instance *pinst; // Instance pointer
 Surface3 *psurf; // Surface pointer
 Patch3 *ppatch; // Patch pointer
 WORD src_id = 1; // Source polygon identifier
 WORD rcv_id; // Receiving polygon identifier

 // Get environment pointer
 pinst = penv = Environment.GetInstPtr();

 if (ff_flag == FALSE)
 {
 start = clock(); // Start the program timer
 }

 // Walk the instance list
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Calculate patch to element form factors
 Hemi.CalcFormFactors(ppatch, penv, ff_array,
 num_elem);

 if (ff_flag == TRUE)
 {
 // Report form factors
 cout << "Patch " << src_id << endl;
 for (rcv_id = 0; rcv_id < num_elem; rcv_id++)
 cout << " FF(" << src_id << "," << (rcv_id + 1)
 << ") = " << ff_array[rcv_id] << endl;
 }

 src_id++;
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 if (ff_flag == FALSE)
 {
 end = clock(); // Stop the program timer

Form Factor Determination 339
__

 // Return form factor calculation time
 return (double) (end - start) / CLOCKS_PER_SEC;
 }
 else
 return 0.0;
}

Listing 5.23 - TEST_2.CPP

Like TEST_1, this program is a character-mode application that sends its output to the user console.

Once again, _NOT_WIN_APP must be globally defined in order to correctly compile ERROR.CPP

(Listings 3.21 and 3.22).

TEST_2 will accept any valid environment file as its input. For example, you could enter:

TEST_2 COL_CUBE.WLD

to calculate the form factors between the faces of the two cubes in the COL_CUBE.WLD environment

(Listing 3.17). A more useful approach, however, is to develop a simple test environment (Fig. 5.28) for

which the form factors can be solved analytically as a comparison. From Siegel and Howell [1992], the

form factor from to is given by: idE jE

2

22

2 1
arctan

1

4
H
HR

H

HF EjdEi
+
−

+
=−

π
 (5.40)

where:

2

2

d
WR

d
WH

=

=
 (5.41)

and where dE is parallel to and located directly below the center of . i jE

d

W

W Ej

dEi

Figure 5.28 - Test environment

340 Form Factor Determination
__

Suppose we choose W . Substituting these values into the above equations, we find the

analytic form factor to be approximately 0.2395. We can compare this with the estimated form

factor values calculated by HemiCube by first specifying a unit area polygon, as in SQUARE.ENT (Listing

5.24).

0.1== d

EjdEi−F

ENTITY unit square
VERTEX
< 0.5 -0.5 0.0 >
< 0.5 0.5 0.0 >
< -0.5 0.5 0.0 >
< -0.5 -0.5 0.0 >
END_VERT
SURFACE
[1.0 0.0 0.0] [0.0 0.0 0.0]
END_SURF
PATCH
0 { 0 1 2 3 }
END_PATCH
ELEMENT
0 { 0 1 2 3 }
END_ELEM
END_ENTITY

Listing 5.24 - SQUARE.ENT

With this, we can arrange two instances of the square to be parallel to and face one another at a distance

of one unit, as in SQUARE.WLD (Listing 5.25).

WORLD opposing squares
COMMENT first square
square.ent
< 1.0 1.0 1.0 >
< 0.0 0.0 0.0 >
< 0.0 0.0 -0.5 >
COMMENT second square
square.ent
< 1.0 1.0 1.0 >
< 180.0 0.0 0.0 >
< 0.0 0.0 0.5 >
END_FILE

Listing 5.25 - SQUARE.WLD

HemiCube::CalcFormFactors will calculate the form factor from the center of each of these polygons

to the opposing polygon (It will also calculate the form factor to itself, which of course is always zero.) If

you enter:

TEST_2 SQUARE.WLD

when both SQUARE.ENT and SQUARE.WLD are in the current directory, your output should look

something like this:

Form Factor Determination 341
__

Polygon 1
 FF(1,1) = 0
 FF(1,2) = 0.239623
Polygon 2
 FF(2,1) = 0.240574
 FF(2,2) = 0

Resolution = 100 x 100 cells
Execution time = 0.27 seconds

Why the different values? Remember that HemiClip::SetView randomly orients the hemi-cube about

the polygon normal. The projection of the opposing polygon onto the hemi-cube depends on this

orientation. Thus, your particular output may also vary from that shown, depending on the random

numbers produced by your program’s rand function and its seed value.

(Your timing results will also depend on how busy your machine is. The above results were obtained

using an Intel ‘486 66 MHz machine running MS-DOS. If you run TEST_2 in a multitasking environment

(which includes MS-Windows 3.1), the results will indicate in part what percentage of the CPU’s time your

process has been allotted.)

5.19 A Cubic Tetrahedral Algorithm Class

Our cubic tetrahedral algorithm can be implemented as a simple variant of HemiCube:

// CUBIC_T.H - Cubic Tetrahedron Class

#ifndef _CUBIC_T_H
#define _CUBIC_T_H

#include "parse.h"
#include "ct_clip.h"
#include "ct_scan.h"

static int CubicFaceNum = 3;

class CubicTetra // Cubic tetrahedron
{
 private:
 FormPoly out; // Output polygon
 CubicClip clip; // Polygon clipper
 CubicScan scan; // Polygon scan conversion

 public:
 BOOL GetStatus() { return scan.GetStatus(); }
 void CalcFormFactors(Patch3 *, Instance *, float *,
 WORD);
};

typedef CubicTetra FormFactor; // Class alias

#endif

342 Form Factor Determination
__

Listing 5.26 - CUBIC_T.H

and:

// CUBIC_T.CPP - Cubic Tetrahedron Class

#include "cubic_t.h"

void CubicTetra::CalcFormFactors(Patch3 *pp, Instance
 *pi, float *ff_array, WORD num_elem)
{
 int i; // Loop index
 BOOL hidden; // Patch visibility flag
 BOOL self; // Self patch flag
 WORD j; // Loop index
 WORD elem_id; // Element identifier
 Element3 *pelem; // Element pointer
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer

 // Clear the form factors array
 for (j = 0; j < num_elem; j++)
 ff_array[j] = 0.0;

 // Set the cubic tetrahedron view transformation matrix
 clip.SetView(pp);

 // Project environment onto each cubic tetrahedron face
 for (i = 0; i < CubicFaceNum; i++)
 {
 // Update view transformation matrix
 clip.UpdateView(i);

 scan.InitBuffer(); // Reinitialize depth buffer

 // Walk the instance list
 elem_id = 1;
 pinst = pi;
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Check for self patch
 self = (ppatch == pp) ? TRUE : FALSE;

 // Determine patch visibility
 hidden = clip.BackFaceCull(ppatch);

 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {

Form Factor Determination 343
__

 if (hidden == FALSE && self == FALSE)
 {
 // Clip element to face view volume
 if (clip.Clip(pelem, out, elem_id) > 0)
 {
 scan.Scan(out); // Scan convert polygon
 }
 }
 pelem = pelem->GetNext();
 elem_id++;
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Sum delta form factors
 scan.SumDeltas(ff_array);
 }
}

Listing 5.27 - CUBIC_T.CPP

Apart from their polygon clipping and scan conversion classes, CubicTetra and HemiCube are

essentially identical.

5.19.1 Another Character-Mode Test Program

We can test our cubic tetrahedral algorithm code with the following test program. More importantly, we

can compare its form factor estimates with those produced by our hemi-cube implementation in TEST_2.

// TEST_3.CPP - Cubic Tetrahedron Test Program

// NOTE: _NOT_WIN_APP must be globally defined for this
// program to be successfully compiled

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <time.h>
#include "error.h"
#include "parse.h"
#include "cubic_t.h"

// Default entity directory path
static char NoEntityDir[] = "";

static CubicTetra Cubic; // Cubic tetrahedron
static Parse Parser; // World file parser
static Environ Environment; // Environment

double Calculate(float *, WORD, BOOL);

int main(int argc, char **argv)
{

344 Form Factor Determination
__

 char *pentdir; // Entity directory path
 float *ff_array; // Form factor array
 WORD num_elem; // Number of elements

 // Check cubic tetrahedron status
 if (Cubic.GetStatus() != TRUE)
 {
 OutOfMemory();
 return 1;
 }

 // Get entity directory path (if any)
 if (argc > 2)
 pentdir = argv[2];
 else
 pentdir = NoEntityDir;

 // Parse the environment file
 if (Parser.ParseFile(argv[1], pentdir, &Environment) ==
 FALSE)
 return 1;

 // Allocate form factor array
 num_elem = Environment.GetNumElem();
 if ((ff_array = new float[num_elem]) == NULL)
 {
 OutOfMemory();
 return 1;
 }

 // Seed the random number generator
 srand((unsigned) time(NULL));

 // Calculate and display form factors
 (void) Calculate(ff_array, num_elem, TRUE);

 // Recalculate form factors and display execution time
 cout << endl << "Resolution = " << FF_ArrayRes << " x "
 << FF_ArrayRes << " cells" << endl;
 cout << "Execution time = "<< Calculate(ff_array,
 num_elem, FALSE) << " seconds";

 delete [] ff_array; // Delete form factor array

 return 0;
}

// Calculate form factors
double Calculate(float *ff_array, WORD num_elem, BOOL
 ff_flag)
{
 clock_t start, end; // Execution time variables
 Instance *penv; // Environment pointer
 Instance *pinst; // Instance pointer
 Surface3 *psurf; // Surface pointer
 Patch3 *ppatch; // Patch pointer
 WORD src_id = 1; // Source polygon identifier
 WORD rcv_id; // Receiving polygon identifier

 // Get environment pointer

Form Factor Determination 345
__

 pinst = penv = Environment.GetInstPtr();

 if (ff_flag == FALSE)
 {
 start = clock(); // Start the program timer
 }

 // Walk the instance list
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Calculate patch to element form factors
 Cubic.CalcFormFactors(ppatch, penv, ff_array,
 num_elem);

 if (ff_flag == TRUE)
 {
 // Report form factors
 cout << "Patch " << src_id << endl;
 for (rcv_id = 0; rcv_id < num_elem; rcv_id++)
 cout << " FF(" << src_id << "," << (rcv_id + 1)
 << ") = " << ff_array[rcv_id] << endl;
 }

 src_id++;
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 if (ff_flag == FALSE)
 {
 end = clock(); // Stop the program timer

 // Return form factor calculation time
 return (double) (end - start) / CLOCKS_PER_SEC;
 }
 else
 return 0.0;
}

Listing 5.28 - TEST_3.CPP

Again, TEST_3.CPP is a clone of TEST_2.CPP. If you enter:

TEST_3 SQUARE.WLD

when both SQUARE.ENT and SQUARE.WLD are in the current directory, your output should look

something like:

346 Form Factor Determination
__

Polygon 1
 FF(1,1) = 0
 FF(1,2) = 0.23486
Polygon 2
 FF(2,1) = 0.23518
 FF(2,2) = 0

Resolution = 142 x 142 cells
Execution time = 0.22 seconds

There are two points of interest here. First, the estimated form factors are slightly less than those

produced by our HemiCube class. The HemiCube estimates were off by an average 0.33 percent; these are

off by 1.04 percent. Remember, however, that these are random values. Also, the accuracy of both

algorithms will vary depending on the specific polygon-to-polygon geometry and hemi-cube resolution.

The more important issue is the variance in their estimates for many thousands of polygons in a complex

environment.

The second point is that CubicTetra appears to be faster than HemiCube in determining form factors. It

was–for this particular geometry and resolution. The question is whether this will remain true when the to

algorithms are applied to a large variety of complex environments.

The cubic tetrahedral algorithm should in theory be the faster of the two. Pavicic [1994] noted that it

needs to perform an average of 2.75 clipping operations for small polygons, while the hemi-cube algorithm

must perform 3.83 such operations on average. However, there are various programming tricks that can

skew the results markedly. Suppose for example that we tag a polygon when we clip it against a face and

find that it is a) entirely within the view volume, b) backface culled or c) behind the “eye position” defined

by the view space origin and the receiving polygon’s normal. (The flags member of Element3 (Listing

3.11) has some spare bits that can be used for this purpose.) We could then trivially reject the polygon

when clipping it against subsequent faces.

Another possibility is to tag the faces themselves if a polygon is clipped against the boundary of an

adjoining face. In this case, we then know that the polygon should be clipped against the tagged face as

well. These tricks may provide marked increases in execution time for complex environments, perhaps as

much as 100 percent or more. Which algorithm is then the better one? That depends on your programming

ingenuity.

Form Factor Determination 347
__

This, however, misses the point. We examined the cubic tetrahedral algorithm as an interesting

alternative to the hemi-cube. Certainly, we can profile their performances and implement various speed-up

techniques. However, our primary objective is to explore the radiosity approach. Implementing both

algorithms is an ideal way of doing so. Besides, we now have two form factor determination classes to play

with.

5.20 A Hardware Alternative for Hemi-cubes

While the cubic tetrahedral algorithm may be faster, the hemi-cube offers an advantage for those with

computer graphics workstations: hardware acceleration. Many of these high-end machines implement 3-D

graphics primitives using specialized hardware graphics accelerators. Supported operations usually include

backface culling, 3-D polygon clipping, scan conversion, Z-buffering and Gouraud shading. A library of

callable low-level graphics functions enables users to directly access this hardware.

Rushmeier et al. [1991] discussed several techniques for accelerating the hemi-cube algorithm. For

graphics workstations they proposed the following: first, allocate a screen window to represent a hemi-

cube face and initialize the view transformation matrix. The vertices of each polygon in the environment

are then sent to the graphics coprocessor for display, with the polygon identifier representing its “color”.

Once the environment has been processed, the color is read for each pixel in the window and a polygon

form factor array updated accordingly. Expressed in pseudocode, this becomes:

Allocate graphics screen window for hemi-cube face
FOR each polygon iE
 FOR each hemi-cube face
 FOR each polygon jE
 0=ijF

 ENDFOR
 ENDFOR
 FOR each hemi-cube face
 FOR each polygon jE
 0=ijF

 color = j
 Send polygon vertex list to graphics coprocessor
 ENDFOR
 ENDFOR
 Copy window frame buffer to item buffer
 FOR each hemi-cube face cell k
 kikik FFF ∆+=
 ENDFOR

348 Form Factor Determination
__

ENDFOR

Figure 5.29 - Hardware-assisted hemi-cube algorithm

Comparing this to our software implementation, it is clear that we have done it the hard way!

Hardware-assisted hemi-cube algorithms have been implemented by Cohen et al. [1988], Baum et al.

[1989] and others. Rushmeier et al. [1991] reported that execution times for backface culling, polygon

clipping and Z-buffering were improved by a factor of 100 or more. On the other hand, the remaining

operations of issuing vertex lists to the graphics processor and summing the delta form factors still has to

be implemented in software. As a result, the overall acceleration of the hemi-cube algorithm over an

equivalent software implementation ranged from 160 percent for a resolution of 5050 × cells to 350

percent for a resolution of cells. 300300 ×

Special purpose graphics processors dedicated solely to form factor determination have been developed

(e.g., Bu and Deprettere [1987a,b] and Bu and Deprettere [1989]). However, these are so far experimental

devices. Until we have commercially available graphics coprocessors designed specifically for radiosity

rendering (or at least ones that can be microprogrammed to implement the necessary algorithms), we shall

have to rely upon our programming skills to maximize the performance of our algorithms.

5.21 The Single Plane Algorithm

We can simplify the hemi-cube algorithm even further by replacing the hemi-cube with a single

projection plane placed directly above and parallel to the differential polygon element dEi (Fig. 5.30). At

first, this appears to offer at least one advantage: there is only one plane to clip against. It is definitely

faster–Recker et al. [1990] reported a speedup of approximately 100 percent over the hemi-cube algorithm.

However, there are hidden costs to this approach that diminish its usefulness.

dEi

2S

2S

H

Figure 5.30 - Single plane algorithm

Form Factor Determination 349
__

The first problem is that the plane does not cover the entire hemisphere above the element. This means

that polygons in the environment near the horizon will be missed. In physical terms, this means that we

may underestimate the radiant flux that is either received or emitted by when we perform our radiosity

calculations. However, this may not be significant in practice. Sources near the horizon typically contribute

very little to the overall flux received by a surface due to the cosine factor. Similarly, Sillion and Puech

[1989] demonstrated that if is a Lambertian emitter, the amount of flux “escaping” from beneath the

plane is approximately

idE

idE

(2S)2 H . If we are willing to accept an error of one percent, then an HS ratio of

14:1 is appropriate.

The second problem is that the delta form factors now vary widely. If we are to avoid objectionable

aliasing artifacts, the largest delta form factors should be comparable to those of the hemi-cube. These

occur for cells directly over , and so the cell sizes should be comparable. Unfortunately, this means

that the single plane, with its area of square units (for a

idE

7844 2 =S HS ratio of 14:1) versus the hemi-

cube’s 12 square units, will have approximately 65 times as many cells as the hemi-cube!

Sillion and Puech [1989] solved this problem by using variable-size cells (which they called “proxels”).

They subdivided the plane such that each cell would have approximately the same form factor.

Unfortunately, this precludes the use of the Z-buffering algorithm for scan conversion, which requires

equal-size cells. Sillion and Puech used Warnock’s Algorithm (e.g., Sutherland et al. [1974]) to subdivide

the projected polygons until each one was either fully visible or fully hidden. While this is a more

complicated approach than the Z-buffer algorithm, it does have the advantage of having a time complexity

that is linear with the number of polygons in the scene being viewed. Sillion and Puech compared the

execution times of their single plane algorithm versus the hemi-cube algorithm for an environment of 1,152

polygons. They found both algorithms to be competitive up to a hemi-cube resolution of approximately

 cells, whereafter their approach offered better performance. 400400 ×

Recker et al. [1990] proposed an alternative solution that does not require an area subdivision

algorithm. First, a second plane with a higher cell resolution is centered within the first plane (Fig. 5.31). A

polygon is then transformed and clipped to the view volume of the outer plane, with the clipped polygon

vertices being saved for later use. The polygon is scan converted over the outer plane, ignoring the region

350 Form Factor Determination
__

occupied by the inner plane, and then summed the delta form factors for the covered cells. The saved

polygon vertices are then clipped again to the inner plane’s view volume and scan converted. The delta

form factors are summed and added to those summed during the first pass.

The lower resolution of the outer plane speeds the scan conversion process, but this is mostly negated

by having to clip and scan the polygon twice. In practice, this modified single plane algorithm reduces the

number of cells and delta form factors required by some 80 percent while offering approximately the same

execution time as the single plane algorithm.

dEi

2S

2S

H

Figure 5.31 - Modified single plane algorithm (Recker et al. [1990])

The third problem is not so easily overcome. The single plane’s field of view is much larger than the

hemi-cube’s top face, and so the view distance is much closer to the view plane window. Recalling

Equation 4.13, we can see that this will severely affect our pseudodepth scale for Z-buffering. That is, our

3-D projective transformation scales the depth of a vertex from view plane according to np

()dppp nnn −= 1' , where d is the view distance and is the pseudodepth. Given, for example, two

points with true depths 10 and 11 units from the view plane, decreasing the view distance by a factor of 14

will decrease the pseudodepth distance between them by a factor of 166.

'np

All we can do to counteract this problem is to increase the precision of our Z-buffer. In C++, this means

going from a float to a double, doubling the size of the buffer. On the other hand, this may not be

necessary. The changes to the pseudodepth scale may not pose a problem for typical environments of

interest.

Interested readers might consider implementing the modified single plane algorithm for themselves, if

only to compare its performance with the hemi-cube and cubic tetrahedral algorithms. It should be possible

Form Factor Determination 351
__

to derive a single plane class from FormClip and FormScan with relatively little effort, using HemiClip and

HemiScan as prototypes.

5.22 Stochastic Ray Casting Techniques

Ray casting techniques offer yet another approach to form factor determination. Maxwell et al. [1986]

and Malley [1988] used stochastic (Monte Carlo) techniques to shoot randomly distributed rays into the

environment from the surface of a polygon. Malley’s approach was to reverse Nusselt’s Analogy (Fig.

5.32). A hemisphere is placed over the center of a polygon, following which random points on the base are

chosen and rays shot straight up. When they intersect the surface of the hemisphere, they are redirected

along the surface normal at that point (i.e., radially from the hemisphere’s center). Each ray is then tested

for intersections with other polygons in the environment using conventional ray tracing techniques. A

polygon’s form factor is given by the number of rays it intercepts divided by the total number of rays shot.

Figure 5.32 - Monte Carlo form factor determination

This is a valuable technique in that it can be applied to both planar and curved surfaces. It can also

accommodate transparent objects and non-diffuse surfaces. The random distribution of points ensures that

aliasing artifacts are minimized, and no 3-D projective transformation, polygon clipping or scan conversion

operations are required. Moreover, there are many ray tracing techniques (e.g., Glassner [1990]) that can be

used to accelerate the ray-polygon intersection calculations. The only disadvantage is that a large number

of rays must be shot in order to approach the accuracy provided by the hemi-cube algorithm and its

variants.

352 Form Factor Determination
__

5.23 Vertex-to-Source Form Factor Determination

Many of the problems associated with the hemi-cube and cubic tetrahedral algorithms can be avoided

by taking a different appraoch to form factor determination. Wallace et al. [1989] proposed that we instead

model the emitting polygon as a finite area source and determine its form factor as seen from each

receiving polygon’s vertex in the environment (Fig. 5.33). The source is subdivided such that its size is

much smaller than the distance to the vertex. The delta form factor is then calculated for each one; the

vertex-to-source form factor is their sum.

Source

Receiver

Figure 5.33 - Receiver vertex-to-source form factors

We could use contour integration (Eqn. 5.6) to solve the individual delta form factors. However, this

can be very time consuming, and it does not address the polygon occlusion problem. Wallace et a. [1989]

instead proposed approximating each small polygon as an arbitrarily oriented disk (Fig. 5.34).

dEj

Ei

r
θ

θ

j

i a

Figure 5.34 - Form factor geometry between differential area and finite disk jdE iE

Form Factor Determination 353
__

From Siegel and Howell [1992], the analytic form factor from a differential area parallel to and at

a distance r from a finite disk with radius a is:

jdE

iE

()222 araF EidEj +=− (5.42)

This is the geometry shown in Figure 5.34, where . Using the reciprocity relation from Section

2.5 (that is,), we have:

0== ji θθ

jijiji FAFA =

()ijdEjEi ArdAF +=−
2π (5.43)

where dA is the area of a differential element surrounding the vertex and is the area of the

approximated source polygon .

j jdE iA

iE

We can generalize this result by including the cosines of the angles between the surface normals and

the direction between and . This is an approximation, but it is useful nevertheless: jdE iE

()iijjdEjEi ArdAF +≈−
2coscos πθθ (5.44)

If we divide the source polygon finely enough, we can model each as a differential area and shoot a

single ray from the receiver vertex . If the ray intersects any intervening polygons, then that portion of

the source is hidden from the vertex. Assuming that the source polygon is planar and has been evenly

subdivided, its total form factor as seen from the vertex is:

iE

jdE

nAr
HID

n
dA

F
ik

ikjk
n

k
k

j
ij

+
≈ ∑

=
2

1

coscos

π

θθ
 (5.45)

where n is the number of subdivided source polygons and is one if the kth source polygon is visible

to the vertex; otherwise it is zero.

kHID

We will later be interested in the reciprocal form factor . Using the reciprocity relation, this is: jiF

nAr
HID

n
A

F
dA
A

F
ik

ikjk
n

k
k

i
ij

j

i
ji

+
≈= ∑

=
2

1

coscos

π

θθ
 (5.46)

One comment before we continue. Equation 5.44 assumes that the source polygon can be modeled as a

circular disk. This approximation holds true for equilateral triangles and square quadrilaterals. However, it

354 Form Factor Determination
__

does not accurately model long, thin polygons. This is not a serious problem. As we shall see in Chapter

Seven, the polygonal elements in our environment should not be long and thin to begin with.

5.23.1 Ray-Polygon Intersections

The efficiency of the ray casting approach depends on how quickly we can perform ray-polygon

intersection calculations for possibly occluding polygons. Fortunately, there is a particularly elegant

algorithm for convex polygons due to Badouel [1990] that is fast and efficient.

The first step is to define the ray (Fig. 5.35). Its origin is the receiver vertex S, while its direction is the

vector r from the receiver vertex to a point E on the source polygon, or SE −=r .

S

E

n

P
r

Figure 5.35 - Ray-polygon intersection geometry

Expressed as a parametric equation (Section 4.8.2), this becomes:

() r∗+= tStp (5.47)

where t . That is, for any positive value of t, 0≥ ()tp describes a point in the direction of r. Furthermore, a

value of 0 describes a point along the ray between S and E. 1≤t≤

Now, given an arbitrary polygon, we need to determine whether it intersects the ray between S and E.

The polygon vertices define a plane, so we can first ask whether the ray intersects this plane. This problem

is equivalent to that discussed in Section 4.8.2, where the line between S and E represented a polygon edge.

Repeating Equation 4.30, we have:

rn
Sn

⋅
⋅−

=
dt (5.48)

where n is the polygon normal, S is the bound vector from the world space origin to the receiver vertex S

and d is the distance from the world space origin to the nearest point on the plane. From Equation 4.27, this

is:

pn ⋅=d (5.49)

Form Factor Determination 355
__

where p is the bound vector from the world space origin to any point on the plane. For convenience, this

can be taken as the first vertex describing the polygon.

The denominator of Equation 5.48 should be evaluated first to avoid a division-by-zero error. If it is

equal to zero, then the ray is parallel to the polygon and so does not intersect the polygon.

Equation 5.48 is then evaluated to find t. If it is less than zero, then the plane is behind the receiver

vertex S. If it is greater than one, then the plane is behind the source point E. In either case, the ray does not

intersect the polygon between S and E, and so we are done. Otherwise, we now have to determine whether

the ray intersects the polygon itself and not just its plane. This is where it gets interesting.

Assume that the polygon is a triangle with vertices , and , and that Q represents the ray-

polygon intersection point (Fig. 5.36). If we define Q as the bound vector from to Q, as the bound

vector from to and as the bound vector from to , vector addition shows us that:

0p

p

1p 2p

0p 1v

0p 1p 2v 0 2p

21 vvQ ∗+∗= βα (5.50)

where α and β are constants. The intersection point Q will be inside the polygon if and only if 0≥α ,

0≥β and 1≤+ βα .

p0

p1

p2

Q

α

β

v1

v1

v2

v2

Figure 5.36 - Vector representation of ray-triangle intersection point Q

Separating Equation 5.50 into its world space axis components, we have:

() (
() (
() (02010

02010

02010

zzzzzz

yyyyyy

xxxxxx

Q

Q

Q

−+−=−

−+−=−

−+−=−

βα

βα

βα)
)

)
 (5.51)

356 Form Factor Determination
__

We want to solve for α and β. Suppose we project the triangle and vectors shown in Figure 5.36 onto the

x-y, x-z or y-z plane. That is, we only consider two of the three equations in the above equation. We must

ensure that the polygon is not perpendicular to the plane; otherwise, the projection will be a straight line.

We therefore need to find the dominant axis of the polygon normal (i.e., the component with the largest

magnitude) and choose the plane perpendicular to it. Given the polygon normal { }zyx nnn ,,=n , we

choose an axis q such that:

()
()
()









=

=

=

=

zyxz

zyxy

zyxx

nnnnifz

nnnnify

nnnnifx

q

,,max

,,max

,,max

 (5.52)

We then project onto the plane perpendicular to this axis. If we define its axes as s and t, then we have:

ttss

ttss

ttsso

pptpps
pptpps

pQtpQs

022022

011021

000

,
,
,

−=−=
−=−=

−=−=
 (5.53)

Substituting these into Equation 5.51, we have:

210

210

ttt
sss

∗+∗=
∗+∗=

βα
βα

 (5.54)

or, expressed in matrix form:









=

















0

0

21

21

t
s

tt
ss

β
α

 (5.55)

Using Cramer’s Rule (see any text on elementary matrix theory), the solutions to this equation are:

1221

0220

21

21

20

20

det

det

tsts
tsts

tt
ss
tt
ss

−
−

=



















=α (5.56)

and:

1221

1001

21

21

01

01

det

det

tsts
tsts

tt
ss
tt
ss

−
−

=



















=β (5.57)

Form Factor Determination 357
__

Solving for α and β allows to us to determine whether a given ray intersects a triangular polygon. We

can clearly extend this result to any convex polygon by dividing it into triangles.

Badouel’s algorithm is one of several possible approaches to determining ray-polygon intersections.

Two other algorithms of interest are presented by Haines [1991] and Voorhies and Kirk [1991]. Also, Woo

[1990] offers an acceleration technique using bounding boxes to quickly cull non-occluding polygons

before performing detailed ray-polygon intersection calculations.

One simple acceleration technique we can employ is called shadow caching (Haines and Greenberg

[1986]). The likelihood is that if a ray shot from the vertex to the source is occluded by a given polygon,

then other rays shot to the source will also be occluded by the same polygon. When a shot ray is occluded

then, a pointer to the occluding polygon is cached. When the next ray from the vertex is shot, this polygon

is tested first. If it occludes the ray, then there is no need to step through the rest of the environment.

5.23.2 Source Point Distribution

The accuracy of the ray casting approach depends on the number of rays we shoot from a vertex to the

source. The question is, how should we choose points on the source such that we adequately sample the

environment for occluding polygons?

One approach is to use the element vertices that define the source patch. Depending on the distance of

the source from the receiver, this may or may not provide adequate sampling resolution. In either case, the

uniform spacing of the element vertices may cause form factor aliasing problems. Wallace et al. [1989]

show that any aliasing artifacts will be particularly noticeable at shadow edges. What should be soft-edged

shadows will have a jagged staircase appearance. The effect is similar to that of hemi-cube aliasing, except

that it can be more noticeable.

A second approach is to calculate the vertex radiant exitances and then average each one according to

its nearest neighbors. Our Vertex3 class allows us to do this, since each vertex has a pointer to a linked list

of shared polygons.

The best approach, however, is to choose a set of uniformly random points on the source polygon. The

more rays we shoot from the receiver, the better the form factor estimate will be. The resultant random ray

358 Form Factor Determination
__

directions will tend to minimize any form factor aliasing, much as jittering the orientation did for the hemi-

cube algorithm.

This requires yet another algorithm. Turk [1990] describes a simple technique for triangles and convex

polygons. Given a triangle with vertices , and (Fig. 5.37) and two random numbers s and t

between 0 and 1, a random point Q inside the triangle is given by:

0p 1p 2p

IF 1>+ ts
 ss −= 1
 t t−=1
ENDIF

tsa −−= 1
sb =
tc =

210 pppQ ∗+∗+∗= cba

where the vertices p and the intersection point Q are expressed as bound vectors from vertex . 0p

p0

p0

p1

p1

p2

p2

Q

Q

s

t

s

t

1-t

1-s

s + t <= 1

s + t > 1

Figure 5.37 - Generating a random point inside a triangle

Form Factor Determination 359
__

We can extend this algorithm to convex polygons by dividing them into triangles and using a third

random number to choose which triangle should be considered. To maintain a uniform distribution, the

probability of choosing a given triangle should be determined by its area relative to that of the polygon.

There is one final consideration: what is an appropriate number of rays to shoot? With each successive

ray, the form factor estimate determined by Equation 5.46 becomes more accurate. We could continue to

shoot rays until the difference between successive estimates is less than some predetermined criterion.

(This being a random process, several more rays should be shot to ensure that the difference is not a

statistical fluke.) Since the total number of rays appears in Equation 5.46, it would have to be recalculated

with each new ray shot.

The problem with this approach is that it becomes increasingly inefficient as the distance between the

source and the receiver vertex decreases. When they are very close and the true form factor approaches

unity, rays shot towards the horizon of the receiver vertex’s hemispherical field of view will have very

little effect.

Wallace et al. [1989] solved this problem by adaptively subdividing the source polygon such that each

subdivided area had approximately the same analytic form factor when seen from the receiver vertex. In

this sense, it is similar to Sillion and Puech’s single plane algorithm (Sillion and Puech [1989]), except that

the plane is overlaid on the source polygon. Wallace et al. then shot a ray to the center of each subdivided

polygon. Excellent results were obtained using as few as sixteen rays per receiver vertex. Unfortunately,

there is a considerable amount of overhead involved in subdividing arbitrary polygons in this manner.

Wallace et al. used uniform subdivision for the more complex images in their paper.

Another possible solution is to estimate the unoccluded form factor of the source patch and scale the

number of rays to be shot according to this estimate. A small or distant source patch will require relatively

few rays, say a minimum of four. A large or very close patch will require a large number of rays, perhaps

as many as several thousand for a patch that nearly fills the hemispherical field of view of the receiver

vertex.

Suppose we enclose the source patch in a bounding sphere that is centered on the patch’s center and

whose radius r is equal to the distance to the furthest vertex (Fig. 5.38).

360 Form Factor Determination
__

Receiver vertex

Source patch

Bounding sphere

θ

ω

n φ

r

d

Figure 5.38 - Unoccluded form factor estimate geometry

Knowing the distance d of the patch center from the receiver vertex, we can calculate the half-angle φ

subtended by the sphere as:

(drarctan=)φ (5.58)

and the corresponding solid angle ω as:

()φπω cos12 −= (5.59)

(e.g., Hall [1989]). From this, the form factor of the bounding sphere is approximated by (Cohen and

Wallace [1993]):

ω
π

θcos
≈−sourcevertexF (5.60)

We should be careful when implementing this solution. Solving the radiosity equation involves more

than simply obtaining reasonable form factor estimates. A small but highly luminous light source located

near the vertex’s horizon may provide most of the incident flux at the vertex. In this case, we shall want to

determine whether another patch occludes even a small portion of the source patch. We need to shoot some

minimum number of rays–say four–in order to ensure accurate form factor estimates for all sources,

regardless of their position and orientation relative to the receiver vertex.

A second consideration is that we will likely be subdividing our surfaces into patches and elements

such that the Five-Times Rule (Section 5.5) is satisfied. There will be occasions where this assumption

must fail–surfaces that join at right angles, for example–but then there will likely be no intervening

patches. Given this, it is reasonable to use a constant number of rays that adequately sample source patches

Form Factor Determination 361
__

with a maximum half-angle φ of 0.1 radians (5.7 degrees). Again, four rays will usually provide adequate

results.

5.23.3 Ray Casting Advantages and Disadvantages

Before implementing a C++ class for our ray casting algorithm, we should review the advantages

offered by the ray casting approach. First and foremost, it efficiently samples the environment. Rays are

cast only in the precise direction of the source for each vertex.

Second, ray casting mostly avoids the aliasing problems caused by a uniform sampling of the

environment. In particular, the plaid-like shading artifacts that are sometimes evident when the hemi-cube

algorithm is used are no longer a concern.

Third, the ray casting approach ensures that all sources are considered, regardless of their size. Unlike

the hemi-cube algorithm and its derivatives, there is no possibility that a small and distant light source will

be missed. This allows the user to include point light sources in the description of the environment.

Related to this advantage is the ability to include physically realistic light sources in the environment

description. Most light sources have non-Lambertian flux distributions (e.g., Warn [1983], Verbeck and

Greenberg [1984], Ashdown [1993]). A theater spotlight is an extreme but still common example–its flux

is emitted primarily in one direction. Most light fixture manufacturers provide goniophotometric diagrams

that represent the fixture as a point source and show or tabulate its luminous intensity for various vertical

and horizontal angles (e.g., IESNA [1993]).

Ray casting allows us to readily incorporate these sources in our radiosity solutions. This includes not

only theoretical point sources (Warn [1983], but also physically accurate area sources (Verbeck and

Greenberg [1984]) and complex volume sources (Ashdown [1993]). All that is required is a C++ object for

the light source that encapsulates its three-dimensional flux distribution and returns the luminance of a ray

leaving the source in a given direction.

Fourth, we need to know the vertex exitances in order to perform Gouraud shading of the visible

elements in a scene. We shall see in the next chapter that the hemi-cube algorithm only provides exitances

for the element centers; the vertex exitances must be obtained through interpolation. In contrast, the ray

casting algorithm provides the vertex exitances directly.

362 Form Factor Determination
__

A fifth advantage comes from our ability to model complex surfaces as a mesh of polygon patches and

elements. Wallace et al. [1991] used a quadratic spline to model a complex curved surface. This was then

represented by a mesh of 1176 elements for radiosity and rendering purposes. However, the ray occlusion

tests were performed using the implicit quadratic spline equation for the surface. Rather than testing for

occlusion against each element for each vertex and each ray (five rays per vertex were used), the test

function only had to solve a fairly simple equation.

A final advantage is that ray casting determines one form factor at a time. Unlike the hemi-cube

algorithm, there is no need to provide storage for the form factors of every element in the environment.

Compared to these advantages, the two disadvantages of ray casting are minor but still noteworthy.

First, the hemi-cube algorithm processes each element in the environment once for each patch. Given m

patches and n elements, this results in an algorithmic time complexity of ()mnO . (See Section 2.6 for an

overview of the meaning of time complexity.) A naive implementation of the ray casting algorithm, on the

other hand, processes each patch in the environment once for each vertex for the ray occlusion tests.

However, it must also process every element in the environment for each source patch to test for possible

occlusion. This gives a time complexity of O . Thus, ray casting becomes increasingly more

expensive relative to the hemi-cube approach as the complexity of the environment grows. Fortunately, this

situation improves dramatically when ray tracing acceleration techniques (e.g., Arvo and Kirk [1989]) or

implicit surface equations (e.g., Wallace [1989]) are used.

)(2mn

The second disadvantage is that the ray casting algorithm requires the vertex normal for its ray

occlusion test calculations. This adds an additional 12 bytes to every Vertex3 object. Without it (and the

hemi-cube algorithm does not need it), the size of Vertex3 could be reduced by over 25 percent. This can

be a significant amount of memory for complex environments.

Vilaplana and Pueyo [1992] noted a corollary to these disadvantages. An extremely complex

environment can in theory be stored in virtual memory. However, we shall see in the next chapter that both

the hemi-cube and ray casting algorithms continually cycle through the entire environment as the radiosity

equation is being solved. This means that portions of the environment will be repeatedly paged from virtual

memory. In practical terms, this means a nearly continuous stream of data will occur to and from the hard

Form Factor Determination 363
__

This is where the inner loop of the ray occlusion test becomes important. Accessing every patch for

every vertex may greatly increase the amount of virtual memory paging. In situations where virtual

memory usage is unavoidable, ray casting may not be the algorithm of choice.

disk or network server. The polite term for this behavior is “thrashing”; network system administrators and

other frustrated users often use more colorful terminology.

5.24 A Ray Casting Algorithm Class

We can assemble the above algorithms into a class that, stated in pseudocode, performs the following:

Select source patch s
Select vertex v
Form factor estimate 0=vsF
IF source patch is not backface
 FOR number of rays
 Select random point on source patch
 IF point visible from vertex
 Shoot ray from vertex to source point
 FOR all other patches in environment
 Check for ray occlusion
 ENDFOR
 IF ray not occluded
 Update form factor estimate vsF
 ENDIF
 ENDIF
 ENDFOR
ENDIF

Figure 5.39 - Ray casting algorithm pseudocode

Given a source patch s, this algorithm is repeated for every vertex in the environment. Unlike the hemi-

cube algorithm, it returns a single form factor estimate.

Expanding the pseudocode into C++, we have:

// RAY_CAST.H - Ray Cast Form Factor Class

#ifndef _RAY_CAST_H
#define _RAY_CAST_H

#include "parse.h"

// Maximum number of rays to be cast
static const int RC_NumRays = 4;

class RayCast // Ray cast form factor determination
{
 private:
 double ray_area; // Intersection area
 double src_area; // Source patch area
 double selector; // Triangle selector

364 Form Factor Determination
__

 Patch3 *psrc; // Source patch pointer
 Patch3 *pcache; // Last occluding patch
 Vector3 end; // Intersection vector
 Vector3 ray_dir; // Ray direction
 Vector3 src_center; // Source patch center
 Vector3 src_norm; // Source patch normal
 Vector3 start; // Receiver vertex vector
 Vector3 v0, v1, v2, v3; // Vertex vectors

 void Select(Vector3 *);
 BOOL CheckOcclusion(Instance *);
 BOOL TestPatch(Patch3 *);

 public:
 void Init(Patch3 *);
 double CalcFormFactor(Vertex3 *, Instance *);
};

#endif

Listing 5.29 - RAY_CAST.H

Init is called once for each source patch to initialize the RayCast private members with several of its

attributes. The environment is then processed one vertex at a time. Recalling that each Instance3 object has

a pointer to its linked list of vertices, we can access each vertex exactly once. CalcFormFactor is then

called to estimate the vertex-to-source form factor.

Note that RC_NumRays is set to 4. This will produce satisfactory results for most environments.

However, it should be increased for environments where the vertex-to-source distance is expected to be

small in comparison to the source patch width.

The remainder of the class consists of:

// RAY_CAST.CPP - Ray Cast Form Factor Class

#include "ray_cast.h"

double RayCast::CalcFormFactor(Vertex3 *pvertex, Instance
 *penv)
{
 int i; // Loop index
 double ff; // Vertex-source form factor
 double ray_len; // Ray length
 Vector3 nv; // Vertex normal
 Vector3 n_ray; // Normalized ray direction
 Vector3 r_ray; // Reverse normalized ray direction
 Vector3 view; // Source patch view vector

 start = Vector3(pvertex->GetPosn());
 nv = pvertex->GetNormal();
 view = start - src_center;

 // Determine whether source patch is backface
 if (Dot(src_norm, view) < MIN_VALUE)

Form Factor Determination 365
__

 return 0.0;

 ff = 0.0;
 for (i = 0; i < RC_NumRays; i++)
 {
 // Select random point on source patch
 Select(&end);

 // Generate ray to shoot from vertex to source
 ray_dir = end - start;

 // Check for source point behind vertex
 if (Dot(nv, ray_dir) < MIN_VALUE)
 continue;

 // Test for ray-element intersection
 if (CheckOcclusion(penv) == FALSE)
 {
 // Calculate ray length
 ray_len = ray_dir.Length();

 // Calculate normalized ray direction
 n_ray = ray_dir;
 n_ray.Norm();

 // Determine reverse normalized ray direction
 r_ray = -n_ray;

 // Update form factor estimation
 ff += Dot(n_ray, nv) * Dot(r_ray, src_norm) / ((PI *
 ray_len * ray_len) + ray_area);
 }
 }

 // Multiply by ray-source patch intersection area
 ff *= ray_area;

 return ff;
}

// Initialize parameters for source patch
void RayCast::Init(Patch3 *ppatch)
{
 double a1, a2; // Triangle areas
 Vector3 temp; // Temporary 3-D vector
 Vector3 e0, e1, e2; // Edge vectors

 psrc = ppatch;
 pcache = NULL;
 src_area = psrc->GetArea();
 src_norm = psrc->GetNormal();
 src_center = Vector3(psrc->GetCenter());
 ray_area = src_area / RC_NumRays;

 // Get patch vertex vectors
 v0 = Vector3(ppatch->GetVertexPtr(0)->GetPosn());
 v1 = Vector3(ppatch->GetVertexPtr(1)->GetPosn());
 v2 = Vector3(ppatch->GetVertexPtr(2)->GetPosn());
 v3 = Vector3(ppatch->GetVertexPtr(3)->GetPosn());

366 Form Factor Determination
__

 // Calculate patch edge vectors
 e0 = Vector3(v1 - v0);
 e1 = Vector3(v2 - v0);

 // Calculate first triangle area
 temp = Cross(e0, e1);
 a1 = temp.Length() / 2.0;

 if (ppatch->IsQuad() == TRUE)
 {
 // Calculate patch edge vector
 e2 = Vector3(v3 - v0);

 // Calculate second triangle area
 temp = Cross(e1, e2);
 a2 = temp.Length() / 2.0;
 }
 else
 a2 = 0.0;

 // Calculate fractional area of first triangle
 selector = a1 / (a1 + a2);
}

// Select random point within source patch area
void RayCast::Select(Vector3 *ppoint)
{
 double s, t; // Random point parameters

 // Get random point parameters
 s = GetNormRand();
 t = GetNormRand();

 // Ensure random point is inside triangle
 if (s + t > 1.0)
 {
 s = 1.0 - s;
 t = 1.0 - t;
 }

 // Calculate random point co-ordinates
 if (GetNormRand() <= selector)
 {
 // Locate point in first triangle
 *ppoint = (1.0 - s - t) * v0 + s * v1 + t * v2;
 }
 else
 {
 // Locate point in second triangle
 *ppoint = (1.0 - s - t) * v0 + s * v2 + t * v3;
 }
}

// Check for ray occlusion
BOOL RayCast::CheckOcclusion(Instance *pinst)
{
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer

 // Test cached patch for ray-patch intersection

Form Factor Determination 367
__

 if (TestPatch(pcache) == TRUE)
 return TRUE;

 // Walk the instance list
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 if (ppatch != psrc) // Ignore source patch
 {
 // Test for ray-patch intersection
 if (TestPatch(ppatch) == TRUE)
 {
 // Cache occluding patch
 pcache = ppatch;

 return TRUE;
 }
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 return FALSE;
}

// Check for ray-patch intersection (Badouel's Algorithm)
BOOL RayCast::TestPatch(Patch3 *ppatch)
{
 BOOL i_flag; // Intersection flag
 int i; // Loop index
 int i0, i1, i2; // Projection plane axis indices
 double alpha; // Scaling parameter
 double beta; // Scaling parameter
 double dist; // Patch plane distance
 double d, t; // Temporary variables
 double isect[3]; // Ray-patch intersection
 double n_mag[3]; // Patch normal axis magnitudes
 double vert[4][3]; // Patch vertices
 double s0, s1, s2; // Projected vector co-ordinates
 double t0, t1, t2; // Projected vector co-ordinates
 Point3 *pvp; // Vertex position pointer
 Vector3 normal; // Patch normal
 Vector3 temp; // Temporary 3-D vector

 // Check for valid patch
 if (ppatch == NULL)
 return FALSE;

 // Get patch normal
 normal = ppatch->GetNormal();

368 Form Factor Determination
__

 // Calculate divisor
 d = Dot(normal, ray_dir);

 // Determine whether ray is parallel to patch
 if (fabs(d) < MIN_VALUE)
 return FALSE;

 // Calculate patch plane distance
 temp = Vector3(ppatch->GetVertexPtr(0)->GetPosn());
 dist = Dot(normal, temp);

 // Calculate ray hit time parameter
 t = (dist - Dot(normal, start)) / d;

 // Check whether patch plane is behind receiver vertex or
 // source patch point
 //
 // NOTE: MIN_VALUE offsets are required to prevent
 // interpretation of adjoining surface vertices as
 // occlusions
 if (t < MIN_VALUE || t > (1.0 - MIN_VALUE))
 return FALSE;

 // Calculate ray-patch plane intersection
 temp = start + (ray_dir * t);

 // Get intersection axes
 isect[0] = temp.GetX();
 isect[1] = temp.GetY();
 isect[2] = temp.GetZ();

 // Get patch normal axis magnitudes
 n_mag[0] = fabs(normal.GetX());
 n_mag[1] = fabs(normal.GetY());
 n_mag[2] = fabs(normal.GetZ());

 // Get patch vertex axes
 for (i = 0; i < ppatch->GetNumVert(); i++)
 {
 pvp = ppatch->GetVertexPtr(i)->GetPosnPtr();
 vert[i][0] = pvp->GetX();
 vert[i][1] = pvp->GetY();
 vert[i][2] = pvp->GetZ();
 }

 // Find patch normal dominant axis
 if ((n_mag[0] >= n_mag[1]) && (n_mag[0] >= n_mag[2]))
 {
 i0 = 0; i1 = 1; i2 = 2; // X-axis dominant
 }
 else if ((n_mag[1] >= n_mag[0]) && (n_mag[1] >= n_mag[2]))
 {
 i0 = 1; i1 = 0; i2 = 2; // Y-axis dominant
 }
 else
 {
 i0 = 2; i1 = 0; i2 = 1; // Z-axis dominant
 }

Form Factor Determination 369
__

 // Calculate projected vertex #0 co-ordinates
 s0 = isect[i1] - vert[0][i1];
 t0 = isect[i2] - vert[0][i2];

 // Check for intersection (consider quadrilateral as two
 // adjacent triangles
 i = 2;
 i_flag = FALSE;
 do
 {
 // Calculate projected vertex co-ordinates
 s1 = vert[i - 1][i1] - vert[0][i1];
 t1 = vert[i - 1][i2] - vert[0][i2];

 s2 = vert[i][i1] - vert[0][i1];
 t2 = vert[i][i2] - vert[0][i2];

 // Determine vector scaling parameters
 if (fabs(s1) < MIN_VALUE) // Is s1 == 0 ?
 {
 beta = s0 / s2;
 if ((beta >= 0.0) && (beta <= 1.0))
 {
 alpha = (t0 - beta * t2) / t1;
 i_flag = ((alpha >= 0.0) && ((alpha + beta) <=
 1.0));
 }
 }
 else
 {
 beta = (s1 * t0 - s0 * t1) / (s1 * t2 - s2 * t1);
 if ((beta >= 0.0) && (beta <= 1.0))
 {
 alpha = (s0 - beta * s2) / s1;

 // Test for intersection
 i_flag = ((alpha >= 0.0) && ((alpha + beta) <=
 1.0));
 }
 }
 i++; // Advance to next triangle (if any)
 }
 while (i_flag == FALSE && i < ppatch->GetNumVert());

 return i_flag;
}

Listing 5.30 - RAY_CAST.CPP

While somewhat lengthy, the above code is mostly a straightforward rendition of the preceding

algorithms. You might compare it against the total amount of C++ code needed to implement the hemi-

cube and cubic tetrahedral algorithms.

The only implementation issue of note is TestPatch, where a small value (MIN_VALUE) is added to the

tests that determine whether the patch intersects the ray between the receiver vertex and the source.

370 Form Factor Determination
__

Remember that adjoining surfaces do not share vertices, since they will likely have different Spectra

exitance values. The offsets are necessary to prevent these vertices from being seen as occluding the ray.

Note also that RayCast does not implement the bounding sphere heuristic. Instead, it always shoot

RC_NumRays rays (defined in RAY_CAST.H above). Implementation of Equations 5.58 through 5.60 is

left as an exercise for the reader.

5.24.1 Yet Another Character-Mode Test Program

We can test RayCast with the following test program:

// TEST_4.CPP - Ray Casting Test Program

// NOTE: _NOT_WIN_APP must be globally defined for this
// program to be successfully compiled

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <time.h>
#include "error.h"
#include "parse.h"
#include "ray_cast.h"

// Default entity directory path
static char NoEntityDir[] = "";

static RayCast Ray; // Ray casting
static Parse Parser; // World file parser
static Environ Environment; // Environment

int main(int argc, char **argv)
{
 char *pentdir; // Entity directory path
 Instance *penv; // Environment pointer
 Instance *pinst_1; // Instance pointer
 Instance *pinst_2; // Instance pointer
 Surface3 *psurf; // Surface pointer
 Patch3 *ppatch; // Patch pointer
 Vertex3 *pvert; // Vertex pointer
 WORD src_id = 1; // Source patch identifier
 WORD rcv_id; // Receiving vertex identifier

 // Get entity directory path (if any)
 if (argc > 2)
 pentdir = argv[2];
 else
 pentdir = NoEntityDir;

 // Parse the environment file
 if (Parser.ParseFile(argv[1], pentdir, &Environment) ==
 FALSE)
 return 1;

 // Seed the random number generator

Form Factor Determination 371
__

 srand((unsigned) time(NULL));

 // Get environment pointer
 pinst_1 = penv = Environment.GetInstPtr();

 // Walk the instance list
 while (pinst_1 != NULL)
 {
 // Walk the surface list
 psurf = pinst_1->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Initialize the ray casting object
 Ray.Init(ppatch);
 cout << "Patch " << src_id << endl;

 // Walk the instance list
 rcv_id = 1;
 pinst_2 = penv;
 while (pinst_2 != NULL)
 {
 // Walk the vertex list
 pvert = pinst_2->GetVertPtr();
 while (pvert != NULL)
 {
 cout << " FF(" << rcv_id++ << "," << src_id <<
 ") = " << Ray.CalcFormFactor(pvert, penv)
 << endl;
 pvert = pvert->GetNext();
 }
 pinst_2 = pinst_2->GetNext();
 }
 src_id++;
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst_1 = pinst_1->GetNext();
 }

 cout << endl << "Number of rays = " << RC_NumRays;

 return 0;
}

Listing 5.31 - TEST_4.CPP

TEST_4 can be used with any environment (*.WLD) file. To verify the results, however, we can use:

WORLD opposing squares
COMMENT first square
square.ent
< 0.0001 0.0001 1.0 >
< 0.0 0.0 0.0 >
< 0.0 0.0 -0.5 >
COMMENT second square

372 Form Factor Determination
__

square.ent
< 1.0 1.0 1.0 >
< 180.0 0.0 0.0 >
< 0.0 0.0 0.5 >
END_FILE

Listing 5.32 - RAY_TEST.WLD

This is essentially the same geometric arrangement as that shown in Figure 5.28, where W . The

differential element is approximated by a square measuring 0.0001 units across. From Equations 5.40 and

5.41, the analytic form factor is approximately 0.2395.

1== d

Since the vertices are relatively close to the source patch (more so than they would likely be in a typical

environment, RC_NumRays (Listing 5.29) should be defined as 16 for the purposes of this test program. A

sample run of TEST_4 will then produce something like:

Patch 1
 FF(1,1) = 0
 FF(2,1) = 0
 FF(3,1) = 0
 FF(4,1) = 0
 FF(5,1) = 0.243623
 FF(6,1) = 0.232016
 FF(7,1) = 0.230337
 FF(8,1) = 0.222784
Patch 2
 FF(1,2) = 1.4147e-009
 FF(2,2) = 1.41473e-009
 FF(3,2) = 1.4147e-009
 FF(4,2) = 1.41466e-009
 FF(5,2) = 0
 FF(6,2) = 0
 FF(7,2) = 0
 FF(8,2) = 0

Number of rays = 16

Again, remember that these values were produced by a random process. This explains why the four

largest form factors differ slightly. On the other hand, note that the form factors to the differential patch #2

are calculated. If you run TEST_2 and TEST_3 on RAY_TEST.WLD, you will see that the hemi-cube and

cubic tetrahedral algorithms miss these values entirely.

5.25 Visibility Preprocessing

We have so far used backface culling to eliminate those polygons that face away from the source patch

(hemi-cube algorithm) or receiver vertex (ray casting algorithm). This still leaves us with the task of

examining each and every polygon in the environment for each source patch or receiver vertex. Since the

Form Factor Determination 373
__

underlying patch effectively divides the environment into two half-spaces, we should consider possible

techniques for eliminating those polygons (and portions thereof for boundary cases) in the half-space we

cannot “see” from the hemi-cube or vertex as quickly and efficiently as possible.

We need not look far; the ray tracing literature is replete with visibility preprocessing algorithms. The

basic principle is to divide the environment into a hierarchy of nested subspaces. One example is octree

encoding, where the volume of space enclosing the environment is recursively divided into eight subspaces

called octants (Fig 5.39). A data structure such as:

struct OctreeNode
{
 Element3 *pelem; // Element pointer
 OctreeNode *pchild[8]; // Child node pointers
};

is then used to link these subspaces into a octree. Each leaf node of the tree points to exactly one patch

element; the subspace representing the node forms a spatial bounding box around the element. Traversing

the tree from root to leaf allows us to determine the position of element to within the limits of the bounding

box. It also allows us to cull large portions of the tree without having to examine each element.

Figure 5.39 - Subdividing a 3-D space into octants

A more efficient technique for representing the hierarchy of octants is binary space partitioning. The

environment is recursively divided into half-spaces by planes, where three perpendicular planes form eight

octants. Each node requires less memory, and the depth of the tree is typically smaller than the octree.

Wang and Davis [1990] present a visibility preprocessing algorithm based on a binary space

partitioning (BSP) tree that specifically addresses hemi-cube requirements. They used a priority list

374 Form Factor Determination
__

structure to order the partitioning planes in front to back order as seen from the hemi-cube center. By

traversing this list, they managed to avoid having to perform Z-buffering for the elements.

BSP trees are also very useful for ray casting vertex-to-source form factors. Sung and Shirley [1992]

examined a variety of spatial subdivision algorithms and concluded that the BSP offers the best

performance for ray tracing applications. Included with their presentation is an extensive and well

documented implementation written in C.

Finally, Ng and Slater [1993] provide a wealth of information on BSP trees and bounding boxes

relating to their study of a multiprocessor-based radiosity renderer. By enclosing the source and receiver

patches in an axis-aligned bounding box (Fig. 5.40), they were able to cull most non-occluding polygons

by checking whether any of their vertices were inside the box. Constructing the box for each pair of

polygons and checking vertices against it can proceed very quickly, since the bounding planes of the box

are parallel to the world space axes.

x

z

y

Figure 5.40 - Bounding box approach to culling non-occluding polygons

The advantage of the bounding box approach is that it eliminates the need to build, store and

manipulate a BSP tree or other auxiliary data structure. Ng and Slater [1993] found that using bounding

boxes alone resulted in execution speeds nearly twice that of implementations based on BSP trees for small

environments of less than 500 polygons.

More information on bounding boxes and related techniques can be found in Marks et al. [1990],

Haines and Wallace [1991] and Zhang [1991]. In addition, an excellent source of ray tracing acceleration

techniques is Arvo and Kirk [1989].

Form Factor Determination 375
__

5.26 Conclusions

Form factor determination is a major component of any radiosity rendering program, and so it is

entirely appropriate that we have devoted so much space to the topic. It is also frustrating not to have the

space to address the topic in even greater depth. Interested readers are strongly encouraged to investigate

the following references: Baum et al. [1989], Cohen and Wallace [1993], Max and Troutman [1993], Max

and Allison [1992], Pietrek [1993], Recker et al. [1990], Rushmeier et al. [1991], Sbert [1993], Sillion and

Puech [1989], Spencer [1992], Sun et al. [1993], Tampieri [1992], Vilaplana and Pueyo [1992], Wallace

[1989], Wang et al. [1992], Wang and Davis [1990], Emery et al. [1991] and Zhou and Peng [1992].

A visibility preprocessing algorithm should be included in any production quality radiosity renderer.

The bounding box approach is almost trivial to implement. Readers interested in the BSP tree approach

will find a excellent example and implementation in Sung and Shirley [1992] that can adapted with

relatively little effort to vertex-to-source ray casting. It can also be used for the hemi-cube algorithm,

although this will require more work and some ingenuity.

It should also be noted that the code presented in this chapter was written with the reader, not execution

time, in mind. Despite our concern for a “carefully crafted C++ implementation”, no attempt has been

made to optimize this code.

Optimizing compilers will improve matters to some extent by assigning register variables, unrolling

loops, inlining functions and so forth. However, obtaining the best performance often requires hand

optimization and even assembly language programming for the most time-critical functions. This comes at

a considerable cost: highly optimized code is difficult to document clearly and even more difficult to

understand.

Nevertheless, the performance-minded reader is encouraged to consider hand optimization of the source

code. Following standard software engineering practices, you should: a) fully understand the underlying

algorithms before you begin, b) perform a careful analysis with a source code profiler to pinpoint execution

bottlenecks, c) clearly document all changes for later reference.

376 Form Factor Determination
__

This, however, should be a project for the future. We have no less than three form factor determination

methods in hand, and a fourth that can be implemented with a few hours of work. Still to come is the final

component of our radiosity renderer: solving the radiosity equation.

References

Airey, J.M. and M. Ouh-Young [1989]. Two Adaptive Techniques Let Progressive Radiosity Outperform

the Traditional Radiosity Algorithm, Dept. of Computer Science Technical Report TR89-020, U. of North

Carolina.

Arvo, J., Ed. [1991]. Graphic Gems II, Academic Press, San Diego, CA.

Arvo, J. and D. Kirk [1989]. “A Survey of Ray Tracing Acceleration Techniques”, in Glassner [1989], 201

- 262.

Ashdown, I. [1988]. "Dynamic Multidimensional Arrays in C", Computer Language 5:6 (June), 83 - 88.

Ashdown, I. [1993]. “Modeling Complex 3-D Light Sources”, ACM SIGGRAPH ‘93 Course 22 (Making

Radiosity Practical) Notes.

Badouel, D. [1990]. “An Efficient Ray-Polygon Intersection”, in Glassner [1990], 390 - 393, 735.

Baum, D.R., H.E. Rushmeier and J.M. Winget [1989]. “Improving Radiosity Solutions Through the Use of

Analytically Determined Form Factors”, Computer Graphics 23:3, (Proc. ACM SIGGRAPH ‘89), 325 -

334.

Beran-Koehn, J.C. and M.J. Pavicic [1991]. “A Cubic Tetrahedral Adaptation of the Hemi-Cube

Algorithm”, in Arvo [1991], 299 - 302.

Beran-Koehn, J.C. and M.J. Pavicic [1992]. “Delta Form Factor Calculation for the Cubic Tetrahedral

Algorithm”, in Kirk [1992], 324 - 328, 575 - 576.

Bian, B. [1992]. “Hemispherical Projection of a Triangle”, in Kirk [1992], 314 - 317, 569 - 574.

Bian, B., N. Wittels and D.S. Fussell [1992]. “Non-Uniform Patch Luminance for Global Illumination”,

Graphics Interface ‘92, 310 - 318.

Bouatouch, K. and C. Bouville, Eds. [1992]. Photorealism in Computer Graphics, Springer-Verlag, Berlin.

Form Factor Determination 377
__

Bu, J. and E.F. Deprettere [1987a]. “A VLSI System Architecture for High-Speed Radiative Transfer 3D

Image Synthesis”, Eurographics ‘87 (Proc. European Computer Graphics Conference and Exhibition), G.

Marechal, Ed., Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 221 - 235.

Bu, J. and E.F. Deprettere [1987b]. “A VLSI Algorithm for Computing Form-Factors in Radiative Transfer

Computer Image Synthesis”, Computer Graphics 1987 (Proc. CG International ‘87), T.L. Kunii, Ed.,

Springer-Verlag, London, 181 - 193.

Bu, J. and E.F. Deprettere [1989]. “A VLSI System Architecture for High-speed Radiative Transfer 3D

Image Synthesis”, The Visual Computer 5:2, 121 - 133.

Cherry, V.H., D.D. Davis and M.K. Boelter [1939]. “A Mechanical Integrator for the Determination of the

Illumination from Diffuse Surface Sources”, Trans. Illuminating Engineering Society 34:11, 1085 - 1094.

Cohen, M.F. and D.P. Greenberg [1985]. “The Hemi-Cube: A Radiosity Solution for Complex

Environments”, Computer Graphics 19:3 (Proc. ACM SIGGRAPH ‘85), 31 - 40.

Cohen, M.F., D.P. Greenberg, D.S. Immel and P.J. Brock [1986]. “An Efficient Radiosity Approach for

Realistic Image Synthesis”, IEEE Computer Graphics and Applications 6:3, 26 - 35.

Cohen, M.F., C. Puech and F. Sillion, Eds. [1993]. Proc. Fourth Eurographics Workshop on Rendering,

Eurographics Technical Report Series EG 93 RW, Aire-la-Ville, Switzerland.

Cohen, M.F. and J.R. Wallace [1993]. Radiosity and Realistic Image Synthesis, Academic Press, San

Diego, CA.

Emery, A.F., O. Johansson, M. Lobo and A. Abrous [1991]. “A Comparative Study of Methods for

Computing the Diffuse Radiation Viewfactors for Complex Structures”, J. Heat Transfer 113, 413 - 422.

Glassner, A.S., Ed. [1989]. An Introduction to Ray Tracing, Academic Press, San Diego, CA.

Glassner, A.S., Ed. [1990]. Graphic Gems, Academic Press, San Diego, CA.

Goral, C.M., K.E. Torrance, D.P. Greenberg and B. Battaile [1984]. “Modelling the Interaction of Light

Between Diffuse Surfaces”, Computer Graphics 18:3 (Proc. ACM SIGGRAPH ‘84), 212 - 222.

Haines, E. [1991]. “Fast Ray-Convex Polyhedron Intersection”, in Arvo [1991], 247 - 250.

Haines, E. and D.P. Greenberg [1986]. “The Light Buffer: A Ray Tracer Shadow Testing Accelerator”,

IEEE Computer Graphics & Applications 6:9, 6 - 16.

378 Form Factor Determination
__

Haines, E. and J. Wallace [1991]. “Shaft Culling for Efficient Ray-Traced Radiosity”, Proc. Second

Eurographics Workshop on Rendering, Barcelona, Spain.

Hall, R. [1989]. Illumination and Color in Computer Generated Imagery, Springer-Verlag, New York,

NY.

Howell, J.R. [1982]. A Catalog of Radiation Configuration Factors, McGraw-Hill, New York, NY.

IESNA [1993]. IESNA Lighting Handbook, Eighth Edition, Illuminating Engineering Society of North

America, New York, NY.

Kirk, D., Ed. [1992]. Graphic Gems III, Academic Press, San Diego, CA.

Kokcsis, F. and J.F. Böhme [1992]. “Fast Algorithms and Parallel Structures for Form Factor Evaluation”,

The Visual Computer 8, 205 - 216.

Lambert, J.H. [1760]. Photometria sive de mensura et gradibus luminus, colorum et umbrae. German

translation with annotations by E. Anding [1892], Ostwald’s Klassiker der Exakten Wissenschaften Nos.

31 - 33, Leipzig.

Malley, T.J. [1988]. A Shading Method for Computer Generated Images, Master’s Thesis, Dept. of

Computer Science, University of Utah.

Marks, J., R. Walsh, J. Christensen and M. Freidell [1990]. “Image and Intervisibility Coherence in

Rendering”, Graphics Interface ‘90, 17 - 30.

Max, N. [1992]. Optimal Sampling for Global Illumination, Lawrence Livermore National Laboratory

UCRL-JC-112598.

Max, N. and R. Troutman [1993]. “Optimal Hemicube Sampling”, in Cohen et al. [1993], 185 - 200 and

Addendum.

Max, N.L. and M.J. Allison [1992]. “Linear Radiosity Approximation Using Vertex-To-Vertex Form

Factors”, in Kirk [1992], 318 - 323.

Maxwell, G.M. M.J. Bailey and V.W. Goldschmidt [1986]. “Calculations of the Radiation Configuration

Factor Using Ray Casting”, Computer-Aided Design 18:7, 371 - 379.

Meyer, G.W., H.E. Rushmeier, M.F. Cohen, D.P. Greenberg and K.E. Torrance [1986]. “An Experimental

Evaluation of Computer Graphics Imagery”, ACM Trans. Computer Graphics 5:1, 30 - 50.

Form Factor Determination 379
__

Murdoch, J.B. [1981]. “Inverse Square Law Approximation of Illuminance”, J. Illuminating Engineering

Society 11:2, 96 - 106.

Ng, A. and M. Slater [1993]. “A Multiprocessor Implementation of Radiosity”, Computer Graphics Forum

12:5, 329 - 342.

Nishita, T. and E. Nakamae [1984]. “Continuous Tone Representation of Three-Dimensional Objects

Taking Account of Shadows and Interreflections”, Computer Graphics 20:4 (Proc. ACM SIGGRAPH

‘84), 125 - 132.

Nusselt, W. [1928]. “Grapische Bestimmung des Winkelverhältnisses bei der Wärmestrahlung”, Zeitschrift

des Vereines Deutscher Ingenieure 72:20, 673.

O’Brien, P.F. [1963]. “Pleijel’s Globoscope for Lighting Design”, Illuminating Engineering 58:3, 131 -

138.

Pavicic, M. J. 1994. Private communication.

Pietrek, G. [1993]. “Fast Calculation of Accurate Formfactors”, in Cohen et al. [1993], 201 - 220.

Pueyo, X. [1991]. “Diffuse Interreflections. Techniques for Form Factor Computation: A Survey”, The

Visual Computer 7, 200 - 209.

Recker, R.J., D.W. George and D.P. Greenberg [1990]. “Acceleration Techniques for Progressive

Refinement Radiosity”, Computer Graphics 24:2 (1990 Symposium on Interactive 3D Graphics), 59 - 66.

Rogers, D.F. [1985]. Procedural Elements for Computer Graphics, McGraw-Hill, New York, NY.

Rushmeier, H., D.R. Baum and D.E. Hall [1991]. “Accelerating the Hemi-Cube Algorithm for Calculating

Radiation Form Factors”, J. Heat Transfer 113, 1044 - 1047.

Saraiji, R.M.N. and R.G. Mistrick [1992]. “Calculation Methods, Error Tendencies, and Guidelines for

Finite Element Flux Transfer”, J. Illuminating Engineering Society 21:1, 92 - 102.

Sbert, M. [1993]. “An Integral Geometry Based Method for Fast Form-Factor Computation”, Computer

Graphics Forum 12:3 (Proc. Eurographics ‘93), C-409 - 420.

Schröder, P. and P. Hanrahan [1993]. “On the Form Factor Between Two Polygons”, Computer Graphics

Proceedings (ACM SIGGRAPH ‘93), 163 - 164.

Shirley, P. [1991]. “Radiosity Via Ray Tracing”, in Arvo [191], 306 - 310.

380 Form Factor Determination
__

Siegel, R. and J.R. Howell [1992]. Thermal Radiation Heat Transfer, Third Edition, Hemisphere

Publishing, Washington, DC.

Sillion, F. and C. Puech [1989]. “A General Two-Pass Method Integrating Specular and Diffuse

Reflection”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 335 - 344.

Sparrow, E. [1963]. “A New and Simpler Formulation for Radiative Angle Factors”, J. Heat Transfer 85:2,

81 - 88.

Sparrow, E. and R. Cess [1978]. Radiation Heat Transfer, Hemisphere Publishing Corporation,

Washington, DC.

Spencer, S.N. [1992]. “The Hemisphere Radiosity Method: A Tale of Two Algorithms”, in Bouatouch and

Bouville [1992], 127 - 135.

Sun, J., L.Q. Zou and R.L. Grimsdale [1993]. “The Determination of Form-Factors by Lookup Table”,

Computer Graphics Forum 12:4, 191 - 198.

Sung, K. and P. Shirley [1992]. “Ray Tracing with the BSP Tree”, in Kirk [1992], 271 - 274, 538 - 546.

Sutherland, I.E. and G.W. Hodgman [1974]. “Reentrant Polygon Clipping”, Comm. ACM 17:1, 32 - 42.

Sutherland, I.E., R.F. Sproull and R. Schumacker [1974]. “A Characterization of Ten Hidden-Surface

Algorithms”, Computing Surveys 6:1, 1 - 55.

Tampieri, F. [1992]. “Accurate Form Factor Calculation”, in Kirk [1992], 329 - 333.

Tellier, P., E. Maisel, K. Bouatouch and E. Languénou [1993]. “Exploiting Spatial Coherence to

Accelerate Radiosity”, The Visual Computer 10, 46 - 53.

Verbeck, C.P. and D.P. Greenberg [1984]. “A Comprehensive Light-Source Description for Computer

Graphics”, IEEE Computer Graphics & Applications 4:7, 66- 75.

Vilaplana, J. and X. Pueyo [1992]. “Exploiting Coherence for Clipping and View Transformations in

Radiosity Algorithms”, in Bouatouch and Bouville [1992].

Voorhies, D. and D. Kirk [1991]. “Ray-Triangle Intersection Using Binary Recursive Subdivision”, in

Arvo [1991], 257 - 263.

Wallace, J.R., K.A. Elmquist and E.A. Haines [1989]. “A Ray Tracing Algorithm for Progressive

Radiosity”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 315 - 324.

Form Factor Determination 381
__

Wang, M., H. Bao and Q. Peng [1992]. “A New Progressive Radiosity Algorithm Through the Use of

Accurate Form Factors”, Computers & Graphics 16:3, 303 - 309.

Wang, Y. and W.A. Davis [1990]. “Octant Priority for Radiosity Image Rendering”, Proc. Graphics

Interface ‘90, Canadian Information Processing Society, 83 - 91.

Warn, D.R. [1983]. “Lighting Controls for Synthetic Images”, Computer Graphics 17:3 (Proc. ACM

SIGGRAPH ‘83), 13 - 21.

Woo, A. [1990]. “Fast Ray-Polygon Intersection”, in Glassner [1990], 394.

Zhang, N. [1991]. “Two Methods for Speeding Up Form-Factor Calculations”, Proc. Second Eurographics

Workshop on Rendering, Barcelona, Spain.

Zhou, Y. and Q. Peng [1992]. “The Super-Plane Buffer: An Efficient Form-Factor Evaluation Algorithm

for Progressive Radiosity”, Computers & Graphics 16:2, 151 - 158.

Chapter 6
Solving the Radiosity Equation

6.0 Introduction

We have one last major … and surprisingly easy … task before us: solving the radiosity equation. Once

we have the tools to accomplish this, we will finally be able to render photorealistic images of our

environments.

1. Build the environment

2. Determine the form factors

3. Solve the radiosity equation

4. Render the environment

Figure 6.1 - Radiosity-based rendering program outline

This is the central component of the radiosity approach. Having suffered through photometric and

radiometric theory, radiosity theory, 3-D projective transformations, polygon clipping in four dimensions,

polygon scan conversion and form factor determination mathematics as a prelude, you might expect this to

be the most difficult chapter in the book. If so, you will be pleased to learn that it is exactly the opposite.

Again and again: do not let the mathematics deter you! The following two sections are dense reading,

but none of the equations require more than a basic understanding of matrix theory and high school

algebra. Moreover, you can ignore the details if you so choose. The equations are necessary only to lay a

firm mathematical foundation for what follows.

384 Solving the Radiosity Equation
__

6.1 Full Radiosity

We saw in Chapter Two that the radiosity equation is a system of n linear equations of the form:





































−−−

−−
−−−

=



















nnnnnnnn

n

on

o

o

M

M
M

FFF

FF
FFF

M

M
M

K

K

KKKK

KK

K

K
2

1

21

222212

11121111

2

1

1

1
1

ρρρ

ρρ
ρρρ

 (6.1)

where n is the number of elements in the environment. We know the initial exitance vector; its entries

will be mostly zeroes. The only non-zero entries are for those elements representing light sources. We also

know the reflectivity

oiM

iρ of each element, and we can estimate the form factor between any two

elements i and j. All we have to do to obtain the final exitances is to solve these equations.

ijF

iM

Most environments result in linear systems that are far too large to solve using direct methods such as

Gaussian elimination. The classic alternative is to use iterative techniques such as the Gauss-Seidel

method. This was the original approach taken by Goral et al. [1984], Cohen and Greenberg [1985] and

Cohen et al. [1986]. Baum et al. [1989] referred to it as the full radiosity algorithm.

We also saw in Chapter Two, however, that this gives us a radiosity algorithm with O time and

space complexity. A large and complicated environment with 50,000 elements can easily consume one to

ten gigabytes of memory for its form factors and take days of CPU time to compute a single image. We

clearly need a better approach.

)(2n

What we really want is an algorithm that consumes a minimal amount of memory and that generates a

reasonable approximation of the final image almost immediately. More generally, we need to maintain a

careful balance between the requirement for photorealistic images and the demands of interactive

computing. Waiting a day or more to see whether we chose the right balance of light sources for an image

is not exactly interactive!

In a perfect world, our algorithm would generate a reasonable first approximation and then

progressively and gracefully refine the image until it reaches its final form. This essentially describes how

iterative techniques work, except that we need a much more effective algorithm than the Gauss-Seidel

method.

Solving the Radiosity Equation 385
__

The great surprise is that such an algorithm actually exists. Before examining it, however, we should

review the basic principles of iterative techniques.

6.2 Iterative Techniques

Expanding on Equation 2.25, we can express Equation 6.1 more succinctly in matrix notation as:

()MTIM −=o (6.2)

where I is the identity matrix and T is:



















=

nnnnnnn

n

FFF

FF
FFF

ρρρ

ρρ
ρρρ

K

KKKK

KK

K

21

222212

11121111

T (6.3)

RF=





































=

nnnn

n

n

n FFF

FF
FFF

L

LLLL

LL

L

L

LLLL

L

L

21

222

11211

2

1

00

00
00

ρ

ρ
ρ

where R is the (diagonal) reflectance matrix and F is the form factor matrix.

If we consider as an matrix–call it K for convenience–we have a linear system of the

form:

(TI −) nn ×

KMM =o (6.4)

which can be solved using any one of several iterative techniques.

A quick review of iterative techniques for solving linear systems may be in order. Suppose we are

given a system of linear equations such as:

Axb =

where x is the unknown vector, A is a square 1×n nn × matrix and b is a known vector. Most 1×n

iterative techniques convert this system into an equivalent system with the form:

cQxx +=

where the matrix Q and the n vector c are derived from A and b. The details of the derivation nn × 1×

depend on the particular iterative technique.

386 Solving the Radiosity Equation
__

To solve for x, we start with an initial 1×n vector ()0x that hopefully approximates the final solution.

At worst, it can have entirely random values for its elements. With it, we can generate a sequence of

vectors by repeatedly computing: ()kx

() () K,1,1 =+= − kkk cQxx

This is the iterative component of the technique. The sequence of vectors ()kx will be such that the

elements of the vector either converge to those of the unknown vector x, or else diverge into some random

vector, as k increases.

While it is unlikely that will exactly equal x for any finite value of k, the error between them will ()kx

tend to grow progressively smaller as k increases (and if the sequence converges). This means that we can

stop when:

() ()

() nithreshold
k

i

k
i

k
i

,,1,
1

1

K=≤
−

−

−

x

xx

for some “threshold” value. At this point, the approximate solution vector ()kx is such that the fractional

error between it and the unknown vector x is guaranteed to be equal to or less than this value for each of its

elements. The iterative method is then said to have converged to an acceptable solution.

Of critical importance to the user is the convergence rate. That is, what value of k is needed in order to

attain an acceptable solution? This is determined by the characteristics of the chosen iterative method, the

choice of , and the particular problem being solved. ()0x

There are two issues of concern here. First, there are linear systems where the solution vector diverges

rather than converges to a solution. Fortunately, the radiosity equation is guaranteed to converge to a

solution using either the Jacobi or Gauss-Seidel iterative methods.

(For those familiar with advanced matrix mathematics: the sum of any row of form factors is equal to or

less than unity by virtue of the summation relation (Eqn. 2.18), and each form factor is multiplied by a

reflectance value ρ that is less than unity. Also, the main diagonal term of K in Equation 6.4 is always

Solving the Radiosity Equation 387
__

unity, since for all planar or convex elements. Thus, K is strictly diagonally dominant, which

guarantees convergence for any choice of

0=iiF

() using either Jacobi or Gauss-Seidel iteration.) 0M

Second, we need to consider what our choice of ()0M should be. The closer it is to the unknown final

exitance vector M, the more quickly our chosen iterative method will converge. Of course, the only a

priori information we have concerns the initial exitances of the elements representing light sources. In

other words, our best choice is to assign the initial exitance vector M to o
()0M . Interestingly enough, this

choice has some physical significance.

6.2.1 Follow the Bouncing … Light

Returning to Equation 6.2, suppose we rearrange it slightly to solve for M. We then have:

() oMTIM 1−−= (6.5)

Again, we cannot solve this equation directly, since calculating the inverse of a matrix is rarely an easy

task. However, we can approximate it with a MacLaurin power series expansion. It can be shown that:

() K++++==
− ∑

∞

=

32

0
1

1
1 xxxx

x n

n (6.6)

which converges for . There is a similar series expansion for matrices (e.g., Golub and Van Loan

[1983]):

11 <<− x

() K++++=− − 321 TTTITI (6.7)

which gives us:

K++++= oooo MTMTTMMM 32 (6.8)

that converges if the spectral radius of T (i.e., the absolute value of its largest eigenvalue) is less than one.

Fortunately, this condition is true for any physically possible radiosity equation (e.g., Heckbert [1991]).

This means that we can safely ignore the somewhat abstruse mathematics behind the spectral radius and

eigenvalues of a matrix.

There is an important physical significance to Equation 6.8 (e.g., Kajiya [1986]). Each successive term

 represents the kth bounce of the initially emitted light. The term represents the initial flux (i.e.,

the direct illumination), TM represents the first bounce component, the second bounce and so

MT k
oM

MT2
o o

388 Solving the Radiosity Equation
__

on. We can intuitively see this by observing that the element reflectances ρ are multiplied with each

successive bounce. This represents the accumulating light losses due to absorption.

We can express Equation 6.8 in its iterative form as:

() () 0,1 >+= − ko
kk MTMM (6.9)

In other words, the behavior of light flowing through an environment is itself an iterative method!

Moreover, the initial exitance vector serves as its initial “guess” to the final exitance vector M. oM

Comparing Equation 6.9 to iterative techniques for solving linear systems, it becomes clear why the

radiosity equation always converges to a solution when we apply these techniques. To do otherwise–that is,

for the approximate solution vector ()kM to diverge with increasing values of k–would require the total

quantity of light in an environment to increase with each successive bounce. This would in turn contravene

the energy balance discussed in Section 2.6.1.

There is in fact only one iterative technique that faithfully models the physical reality of light’s

behavior as expressed by Equation 6.9. It is the Jacobi iterative method, the simplest iterative technique for

solving systems of linear equations. While it may not be necessary for our development of a practical

algorithm for solving the radiosity equation, we should ask how the Jacobi method works for two reasons..

First, it will provide us with a better understanding of how and why iterative techniques work. More

importantly, however, the Jacobi method offers an fascinating and instructive insight into the physical

reality of the radiosity equation.

6.2.2 Jacobi Iteration

The Jacobi method splits (or decomposes) an nn × matrix A into a diagonal matrix D, a strictly lower

diagonal matrix and a strictly upper diagonal matrix L− U− . Written in matrix form, this becomes:

=−−=



















= ULDA

nnnn

n

n

aaa

aaa
aaa

L

LLLL

L

L

21

22221

11211

 (6.10)


















−
−−

−



















−−

−
−



















000

00
0

0

00
000

00

00
00

2

112

21

2122

11

L

LLLL

L

L

L

LLLL

L

L

L

LLLL

L

L

n

n

nnnn

a
aa

aa

a

a

a
a

Solving the Radiosity Equation 389
__

From this, we get:

() bxULDAx =−−= (6.11)

which becomes:

() bxULDx ++= (6.12)

and so:

()
D
bx

D
ULx +

+
= (6.13)

The Jacobi iterative method is thus:

() () ()
D
bx

D
ULx +

+
= −1kk (6.14)

or, expressed in its more familiar form:

()

()()
ni

a

bxa

x
ii

i

n

ijj

k
jij

k
i ,,1,,1

1

K=

+−

=
∑

≠=

−

 (6.15)

In plain English, this equation states that we can solve each element ()k
ix of our approximate solution

vector by using the values of all the other elements ()kx ()1−k
jx of our previously calculated solution vector.

6.2.3 Modeling Light

The Jacobi iterative method models the flow of light in an environment. We can confirm this by

deriving Equation 6.9 in terms of the Jacobi iteration. Following the development of the Jacobi method

above, we start with Equation 6.2 and decompose T into a diagonal matrix , a strictly lower diagonal

matrix and a strictly upper diagonal matrix

DT

LT− UT− to get:

() ULD TTTITI ++−=− (6.16)

and thus:

(MTTTIM ULD ++−=0) (6.17)

This becomes:

() () oULD MMTTMTI ++−=− (6.18)

and:

390 Solving the Radiosity Equation
__

()
() ()D

o

D

UL

TI
M

M
TI

TT
M

−
+

−
+−

= (6.19)

This is equivalent to the Jacobi iterative method presented in Equation 6.14. However, the form factor

 for planar or convex patches is always zero, which means each diagonal element of T equals zero and

so . Also, . Thus:

iiF

() ITI =− D ()UL TTT +−=

() ooUL MTMMMTTM +=++−= (6.20)

which results in the Jacobi iterative method:

() () 0,1 >+= − ko
kk MTMM (6.21)

for solving the radiosity equation. This is identical to Equation 6.9. Referring to Equation 6.3, this

becomes:

() ()1−+= k
o

k RFMMM (6.22)

which, expressed in the form of Equation 6.15, is:

() () niMFMM k
j

n

j
ijioi

k
i ,,1,1

1
K=+= −

=
∑ρ (6.23)

This is the radiosity equation that we saw in Chapter Two (Eqn. 2.21), expressed as an iterative

method.

6.2.4 Gauss-Seidel Iteration

The problem with Jacobi iteration is that it is often slow to converge to a solution. The Gauss-Seidel

iterative method takes a simple but effective approach to improving this situation. We saw in Equation 6.15

that the Jacobi method calculates the value of each element () in sequence by using the values of the

other elements from

k
ix

()1−kx . Since the elements ()k
jx (where ij <) have already been calculated and are

presumably closer approximations to the final solution vector elements than their ()1−k
jx counterparts, why

not use these values instead when calculating ()k
ix ?

This is exactly what the Gauss-Seidel method does. Its iterative equation is:

()
()

()
() 0,1 >

−
+

−
= − kkk

LD
bx

LD
Ux (6.24)

Solving the Radiosity Equation 391
__

or, expressed in its more familiar form:

()

() ()

ni
a

bxaxa

x
ii

i

n

ij

k
jij

i

j

k
jij

k
i ,,1,

1
1

1
K=

+−+−

=
∑∑

=

−
−

= (6.25)

A derivation of Equation 6.24 can be found in most elementary linear algebra and numerical analysis texts

(e.g., Burden and Faires[1985]).

The Jacobi method can be seen in terms of modeling light bouncing from surface to surface in an

environment. This is not the case for the Gauss-Seidel method. In a sense, it tries to anticipate the light

each surface will receive from the next iteration of reflections. There is no physical analogue to this

process, but it does work in that the Gauss-Seidel method usually converges more quickly than the Jacobi

method does. Cohen and Greenberg [1985] found that the Gauss-Seidel method solved the radiosity

equation for typical environments in six to eight iterations.

6.2.5 Full Radiosity Disadvantages

When it was first presented by Goral et al. [1984] and Nishita and Nakamae [1985], radiosity rendering

was for the most part viewed as an interesting mathematical curiosity. The Jacobi and Gauss-Seidel

methods have a time complexity of O for each iteration. That is, doubling the number of elements in

an environment quadruples the CPU time required to solve its particular radiosity equation. Given the

available computer technology at the time, this made the full radiosity algorithm an impractical rendering

technique for all but the simplest of environments.

)(2n

Another disadvantage of full radiosity is that it requires storage for 22n form factors. This means that

the memory space complexity of the full radiosity algorithm is as well. We could possibly avoid

this requirement by recomputing form factors “on the fly” for each element during each iteration. However,

the high cost of form factor determination means that we would have to wait much longer between each

iteration. This is exactly what we are trying to avoid. We need to obtain an initial image as quickly as

possible.

)(2nO

392 Solving the Radiosity Equation
__

We can gain some relief by substructuring the environment into patches and elements (Cohen et al.

[1986]). This brings both the time and space complexities down to ()nmO for n patches and m elements.

Substructuring is a useful technique, but we can do better.

6.3 Shooting Versus Gathering

There is an interesting and instructive physical interpretation of the Jacobi and Gauss-Seidel methods.

We can think of each execution of Equation 6.15 (Jacobi) or 6.25 (Gauss-Seidel) as being one step; it takes

n steps to complete one iteration of the method. At each step, we are updating the estimated exitance of

one element by processing one row of the radiosity equation. For the Jacobi method, this is Equation 6.23,

repeated here as:

() () niMFMM k
j

n

j
ijioi

k
i ,,1,1

1
K=+= −

=
∑ρ (6.26)

We can show this diagramatically as:





































+



















=



















x
x
x
x

xxxxxx

....

....

....

.

.

.

.

.

.

 (6.27)

The physical interpretation of this process is straightforward: we are simply summing the contribution of

flux from all the other elements in the environment to the exitance of the current element. Looking at

Figure 6.2 and referring to Equation 6.26, each element has an exitance and an area .

Referring to Equation 6.26, the portion of the flux

jE jM jA

jΦ emitted by that is received by is: jE iE

jijjij FAM=Φ (6.28)

The amount of exitance of that is due to this flux subsequently being reflected by is thus: iM∆ iE iE

ijijjiijiii AFAMAM ρρ =Φ=∆ (6.29)

However, we can apply the reciprocity relation jijiji FAFA = (Section 2.5.1) to obtain:

ijjii FMM ρ=∆ (6.30)

More colloquially, this can be seen as the current element gathering exitance from all of the

elements in the environment in order to determine its exitance due to these elements. The term in

iE

jE oiM

Solving the Radiosity Equation 393
__

Equation 6.26 simply accounts for any initial exitance of . This will be non-zero only if is a light

source.

iE

iA

iE

It may be somewhat difficult to visualize exitance being transferred between elements. It becomes

clearer when we multiply both sides of Equation 6.30 by to obtain:

iijjiiii AFMAM ρ=∆=∆Φ (6.31)

Again applying the reciprocity relation, we get:

jjiijjijii FAFM Φ==∆Φ ρρ (6.32)

which shows that we are in fact gathering and subsequently reflecting radiant flux. Equation 6.30 is more

useful in terms of Equation 6.26, however, and so we “gather” exitance to . The difference is solely

semantic.

iE

A number of authors have loosely referred to this process as gathering “energy”. However, the physical

quantity being discussed is radiant exitance (i.e., watts per unit area) times area. This is power, or radiant

flux. Energy is “gathered” only in the sense that solving the radiosity equation balances the flow of energy

(which is power) between elements in the environment.

E i

Ej

Figure 6.2 - Gathering flux from the environment

The problem with this approach is that it can be excruciatingly slow. Consider a complex environment

with perhaps 50,000 elements. Using the Jacobi or Gauss-Seidel method, we must perform one complete

iteration before we have an image of the first bounce of light from the environment. That means we must

execute Equation 6.26 50,000 times! This clearly does not satisfy our requirement for an “immediate but

approximate” image.

This is where the physical interpretation becomes useful. If we think for a moment about how light

flows in an environment, it becomes evident that we should be interested in those elements that emit or

394 Solving the Radiosity Equation
__

reflect the most light. It logically does not matter in what order we consider the distribution of light from

element to element, as long as we eventually account for it being completely absorbed.

This leads to an entirely different paradigm. Given an environment with one or more light sources, we

can think of them shooting flux to the other elements (Fig. 6.3). These elements then become in effect

secondary light sources, shooting some of the flux they receive back into the environment. By always

selecting the element that has the greatest amount of flux to “shoot”, we will drastically improve our

convergence rate. Again, it makes intuitive sense that the more quickly the light is absorbed, the more

quickly our as-yet-unspecified iterative method will converge to a solution.

E i

Ej

Figure 6.3 - Shooting flux into the environment

It also becomes evident that this idea answers our need for both an immediate image and progressive

convergence to the final solution. By shooting flux from one element to all other elements in the

environment, we immediately obtain an initial estimate for all element exitances. This occurs in one step

rather than a complete iteration. In fact, the concept of an iteration no longer applies, for we may end up

choosing one element several times before we cycle through the entire set. It all depends on which element

currently has the greatest amount of flux to shoot.

Of course, we also obtain improved estimates for all the element exitances at each step. This means that

the rendered image will continuously and gracefully converge to the final photorealistic image.

Now, all we have to do is to express this idea in the form of a practical algorithm.

6.4 Progressive Refinement Radiosity

What we are looking for is the progressive refinement radiosity algorithm (Cohen et al. [1988]). Based

on the concept of shooting flux, it offers not only an immediate image with continuous and graceful

convergence, but also time and space complexity. Given an environment with n elements, it requires ()nO

Solving the Radiosity Equation 395
__

memory space for only n form factors. Even better, it can generate an initial image almost immediately, and

can generate if necessary updated images after each step (as opposed to each iteration).

So how does it work? To shoot flux or exitance back into the environment, we simply reverse the

subscripts of Equation 6.30. For exitance, this becomes:

jiij
j

i
ijijj FM

A
A

FMM ρρ ==∆ (6.33)

Multiplying both sides of this equation by the area of element gives us the equation for shooting flux. jE

Unlike the full radiosity algorithm (i.e., Equation 6.26), this equation acts on one column of the

radiosity equation at a time. Shown diagramatically, this is:





































+



















=



















...

...

...

...

.

.

.

x
x
x
x

x

x
x
x
x

x
x
x
x

 for all elements (6.34) jE

This means we can now display an image of the environment whenever one column of the radiosity

equation has been processed. This has a time complexity of as opposed to for the basic

radiosity algorithm.

)(nO)(2nO

The progressive refinement radiosity algorithm proceeds as follows. First, we assign an “unsent

exitance” value to each element in the environment. This is in addition to its final exitance ,

which we are trying to determine. The amount of flux each element has to shoot is times its area,

. Initially, only the elements representing light sources will have non-zero values of flux, and so

 is initialized to . The final exitance values are also initialized to .

unsent
iM∆ iM

unsent
iM∆

oiM

iA

M∆ unsent
i oiM iM

Choosing the element with the greatest amount of flux (not exitance) to shoot, we execute Equation

6.33 for every other element in the environment. Each of these elements “receives” a delta exitance

; this value is added to both its unsent exitance and its final exitance .

iE

jE

jM∆ unsent
jM∆ jM

After the flux has been shot to every element , is reset to zero. This element can only

shoot again after receiving more flux from other elements during subsequent steps.

jE unsent
iM∆

396 Solving the Radiosity Equation
__

This process continues until the total amount of flux remaining in the environment is less than some

predetermined fraction ε of the original amount, or:

ε≤∆∑
=

n

i
i

unsent
i AM

1
 (6.35)

At this point, the algorithm is considered to have converged to a solution.

Expressing this in pseudocode, we have:

FOR each element i
 oi

unsent
ii MMM =∆=

ENDFOR

WHILE ε>∆∑
=

n

i
i

unsent
i AM

1

 Select element i with greatest unsent flux i
unsent
i AM∆

 Calculate all form factors ijF

 FOR each element j

j

iunsent
iijj A

A
MFM ∆=∆ ρ

 MMM unsent
j

unsent
j ∆+∆=∆

 MMM jj ∆+=

 ENDFOR
 0=∆ unsent

iM
ENDWHILE

Figure 6.4 - Progressive refinement radiosity algorithm

Progressive refinement radiosity does not–repeat, does not– require any less time to completely solve

the radiosity equation to some vanishingly small margin of error. It is an iterative approach that, like full

radiosity, progressively refines the element exitances as it converges to a solution. However, its

overwhelming advantage is that usable images can be displayed almost immediately, and that each

succeeding image takes much less time to calculate.

We still have the form factors to contend with. However, we only need to calculate the n form factors

 from the current element to all other elements between displaying images. This is exactly what

our hemi-cubes and cubic tetrahedrons provide when centered over a given element. Yes, we have to

recompute these form factors on the fly for each step of the progressive radiosity algorithm. However, the

convergence rate is much faster than it is for full radiosity. Cohen et al. [1988] compared progressive

refinement and full radiosity algorithms using an environment consisting of 500 patches and 7,000

ijF iE jE

Solving the Radiosity Equation 397
__

elements. The progressive radiosity implementation converged to a visually acceptable image after

approximately 100 steps. At this point, the full radiosity implementation was only 20 percent of its way

through its first iteration.

Incidentally, Gortler and Cohen [1993a] established that the progressive refinement radiosity algorithm

is a variant of the Southwell iteration method (e.g., Gastinel [1970]). Like the Jacobi and Gauss-Seidel

methods, Southwell iteration will always converge to a solution for any radiosity equation.

6.5 Ambient Exitance

The progressive refinement radiosity algorithm described above has one minor problem. When the flux

is first shot from the light sources, only those elements visible to them are illuminated. The rest of the

environment will be in shadow. This will quickly change as the flux bounces from surface to surface

during subsequent steps. Nevertheless, it may be somewhat disconcerting to have the first few images

appear relatively dark as the light sources are shot one by one.

Cohen et al. [1988] resolved this problem by introducing an ambient term that simulates the effect of a

completely diffuse light source evenly illuminating every surface of the environment. The contribution of

this term to the exitance of each element is gradually diminished as the radiosity algorithm converges to its

final solution, thereby maintaining a reasonably constant average exitance for the environment. This term

is added for display purposes only; it does not participate in solving the radiosity equation. With the term

added, the visual differences between successive images can become almost unnoticeable.

To calculate the ambient exitance, we first need to define the average reflectance of the environment.

This is the area-weighted average of the individual element reflectances, given as:

∑∑
==

=
n

i
i

n

i
iiavg AA

11
ρρ (6.36)

where avgρ must be calculated for each color band.

If we think of the environment as being an empty room with no obstructions and whose surfaces have a

reflectance of , then we can see that the light will bounce back and forth within this room until it is

completely absorbed. From this, we can derive the following interreflection factor:

avgρ

398 Solving the Radiosity Equation
__

avg
avgavgavgR

ρ
ρρρ

−
=++++=

1
11 32 K (6.37)

We also need to estimate the area-weighted average amount of unsent exitance. This is simply:

∑∑
==

=
n

i
ii

n

i

unsent
i

unsent
avg AAMM

11
 (6.38)

Of course, this will decrease whenever flux is shot from an element into the environment. This ensures that

the ambient term decreases to zero as the radiosity algorithm converges to a solution.

From this, we can define the ambient exitance as:

unsent
avgambient RMM = (6.39)

For display purposes only, the estimated exitance of an element is then: iE

ambientiii MMM ρ+=′ (6.40)

Cohen et al. [1988] demonstrated that the ambient term improves the initial convergence rate as well as

the visual appearance of the image. Using the area-averaged error metric:

() ()() ∑∑
==

∞ −=
n

i
i

n

i
i

k
iirms AAMMerror

11

2
 (6.41)

where is the converged (i.e., final) exitance of each element after an infinite number of steps and

k is the number of steps actually performed, they found that adding the ambient term decreases the error

from 40 to 30 percent after 15 steps for a typical environment of 500 patches and 7,000 elements. After 70

steps, the ambient term became negligible, leaving the progressive refinement radiosity algorithm to

converge to a solution on its own after some 100 steps. At the same time, the error for the full radiosity

algorithm using the Gauss-Seidel method after 100 steps was approximately 98 percent.

()∞
iM iE

6.6 A Progressive Refinement Radiosity Algorithm

We can combine the ambient exitance with our previous progressive refinement radiosity algorithm. At

the same time, we can take advantage of the hierarchical arrangement of patches and elements in our

environments. This gives us:

Calculate initial ambient exitance M ambient

FOR each patch i
 oi

unsent
i MM =∆

Solving the Radiosity Equation 399
__

ENDFOR

WHILE ε>∆∑
=

n

i
i

unsent
i AM

1

 Select patch i with greatest unsent flux i
unsent
i AM∆

 Calculate all patch-element form factors ikF
 FOR each patch j
 FOR each element k of parent patch j
 // Determine increase in exitance of element k due to patch exitance unsent

iM∆

k

iunsent
iikk A

A
MFM ∆=∆ ρ

 MMM kk ∆+=
 // Add area-weighted increase in element k exitance to parent patch j

j

kunsent
j

unsent
j A

A
MMM ∆+∆=∆

 ENDFOR
 ENDFOR
 0=∆ unsent

iM
 Recalculate ambient exitance ambientM
ENDWHILE
FOR each element k
 // Add initial and ambient exitance contributions
 ambientkokkk MMMM ρ++=
ENDFOR

Figure 6.5 - Progressive radiosity algorithm with ambient exitance

6.7 Progressive Refinement Convergence Behavior

Shao and Badler [1993b] presented a detailed and informative discussion of the convergence behavior

of the progressive refinement radiosity algorithm. They observed that while the algorithm may quickly

converge to a visually appealing image, many more steps are often required to capture the nuances of color

bleeding and soft shadows. They demonstrated that it took 2,000 or more steps to achieve full convergence

in a complex environment of some 1,000 patches and 25,000 elements. Many of the radiosity-based

renderings published to date were completed using far fewer steps, implying that their apparent realism

may be due to part to ambient exitance.

Much of the problem lies in how progressive refinement works. By always selecting the patch with the

most flux to shoot, it concentrates first on the light sources. Most of their flux will be shot to what Shao

and Badler [1993b] called global patches–those patches which are relatively large and can be seen from

much of the environment. For an architectural interior, these are typically the walls, floor and ceiling of a

400 Solving the Radiosity Equation
__

room. Their elements receive most of the flux from the light sources and consequently shoot it to the other

global patch elements.

The local patches are those patches which are small, possibly reflective in only one color band, and are

usually hidden from much of the environment. Their flux will not be shot until that of the global patches

has been exhausted. This is undesirable for two reasons. First, their small areas means that they will receive

relatively little flux in comparison to the global patches. It may take several hundred steps before they

shoot for the first time.

The second reason is that when these local patches do shoot, much of their flux often goes no further

than their immediate neighbors. While this does not affect the global environment to any great extent (and

so does not appear in the error metric defined in Equation 6.41), it does account for the color bleeding and

soft shadow effects we are trying to achieve. In this sense, a better error metric is the worst-case difference

between the estimated and converged element exitances. In their experiments, Shao and Badler [1993b]

observed that it took twice as many iterations as there were patches (not elements) in the environment.

One strategy to overcome this problem involves de-emphasizing the contributions due to the global

patches, ensuring that all patches shoot their flux in a reasonable number of steps. This requires a

modification of the progressive refinement radiosity algorithm that is described next.

6.8 Positive Overshooting

Convergence of the Gauss-Seidel algorithm can often be accelerated by using one of several techniques

known as successive overrelaxation (e.g., Noble [1969]). Applied to the radiosity equation, these

techniques can be interpreted as “overshooting” the amount of flux from a patch into the environment. That

is, the amount of flux shot from the patch is more than the amount of unsent flux the patch actually has.

The flux shot in subsequent steps by the receiving patches will tend to cancel this overshooting. In the

meantime, the total amount of unsent flux in the environment is shot and absorbed more quickly. This

tends to result in faster convergence rates.

Shao and Badler [1993b] presented a modified version of the progressive refinement radiosity

algorithm that incorporates positive overshooting to accelerate the convergence rate by a factor of two or

more. At the same time, it tends to prioritize the ordering of patches being shot such that the local patches

Solving the Radiosity Equation 401
__

are shot sooner, thereby enhancing the rendering of subtle lighting effects such color bleeding and soft

shadows.

The modification to the radiosity algorithm (Fig. 6.4), based on an earlier proposal by Feda and

Purgathofer [1992], is:

…
Select element i with greatest positive unsent flux i

unsent
i AM∆

Estimate overshooting parameter overshoot
iM∆

Calculate all form factors ikF
FOR each patch j
 FOR each element k
 // Determine increase in exitance of element k due to patch exitance unsent

iM∆
 // and area-weighted positive overshoot

 ()
k

iovershoot
i

unsent
iikk A

A
MMFM ∆+∆=∆ ρ

 MMM kk ∆+=
 // Add area-weighted increase in element k exitance to parent patch j

j

kunsent
j

unsent
j A

A
MMM ∆+∆=∆

 ENDFOR
ENDFOR

overshoot
i

unsent
i MM ∆−=∆

…

Figure 6.6 - Progressive refinement radiosity algorithm with positive overshooting

As with ambient exitance, the amount of positive overshooting and its contribution to the shooting

patch’s unsent exitance must be determined independently for each color band.

Feda and Purgathofer [1992] based their calculation of the overshooting parameter on the

ambient exitance of the environment. However, Shao and Badler [1993b] noted several problems with this

approach, and instead suggested the following:

overshoot
iM∆

ij

n

j

unsent
ji

overshoot
i FMM ∑

=

′∆=∆
1

ρ (6.42)

where:





 >∆∆

=′∆
otherwise0

0unsent
j

unsent
junsent

j
MifM

M (6.43)

402 Solving the Radiosity Equation
__

This essentially sums the amount of unsent flux the patch will later receive from the elements in the

environment and multiplies it by the reflectance of the patch. The patch effectively gathers the unsent flux

it would otherwise receive in later steps and shoots it along with its own unsent flux.

Equation 6.43 ensures that the patch will never receive a negative amount of flux from any element.

Thus, only positive overshooting can occur. On the other hand, the patch may shoot a negative amount of

flux; this serves to cancel the overshot flux in later steps.

Since we can now have both positive and negative unsent flux, we need to modify our convergence

criterion. Equation 6.34 becomes:

ε≤∆∑
=

n

i
i

unsent
i AM

1
 (6.44)

Experiments performed by Shao and Badler [1993b] on two complex environments demonstrated that

the convergence rate with positive overshooting can be accelerated by a factor of two or more over that of

conventional progressive radiosity. There was also strong evidence that the appearance of subtle color

bleeding and soft shadow effects may appear as much as three to five times more quickly. Positive

overshooting is clearly a useful addition to the basic progressive radiosity algorithm.

Other overrelaxation techniques for solving the radiosity equation are described by Gortler and Cohen

[1993a] and Greiner et al. [1993].

6.9 A Progressive Refinement Radiosity Class

Having explored the mathematical techniques needed to solve the radiosity equation, we can

encapsulate these ideas in a C++ class. First, however, we need to complete our RadEqnSolve class that we

began in Chapter Four. We defined a number of several “stub” functions in RAD_TMP.CPP (Listing 4.19).

Following the above discussions on progressive refinement radiosity and ambient exitance, we can replace

them with:

// RAD_EQN.CPP - Radiosity Equation Solver Base Class

#include "rad_eqn.h"

// Initialize patch and element exitances
void RadEqnSolve::InitExitance()
{
 int i; // Loop index
 int num_vert; // Number of element vertices

Solving the Radiosity Equation 403
__
 Instance *pinst; // Instance pointer
 Element3 *pelem; // Element pointer
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer
 Spectra emit; // Surface emittance
 Vertex3 *pvert; // Vertex pointer

 total_flux = 0.0;

 // Walk the instance list
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Get surface emittance
 emit = psurf->GetEmittance();

 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Set patch unsent exitance
 ppatch->SetExitance(emit);

 // Update total environment flux
 total_flux += ppatch->GetUnsentFlux();

 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 // Initialize element exitance
 pelem->GetExitance().Reset();

 num_vert = pelem->GetNumVert();
 for (i = 0; i < num_vert; i++)
 {
 // Get element vertex pointer
 pvert = pelem->GetVertexPtr(i);

 // Initialize vertex exitance
 pvert->GetExitance().Reset();
 }
 pelem = pelem->GetNext();
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }
}

// Update unsent flux statistics
void RadEqnSolve::UpdateUnsentStats()
{
 double curr_unsent; // Current unsent flux

404 Solving the Radiosity Equation
__
 double max_unsent; // Maximum unsent flux
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer

 // Initialize unsent flux values
 total_unsent = 0.0;
 max_unsent = 0.0;

 // Walk the instance list
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Get current unsent flux value
 curr_unsent = ppatch->GetUnsentFlux();

 // Update total unsent flux
 total_unsent += curr_unsent;

 // Update maximum unsent flux and patch pointer
 if (curr_unsent > max_unsent)
 {
 max_unsent = curr_unsent;
 pmax = ppatch;
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Update convergence value
 if (total_flux > MIN_VALUE)
 convergence = fabs(total_unsent) / total_flux;
 else
 convergence = 0.0;
}

// Calculate interreflection factors
void RadEqnSolve::CalcInterReflect()
{
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Spectra sr; // Surface reflectance
 Spectra sum; // Sum areas times reflectances
 Surface3 *psurf; // Surface pointer

 irf.Reset();
 sum.Reset();
 total_area = 0.0;

Solving the Radiosity Equation 405
__
 // Walk the instance list
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Update sum of patch areas times reflectances
 sr = ppatch->GetParentPtr()->GetReflectance();
 sr.Scale(ppatch->GetArea());
 sum.Add(sr);

 // Update sum of patch areas
 total_area += ppatch->GetArea();

 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Calculate area-weighted average reflectance
 sum.Scale(1.0 / total_area);

 // Calculate interreflection factors
 irf.SetRedBand((float) 1.0 / ((float) 1.0 -
 sum.GetRedBand()));
 irf.SetGreenBand((float) 1.0 / ((float) 1.0 -
 sum.GetGreenBand()));
 irf.SetBlueBand((float) 1.0 / ((float) 1.0 -
 sum.GetBlueBand()));
}

// Calculate ambient exitance
void RadEqnSolve::CalcAmbient()
{
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Spectra sum; // Sum areas times unsent exitances
 Spectra unsent; // Patch unsent exitance
 Surface3 *psurf; // Surface pointer

 sum.Reset();

 // Walk the instance list
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();

406 Solving the Radiosity Equation
__
 while (ppatch != NULL)
 {
 // Update sum of unsent exitances times areas
 unsent = ppatch->GetExitance();
 unsent.Scale(ppatch->GetArea());
 sum.Add(unsent);

 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Calculate area-weighted average unsent exitance
 sum.Scale(1.0 / total_area);

 // Calculate ambient exitance
 ambient.SetRedBand(irf.GetRedBand() *
 sum.GetRedBand());
 ambient.SetGreenBand(irf.GetGreenBand() *
 sum.GetGreenBand());
 ambient.SetBlueBand(irf.GetBlueBand() *
 sum.GetBlueBand());
}

Listing 6.1 - RAD_EQN.CPP

These four functions do more or less what their names suggest. InitExitance initializes the patch unsent

exitances with that of their parent surfaces and resets the element and vertex exitances to zero.

UpdateUnsentStats finds the patch with the maximum unsent flux, and also calculates the convergence

value as a fraction of the total unsent flux to the total environment flux. CalcInterReflect calculates the

environment interreflection factors (one for each color band), while CalcAmbient calculates the ambient

exitance terms.

With this, we can derive a progressive refinement radiosity class from RadEqnSolve as follows:

// PROG_RAD.H - Progressive Refinement Radiosity Class

#ifndef _PROG_RAD_H
#define _PROG_RAD_H

#include "environ.h"
#include "rad_eqn.h"

// NOTE: Either _HEMI_CUBE or _CUBIC_TETRA must be defined
// in order to specify the appropriate form factor
// determination class for FormFactor. This will
// typically be done from the command line or through
// the integrated development environment (IDE).

#if defined(_HEMI_CUBE)
#include "hemicube.h"
#elif defined(_CUBIC_TETRA)

Solving the Radiosity Equation 407
__
#include "cubic_t.h"
#else
#error Either _HEMI_CUBE or _CUBIC_TETRA must be defined
#endif

// Progressive refinement radiosity equation solver
class ProgRad : public RadEqnSolve
{
 protected:
 float *ff_array; // Form factor array pointer
 BOOL over_flag; // Overshoot flag
 BOOL status; // Object status
 FormFactor ffd; // Form factor determination
 Spectra overshoot; // Overshooting parameters

 void AddAmbient();
 void CalcOverShoot();

 public:
 ProgRad() : RadEqnSolve() { over_flag = TRUE; }

 ~ProgRad() { Close(); }

 BOOL Calculate();
 BOOL OverShootFlag() { return over_flag; }
 BOOL GetStatus() { return ffd.GetStatus(); }
 BOOL Open(Environ *);
 void Close();
 void DisableOverShoot() { over_flag = FALSE; }
 void EnableOverShoot() { over_flag = TRUE; }
};

#endif

Listing 6.2 - PROG_RAD.H

Note that ProgRad can use either the HemiCube or CubicTetra class for form factor determination. If

you forget to define either _HEMI_CUBE or _CUBIC_TETRA at compile time, your compiler will issue an

appropriate error message via the #error directive.

Since ProgRad is derived from RadEqnSolve (Listing 4.18), we already have a mechanism for toggling

the ambient exitance feature on and off via RadEqnSolve::EnableAmbient and

RadEqnSolve::DisableAmbient. The functions EnableOverShoot and DisableOverShoot provide the same

functionality for positive overshooting. Our HELIOS program provides the necessary user interface for

both these features through its Convergence Parameters dialog box. This allows you to experiment with

various environments to see exactly how the ambient exitance affects the image quality and how much

faster the radiosity algorithm (usually) converges with positive overshooting enabled.

The remainder of our ProgRad class consists of:

408 Solving the Radiosity Equation
__
// PROG_RAD.CPP - Progressive Refinement Radiosity Class

#include "prog_rad.h"

// Open progressive radiosity renderer
BOOL ProgRad::Open(Environ *pe)
{
 penv = pe; // Save environment pointer
 step_count = 0; // Reset step count
 convergence = 1.0; // Convergence
 InitExitance(); // Initialize exitances

 if (amb_flag == TRUE) // Ambient exitance required ?
 {
 CalcInterReflect(); // Calculate interreflection factor
 CalcAmbient(); // Calculate initial ambient term
 }

 // Allocate form factor array
 if ((ff_array = new float[penv->GetNumElem()]) == NULL)
 return FALSE;

 return TRUE;
}

// Close progressive radiosity renderer
void ProgRad::Close()
{
 // Release form factor array
 if (ff_array != NULL)
 {
 delete [] ff_array;
 ff_array = NULL;
 }

 if (penv != NULL)
 {
 // Interpolate vertex exitances
 tone.Interpolate(penv->GetInstPtr());

 // Normalize vertex exitances
 tone.Normalize(penv->GetInstPtr());
 }
}

// Calculate element exitances
BOOL ProgRad::Calculate()
{
 float rff; // Reciprocal form factor
 BOOL self; // Self patch flag
 WORD ff_index = 0; // Form factor array index
 Element3 *pelem; // Element pointer
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer
 Spectra delta; // Delta exitance
 Spectra reflect; // Surface reflectance
 Spectra shoot; // Shoot exitance

 // Check for maximum number of steps

Solving the Radiosity Equation 409
__
 if (step_count >= max_step)
 {
 if (amb_flag == TRUE)
 {
 AddAmbient(); // Add ambient exitance
 }
 return TRUE;
 }

 UpdateUnsentStats(); // Update unsent flux statistics

 // Check for convergence
 if (convergence < stop_criterion)
 {
 if (amb_flag == TRUE)
 {
 AddAmbient(); // Add ambient exitance
 }
 return TRUE;
 }

 // Calculate form factors
 ffd.CalcFormFactors(pmax, penv->GetInstPtr(), ff_array,
 penv->GetNumElem());

 if (over_flag == TRUE)
 {
 CalcOverShoot(); // Calculate overshooting parameters
 }

 // Walk the instance list
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Get surface reflectance
 reflect = psurf->GetReflectance();

 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Check for self patch
 self = (ppatch == pmax) ? TRUE : FALSE;

 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 if (self == FALSE) // Ignore self
 {
 // Check element visibility
 if (ff_array[ff_index] > 0.0)
 {
 // Compute reciprocal form factor
 rff = (float) min((double) ff_array[ff_index]
 * pmax->GetArea() / pelem->GetArea(),

410 Solving the Radiosity Equation
__
 1.0);

 // Get shooting patch unsent exitance
 shoot = pmax->GetExitance();

 if (over_flag == TRUE)
 {
 // Add overshoot exitance
 shoot.Add(overshoot);
 }

 // Calculate delta exitance
 delta.SetRedBand(reflect.GetRedBand() *
 rff * shoot.GetRedBand());
 delta.SetGreenBand(reflect.GetGreenBand() *
 rff * shoot.GetGreenBand());
 delta.SetBlueBand(reflect.GetBlueBand() *
 rff * shoot.GetBlueBand());

 // Update element exitance
 pelem->GetExitance().Add(delta);

 // Update patch unsent exitance
 delta.Scale(pelem->GetArea() /
 ppatch->GetArea());
 ppatch->GetExitance().Add(delta);
 }
 }
 pelem = pelem->GetNext();
 ff_index++;
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Reset unsent exitance to zero
 pmax->GetExitance().Reset();

 if (over_flag == TRUE)
 {
 // Subtract overshoot exitance
 pmax->GetExitance().Subtract(overshoot);
 }

 if (amb_flag == TRUE)
 {
 CalcAmbient(); // Recalculate ambient exitance
 }

 step_count++; // Increment step count
 return FALSE; // Convergence not achieved yet
}

void ProgRad::AddAmbient() // Add ambient exitance
{
 Element3 *pelem; // Element pointer
 Instance *pinst; // Instance pointer

Solving the Radiosity Equation 411
__
 Patch3 *ppatch; // Patch pointer
 Spectra delta_amb; // Delta ambient exitance
 Spectra reflect; // Surface reflectance
 Surface3 *psurf; // Surface pointer

 // Walk the instance list
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Get surface reflectance
 reflect = psurf->GetReflectance();

 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 // Calculate delta ambient exitance
 delta_amb.SetRedBand(ambient.GetRedBand() *
 reflect.GetRedBand());
 delta_amb.SetGreenBand(ambient.GetGreenBand() *
 reflect.GetGreenBand());
 delta_amb.SetBlueBand(ambient.GetBlueBand() *
 reflect.GetBlueBand());

 // Update element exitance
 pelem->GetExitance().Add(delta_amb);

 pelem = pelem->GetNext();
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }
}

// Calculate overshooting parameters
void ProgRad::CalcOverShoot()
{
 BOOL self; // Self patch flag
 WORD ff_index = 0; // Form factor array index
 Element3 *pelem; // Element pointer
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Spectra spr; // Shooting patch reflectance
 Spectra unsent; // Patch unsent exitance
 Surface3 *psurf; // Surface pointer

 overshoot.Reset(); // Reset overshooting parameters

 // Walk the instance list

412 Solving the Radiosity Equation
__
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Check for self patch
 self = (ppatch == pmax) ? TRUE : FALSE;

 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 if (self == FALSE) // Ignore self
 {
 // Get unsent patch exitance
 unsent = ppatch->GetExitance();

 // Ensure unsent exitance is positive in each
 // color band
 if (unsent.GetRedBand() < 0.0)
 unsent.SetRedBand(0.0);
 if (unsent.GetGreenBand() < 0.0)
 unsent.SetGreenBand(0.0);
 if (unsent.GetBlueBand() < 0.0)
 unsent.SetBlueBand(0.0);

 // Multiply unsent exitance by patch-to-
 // element form factor
 unsent.Scale(ff_array[ff_index]);

 // Update overshooting parameters
 overshoot.Add(unsent);
 }
 pelem = pelem->GetNext();
 ff_index++;
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Get shooting patch reflectance
 spr = pmax->GetParentPtr()->GetReflectance();

 // Multiply overshooting parameters by shooting patch
 // reflectance
 overshoot.SetRedBand(overshoot.GetRedBand() *
 spr.GetRedBand());
 overshoot.SetGreenBand(overshoot.GetGreenBand() *
 spr.GetGreenBand());
 overshoot.SetBlueBand(overshoot.GetBlueBand() *
 spr.GetBlueBand());

Solving the Radiosity Equation 413
__
}

Listing 6.3 - PROG_RAD.CPP

Most of the above is a straightforward implementation of the preceding algorithms. The only item not

discussed so far is the calculation of the reciprocal form factor in Calculate. If this value is greater than

unity, it indicates that hemi-cube (or cubic tetrahedron) aliasing has occurred. When this happens, we

should in theory subdivide the shooting patch and shoot the exitance again. Here, we take the simpler

approach of silently clipping the reciprocal form factor to unity. (See Section 7.5.2 for further details.)

With ProgRad, we have all the code we need to render photorealistic images. Before doing so,

however, we should look at how easily we can accommodate vertex-to-source form factors within the

progressive refinement radiosity paradigm.

6.10 A Ray Casting Radiosity Algorithm

Recalling Section 5.23, ray casting allows us to determine the form factor from an element vertex v to a

source patch i. Repeating Equation 5.46 here (with a change of subscripts to avoid confusion), we have:

nAr
HID

n
A

F
it

itvt
n

t
t

i
vi

+
= ∑

=
2

1

coscos

π

θθ
 (6.45)

which is calculated by our RayCast class (Listings 5.29 and 5.30).

We want to shoot exitance from each vertex to the source patch. Repeating Equation 6.33 with another

change of subscripts, we have:

vi
unsent
ivv FMM ρ=∆ (6.46)

With this, our progressive refinement radiosity algorithm (Figure 6.4) becomes:

FOR each element i
 oi

unsent
i MM =∆

ENDFOR

WHILE ε>∆∑
=

n

i
i

unsent
i AM

1

 Select element i with greatest unsent flux i
unsent
i AM∆

 FOR each element j
 0=∆M
 FOR each vertex v
 unsent

ivijv MFM ∆=∆ ρ

 vvv MMM ∆+=
 vMMM ∆+∆=∆

414 Solving the Radiosity Equation
__

 ENDFOR
 verticesnumMMM unsent

j
unsent
j _∆+∆=∆

 ENDFOR
 0=∆ unsent

iM
ENDWHILE

Figure 6.7 - Progressive refinement radiosity algorithm with ray casting

Note that we no longer have to calculate and store the form factors for each selected shooting element.

This makes the ray casting radiosity algorithm more efficient with respect to memory usage. On the other

hand, Equation 6.42 requires the shooting patch-to-receiving element form factors before the exitance is

shot into the environment. This means that we can no longer calculate the amount of positive overshooting

required for each pass.

We can, however, take advantage of our patch-element hierarchy and ambient exitance enhancements.

From Figure 6.5, we have:

Calculate initial ambient exitance M ambient

FOR each patch i
 oi

unsent
i MM =∆

ENDFOR

WHILE ε>∆∑
=

n

i
i

unsent
i AM

1

 Select patch i with greatest unsent flux i
unsent
i AM∆

 FOR each patch j
 FOR each element k of parent patch j
 0=∆ kM
 FOR each vertex v
 // Determine increase in exitance of vertex v due to patch exitance unsent

iM∆

 unsent
ivijv MFM ∆=∆ ρ

 vvv MMM ∆+=
 vkk MMM ∆+∆=∆
 ENDFOR
 // Add area-weighted increase in element k exitance to parent patch j

verticesnumA

MA
MM

j

kkunsent
j

unsent
j _∗

∆
+∆=∆

 ENDFOR
 ENDFOR
 0=∆ unsent

iM
 Recalculate ambient exitance ambientM
ENDWHILE
FOR each element k
 FOR each vertex v
 // Add initial and ambient exitance contributions

Solving the Radiosity Equation 415
__

 ambientkokvv MMMM ρ++=
 ENDFOR
ENDFOR

Figure 6.8 - Ray casting radiosity algorithm with ambient exitance

Once again using RadEqnSolve as the base class, we can derive the following:

// RAY_RAD.H - Ray Casting Radiosity Class

#ifndef _RAY_RAD_H
#define _RAY_RAD_H

#include "environ.h"
#include "rad_eqn.h"
#include "ray_cast.h"

// Ray casting radiosity equation solver
class RayRad : public RadEqnSolve
{
 private:
 RayCast ffd; // Form factor determination

 void AddAmbient();

 public:
 RayRad() : RadEqnSolve() { }

 ~RayRad() { }

 BOOL Calculate();
 BOOL Open(Environ *);
 void Close() { tone.Normalize(penv->GetInstPtr()); }
};

#endif

Listing 6.4 - RAY_RAD.H

and:

// RAY_RAD.CPP - Ray Casting Radiosity Class

#include "ray_rad.h"

// Open ray casting radiosity renderer
BOOL RayRad::Open(Environ *pe)
{
 penv = pe; // Save environment pointer
 step_count = 0; // Reset step count
 convergence = 1.0; // Convergence
 InitExitance(); // Initialize exitances

 if (amb_flag == TRUE) // Ambient exitance required ?
 {
 CalcInterReflect(); // Calculate interreflection factor
 CalcAmbient(); // Calculate initial ambient term
 }

416 Solving the Radiosity Equation
__
 return TRUE;
}

// Calculate element exitances
BOOL RayRad::Calculate()
{
 int i; // Loop index
 int num_vert; // Number of element vertices
 float vsff; // Vertex-to-source form factor
 BOOL self; // Self patch flag
 Element3 *pelem; // Element pointer
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Surface3 *psurf; // Surface pointer
 Spectra p_delta; // Patch delta exitance
 Spectra v_delta; // Vertex delta exitance
 Spectra reflect; // Surface reflectance
 Spectra shoot; // Shoot exitance
 Vertex3 *pvert; // Vertex pointer

 // Check for maximum number of steps
 if (step_count >= max_step)
 {
 if (amb_flag == TRUE)
 {
 AddAmbient(); // Add ambient exitance
 }
 return TRUE;
 }

 UpdateUnsentStats(); // Update unsent flux statistics

 // Check for convergence
 if (convergence < stop_criterion)
 {
 if (amb_flag == TRUE)
 {
 AddAmbient(); // Add ambient exitance
 }
 return TRUE;
 }

 // Initialize form factor determination object
 ffd.Init(pmax);

 // Walk the instance list
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Get surface reflectance
 reflect = psurf->GetReflectance();

 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {

Solving the Radiosity Equation 417
__
 // Check for self patch
 self = (ppatch == pmax) ? TRUE : FALSE;

 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 if (self == FALSE) // Ignore self
 {
 // Get shooting patch unsent exitance
 shoot = pmax->GetExitance();

 // Reset patch delta exitance
 p_delta.Reset();

 num_vert = pelem->GetNumVert();
 for (i = 0; i < num_vert; i++)
 {
 // Get element vertex pointer
 pvert = pelem->GetVertexPtr(i);

 // Get vertex-to-source form factor
 if ((vsff = (float) ffd.CalcFormFactor(pvert,
 penv->GetInstPtr())) > 0.0)
 {
 // Calculate vertex delta exitance
 v_delta.SetRedBand(reflect.GetRedBand()
 * vsff * shoot.GetRedBand());
 v_delta.SetGreenBand(reflect.GetGreenBand()
 * vsff * shoot.GetGreenBand());
 v_delta.SetBlueBand(reflect.GetBlueBand()
 * vsff * shoot.GetBlueBand());

 // Update vertex exitance
 pvert->GetExitance().Add(v_delta);

 // Update patch delta exitance
 p_delta.Add(v_delta);
 }
 }

 // Update patch unsent exitance
 p_delta.Scale(pelem->GetArea() / ((double)
 num_vert * ppatch->GetArea()));
 ppatch->GetExitance().Add(p_delta);
 }
 pelem = pelem->GetNext();
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();
 }
 pinst = pinst->GetNext();
 }

 // Reset unsent exitance to zero
 pmax->GetExitance().Reset();

 if (amb_flag == TRUE)
 {

418 Solving the Radiosity Equation
__
 CalcAmbient(); // Recalculate ambient exitance
 }

 step_count++; // Increment step count
 return FALSE; // Convergence not achieved yet
}

void RayRad::AddAmbient() // Add ambient exitance
{
 int i; // Loop index
 int num_vert; // Number of element vertices
 Element3 *pelem; // Element pointer
 Instance *pinst; // Instance pointer
 Patch3 *ppatch; // Patch pointer
 Spectra delta_amb; // Delta ambient exitance
 Spectra reflect; // Surface reflectance
 Surface3 *psurf; // Surface pointer
 Vertex3 *pvert; // Vertex pointer

 // Walk the instance list
 pinst = penv->GetInstPtr();
 while (pinst != NULL)
 {
 // Walk the surface list
 psurf = pinst->GetSurfPtr();
 while (psurf != NULL)
 {
 // Get surface reflectance
 reflect = psurf->GetReflectance();

 // Walk the patch list
 ppatch = psurf->GetPatchPtr();
 while (ppatch != NULL)
 {
 // Walk the element list
 pelem = ppatch->GetElementPtr();
 while (pelem != NULL)
 {
 // Calculate delta ambient exitance
 delta_amb.SetRedBand(ambient.GetRedBand() *
 reflect.GetRedBand());
 delta_amb.SetGreenBand(ambient.GetGreenBand() *
 reflect.GetGreenBand());
 delta_amb.SetBlueBand(ambient.GetBlueBand() *
 reflect.GetBlueBand());

 num_vert = pelem->GetNumVert();
 for (i = 0; i < num_vert; i++)
 {
 // Get element vertex pointer
 pvert = pelem->GetVertexPtr(i);

 // Update vertex exitance
 pvert->GetExitance().Add(delta_amb);
 }
 pelem = pelem->GetNext();
 }
 ppatch = ppatch->GetNext();
 }
 psurf = psurf->GetNext();

Solving the Radiosity Equation 419
__
 }
 pinst = pinst->GetNext();
 }
}

Listing 6.5 - RAY_RAD.CPP

As you can see, the differences between RayRad and ProgRad are minimal. Apart from their form

factor determination requirements, the two Calculate functions differ only in their innermost loops. The

same holds true for UpdateUnsentStats and AddAmbient. For the effort of developing a few dozen

additional lines of code, we now have two radiosity algorithms to play with. Each has its advantages and

disadvantages in rendering photorealisitc images, as we shall soon see.

6.11 HELIOS: Putting It All Together

C’est fini! After nearly 7,000 lines of source code and fifty C++ classes, we are done. All we need to do

now is to compile and link a new version of HELIOS. With it, we can then render photorealistic images of

an environment.

HELIOS is designed for Microsoft Windows 3.1 and Windows NT (see Chapter Four). If you are

developing for another target environment, you will need to port the user interface portion of HELIOS to

that environment. See Section 4.19 for details.

The first step is build a make file or a project file from within an integrated development environment

(IDE). This leads to a minor complication: we must choose between one of three versions of HELIOS to

compile and link. There is a different list of source code files and conditional compilation directives

required, depending on whether we want to use the progressive refinement or ray casting radiosity

algorithms. If we choose the former, we then have to decide between hemi-cubes and cubic tetrahedrons.

Then again, there should be no choice. Having expended the effort in developing the code, we may as

well compile, link and experiment with all three versions. To avoid the otherwise inevitable confusion and

frustration, it is probably best to set up make or IDE project files in three separate subdirectories. There is

nothing more exasperating than debugging what appears to be a successfully compiled and linked program,

only to discover that an incorrect object file was used.

With this in mind, we can start with:

420 Solving the Radiosity Equation
__

HELIOS Version 1.00A/HC

 Radiosity algorithm: Progressive refinement
 Form factor determination: Hemi-cube

 C++ compiler directive: _HEMI_CUBE
 Resource compiler directive: _HEMI_CUBE

 16-bit memory model: Large

 Source code file list:
 c_jitter.cpp error.cpp ff_clip.cpp ff_scan.cpp
 gamma.cpp hc_clip.cpp hc_delta.cpp hc_scan.cpp
 helios.cpp helios.def helios.rc hemicube.cpp
 p_clip4.cpp p_render.cpp parse.cpp patch3.cpp
 prog_rad.cpp rad_eqn.cpp syn_cam.cpp tone_rep.cpp
 vector3.cpp view_sys.cpp win_bmap.cpp win_sbar.cpp

Figure 6.9 - HELIOS (hemi-cube) project files

Note that for 16-bit Windows 3.1, the memory model must be specified as LARGE. As was explained

in Section 3.13, the WinText class assumes that its functions use _far pointers.

Also, the compilation directive _HEMI_CUBE must be globally defined. This can be usually done from

a make file or through the compiler preprocessor options. Furthermore, it must be separately defined for

the C++ compiler and the resource script compiler.

Once you successfully compile and link this version, you can run it and display the About dialog box.

The version number should read “1.00A/HC”, where “HC” stands for “Hemi-Cube".

Our next version is:

HELIOS Version 1.00A/CT

 Radiosity algorithm: Progressive refinement
 Form factor determination: Cubic tetrahedron

 C++ compiler directive: _CUBIC_TETRA
 Resource compiler directive: _CUBIC_TETRA

 16-bit memory model: Large

 Source code file list:
 c_jitter.cpp ct_clip.cpp ct_delta.cpp ct_scan.cpp
 cubic_t.cpp error.cpp ff_clip.cpp ff_scan.cpp
 gamma.cpp helios.cpp helios.def helios.rc
 p_clip4.cpp p_render.cpp parse.cpp patch3.cpp
 prog_rad.cpp rad_eqn.cpp syn_cam.cpp tone_rep.cpp
 vector3.cpp view_sys.cpp win_bmap.cpp win_sbar.cpp

Figure 6.10 - HELIOS (cubic tetrahedron) project files

Solving the Radiosity Equation 421
__

The globally defined compilation directive to use here is _CUBIC_TETRA. Once again, it must be

separately defined for the C++ compiler and the resource script compiler. Once you successfully compile

and link this version, its version number should read “1.00A/CT”, where “CT” stands for “Cubic

Tetrahedron".

The cubic tetrahedron and hemi-cube versions are, apart from the form factor determination methods

used, identical. There are also few if any discernable differences between the images they produce. If

anything, the cubic tetrahedron might offer a slight advantage in alleviating aliasing problems for

environments with primarily parallel and perpendicular surfaces. There may also be slight differences in

execution time when rendering images.

Given these minimal differences, you might ask “why bother?” The answer is that neither HemiCube or

CubicTetra have been optimized. Section 5.19.1 offers several suggestions for improving the performance

of both algorithms, and the references cited in Chapter Five offer a variety of acceleration techniques.

Since form factor determination consumes most of the CPU time needed to generate a radiosity rendering,

these two classes and their associated classes (HemiClip and so on) should be prime candidates for

optimization efforts. Having two separate algorithms to work with can only improve the chances for

success.

On the other hand, we also have our ray casting approach to consider:

HELIOS Version 1.00A/RC

 Radiosity algorithm: Ray casting (progressive refinement)
 Form factor determination: Ray casting

 C++ compiler directive: _RAY_CAST
 Resource compiler directive: _RAY_CAST

 16-bit memory model: Large

 Source code file list:
 c_jitter.cpp error.cpp gamma.cpp helios.cpp
 helios.def helios.rc p_clip4.cpp p_render.cpp
 parse.cpp patch3.cpp rad_eqn.cpp ray_cast.cpp
 ray_rad.cpp syn_cam.cpp tone_rep.cpp vector3.cpp
 view_sys.cpp win_bmap.cpp win_sbar.cpp

Figure 6.11 - HELIOS (ray casting) project files

422 Solving the Radiosity Equation
__

The globally defined compilation directive required is _RAY_CAST, and it must be separately defined

for the C++ compiler and the resource script compiler. The program’s version number should read

“1.00A/RC”, where “RC” stands for “Ray Casting".

With three successfully compiled and linked versions of HELIOS in hand, all we need now is an

environment to view … and therein lies a problem. Describing a complex environment requires many lines

of ASCII text. Do you really want to enter 100,000 lines by hand?

6.12 A Simple Test Environment

In a few years’ time, books like this will likely be published on CD-ROM. It would be wonderful to

have megabytes of space available to include a collection of complex and interesting environments to play

with. Until then, we have the printed page and the diskette accompanying this book.

The diskette includes several moderately complex environments that demonstrate the capabilities of

HELIOS. The best that can be done in print is to present a very simple environment–a bench and two

suspended lights in an otherwise empty room. While this may seem rather mundane, the color plates

demonstrate that it can offer some surprising subtleties.

We first need an entity file for the bench:

ENTITY bench
VERTEX
< 0.0 0.0 2.5 >
< 2.5 0.0 2.5 >
< 2.5 2.5 2.5 >
< 0.0 2.5 2.5 >
< 5.0 0.0 2.5 >
< 5.0 2.5 2.5 >
< 5.0 0.0 0.0 >
< 5.0 2.5 0.0 >
< 5.0 2.5 2.5 >
< 5.0 0.0 2.5 >
< 0.0 0.0 0.0 >
< 0.0 0.0 2.5 >
< 0.0 2.5 2.5 >
< 0.0 2.5 0.0 >
< 4.8 0.0 0.0 >
< 4.8 0.0 2.3 >
< 4.8 2.5 2.3 >
< 4.8 2.5 0.0 >
< 0.2 0.0 0.0 >
< 0.2 2.5 0.0 >
< 0.2 2.5 2.3 >
< 0.2 0.0 2.3 >
< 5.0 0.0 0.0 >
< 5.0 2.5 0.0 >
< 5.0 2.5 2.5 >

Solving the Radiosity Equation 423
__
< 5.0 0.0 2.5 >
< 0.0 0.0 0.0 >
< 0.0 2.5 0.0 >
< 0.0 2.5 2.5 >
< 0.0 0.0 2.5 >
END_VERT
SURFACE
[0.5 0.2 0.7] [0.0 0.0 0.0]
[0.0 0.8 0.3] [0.0 0.0 0.0]
[0.0 0.8 0.3] [0.0 0.0 0.0]
[0.0 0.3 0.0] [0.0 0.0 0.0]
END_SURF
PATCH
0 { 0 4 5 3 }
1 { 6 7 8 9 }
2 { 10 11 12 13 }
3 { 14 15 16 17 }
3 { 18 19 20 21 }
3 { 21 20 16 15 }
3 { 17 16 24 23 }
3 { 16 20 28 24 }
3 { 19 27 28 20 }
3 { 14 17 23 22 }
3 { 10 27 19 18 }
3 { 14 22 25 15 }
3 { 21 15 25 29 }
3 { 26 18 21 29 }
END_PATCH
ELEMENT
 0 { 0 1 2 2 }
 0 { 0 2 3 3 }
 0 { 4 2 1 1 }
 0 { 4 5 2 2 }
 1 { 6 7 8 8 }
 1 { 6 8 9 9 }
 2 { 10 11 12 12 }
 2 { 10 12 13 13 }
 3 { 14 15 16 17 }
 4 { 18 19 20 21 }
 5 { 21 20 16 15 }
 6 { 17 16 24 23 }
 7 { 16 20 28 24 }
 8 { 19 27 28 20 }
 9 { 14 17 23 22 }
10 { 26 27 19 18 }
11 { 14 22 25 15 }
12 { 21 15 25 29 }
13 { 26 18 21 29 }
END_ELEM
END_ENTITY

Listing 6.6 - BENCH.ENT

The color scheme is a bit garish–a mauve top, sea green sides and dark green edges. If you prefer

something more contemporary, you can always change the surface reflectance values in the SURFACE

section.

424 Solving the Radiosity Equation
__

The top surface is divided into two square patches, and each patch is divided into two equal triangles

(Fig. 6.13). A finer mesh of patches and elements would allow us to display more shading details in the

rendered image. (Adding the necessary patch, element and especially vertex description lines to

BENCH.ENT is left as a typing exercise for the masochistic reader.)

There are two identical light fixtures, so we only need one common entity file to describe them:

ENTITY light
VERTEX
< 0.0 0.0 0.02 >
< 0.2 0.0 0.02 >
< 0.4 0.0 0.02 >
< 0.6 0.0 0.02 >
< 0.8 0.0 0.02 >
< 1.0 0.0 0.02 >
< 1.0 1.0 0.02 >
< 0.8 1.0 0.02 >
< 0.6 1.0 0.02 >
< 0.4 1.0 0.02 >
< 0.2 1.0 0.02 >
< 0.0 1.0 0.02 >
< 0.0 0.0 0.0 >
< 1.0 0.0 0.0 >
< 1.0 0.0 0.02 >
< 0.0 0.0 0.02 >
< 1.0 0.0 0.0 >
< 1.0 1.0 0.0 >
< 1.0 1.0 0.02 >
< 1.0 0.0 0.02 >
< 1.0 1.0 0.0 >
< 0.0 1.0 0.0 >
< 0.0 1.0 0.02 >
< 1.0 1.0 0.02 >
< 0.0 1.0 0.0 >
< 0.0 0.0 0.0 >
< 0.0 0.0 0.02 >
< 0.0 1.0 0.02 >
< 0.0 0.0 0.0 >
< 0.2 0.0 0.0 >
< 0.4 0.0 0.0 >
< 0.6 0.0 0.0 >
< 0.8 0.0 0.0 >
< 1.0 0.0 0.0 >
< 1.0 1.0 0.0 >
< 0.8 1.0 0.0 >
< 0.6 1.0 0.0 >
< 0.4 1.0 0.0 >
< 0.2 1.0 0.0 >
< 0.0 1.0 0.0 >
END_VERT
SURFACE
[0.0 0.0 0.0] [1.0 1.0 1.0]
[0.0 0.0 0.5] [0.0 0.0 0.0]
[0.0 0.0 0.5] [0.0 0.0 0.0]
[0.0 0.0 0.5] [0.0 0.0 0.0]
[0.0 0.0 0.5] [0.0 0.0 0.0]

Solving the Radiosity Equation 425
__
[0.0 0.0 0.0] [0.5 0.5 0.5]
END_SURF
PATCH
0 { 0 1 10 11 }
0 (1 2 9 10 }
0 { 2 3 8 9 }
0 { 3 4 7 8 }
0 (4 5 6 7 }
1 { 12 13 14 15 }
2 { 16 17 18 19 }
3 { 20 21 22 23 }
4 { 24 25 26 27 }
5 { 28 39 38 29 }
5 { 29 38 37 30 }
5 { 30 37 36 31 }
5 { 31 36 35 32 }
5 { 32 35 34 33 }
END_PATCH
ELEMENT
0 { 0 1 10 11 }
1 (1 2 9 10 }
2 { 2 3 8 9 }
3 { 3 4 7 8 }
4 (4 5 6 7 }
5 { 12 13 14 15 }
6 { 16 17 18 19 }
7 { 20 21 22 23 }
8 { 24 25 26 27 }
9 { 28 39 38 29 }
10 { 29 38 37 30 }
11 { 30 37 36 31 }
12 { 31 36 35 32 }
13 { 32 35 34 33 }
END_ELEM
END_ENTITY

Listing 6.7 - LIGHT.ENT

LIGHT.ENT describes the light fixture as a unit square, which is definitely not what is shown in Figure

6.13 and the color plates. Remember, however, that we can scale, rotate and translate an entity as required,

depending on the parameters we specify in the environment file. In this case, we can stretch LIGHT.ENT

into a semblance of a linear fluorescent lighting fixture that emits light from both its top and bottom faces.

Figure 6.13 shows the light fixtures suspended below the ceiling plane. Accordingly, the top and

bottom faces of LIGHT.ENT consist of five patches. This is an attempt to comply with the Five-Times

Rule (Section 5.5), again within the limits of the size of text file that can be reproduced here. LIGHT.ENT

will be rotated 180 degrees on its horizontal axis to properly orient it in the environment.

Finally, we need to define the floor, ceiling and walls of our room. Each of these surfaces consists of

one patch and a square grid of 25 elements. This is far from optimal with respect to the Five-Times Rule,

426 Solving the Radiosity Equation
__

especially where the surfaces meet at the corners. On the other hand, it will serve to demonstrate both the

strengths and weaknesses of our radiosity methods.

We can use the following entity file as a template to define these surfaces:

ENTITY white wall
VERTEX
< 0.00 0.00 0.00 >
< 0.20 0.00 0.00 >
< 0.40 0.00 0.00 >
< 0.60 0.00 0.00 >
< 0.80 0.00 0.00 >
< 1.00 0.00 0.00 >
< 0.00 0.20 0.00 >
< 0.20 0.20 0.00 >
< 0.40 0.20 0.00 >
< 0.60 0.20 0.00 >
< 0.80 0.20 0.00 >
< 1.00 0.20 0.00 >
< 0.00 0.40 0.00 >
< 0.20 0.40 0.00 >
< 0.40 0.40 0.00 >
< 0.60 0.40 0.00 >
< 0.80 0.40 0.00 >
< 1.00 0.40 0.00 >
< 0.00 0.60 0.00 >
< 0.20 0.60 0.00 >
< 0.40 0.60 0.00 >
< 0.60 0.60 0.00 >
< 0.80 0.60 0.00 >
< 1.00 0.60 0.00 >
< 0.00 0.80 0.00 >
< 0.20 0.80 0.00 >
< 0.40 0.80 0.00 >
< 0.60 0.80 0.00 >
< 0.80 0.80 0.00 >
< 1.00 0.80 0.00 >
< 0.00 1.00 0.00 >
< 0.20 1.00 0.00 >
< 0.40 1.00 0.00 >
< 0.60 1.00 0.00 >
< 0.80 1.00 0.00 >
< 1.00 1.00 0.00 >
END_VERT
SURFACE
[0.8 0.8 0.8] [0.0 0.0 0.0]
END_SURF
PATCH
0 { 0 5 35 30 }
END_PATCH
ELEMENT
0 { 0 1 7 6 }
0 { 1 2 8 7 }
0 { 2 3 9 8 }
0 { 3 4 10 9 }
0 { 4 5 11 10 }
0 { 6 7 13 12 }
0 { 7 8 14 13 }

Solving the Radiosity Equation 427
__
0 { 8 9 15 14 }
0 { 9 10 16 15 }
0 { 10 11 17 16 }
0 { 12 13 19 18 }
0 { 13 14 20 19 }
0 { 14 15 21 20 }
0 { 15 16 22 21 }
0 { 16 17 23 22 }
0 { 18 19 25 24 }
0 { 19 20 26 25 }
0 { 20 21 27 26 }
0 { 21 22 28 27 }
0 { 22 23 29 28 }
0 { 24 25 31 30 }
0 { 25 26 32 31 }
0 { 26 27 33 32 }
0 { 27 28 34 33 }
0 { 28 29 35 34 }
END_ELEM
END_ENTITY

Listing 6.8 - W_WALL.ENT

W_WALL.ENT describes the three white walls of our room. The surface reflectance is described by

the surface identifier, which is:

…
SURFACE
[0.8 0.8 0.8] [0.0 0.0 0.0]
END_SURF
…

(This actually describes a light gray surface that reflects 80 percent in each of the three color bands.

Looking at it in real life, we would probably say it is “off-white” in color.)

To create the red wall, we only need to change the above to:

[0.95 0.0 0.0] [0.0 0.0 0.0]

and name the modified file R_WALL.ENT. Similarly, the floor becomes:

[0.2 0.3 0.3] [0.0 0.0 0.0]

which we name FLOOR.ENT. (This will look like a rather pleasant gray carpet with a blue-green tinge.

We can blame the furnishings on the interior decorator.)

Finally, the ceiling is a sparklingly clean white:

[0.95 0.95 0.95] [0.0 0.0 0.0]

which we name CEILING.ENT. That done, we can arrange our room and its furnishings with:

WORLD room
COMMENT floor
floor.ent

428 Solving the Radiosity Equation
__
< 1.0 1.6 1.0 >
< 0.0 0.0 0.0 >
< 0.0 0.0 0.0 >
COMMENT ceiling
ceiling.ent
< 1.0 1.6 1.0 >
< 180.0 0.0 0.0 >
< 0.0 1.6 1.0 >
COMMENT red wall
r_wall.ent
< 1.0 1.0 1.0 >
< 270.0 0.0 0.0 >
< 0.0 0.0 1.0 >
COMMENT white wall
w_wall.ent
< 1.0 1.6 1.0 >
< 0.0 90.0 0.0 >
< 0.0 0.0 1.0 >
COMMENT white wall
w_wall.ent
< 1.0 1.0 1.0 >
< 90.0 0.0 0.0 >
< 0.0 1.6 0.0 >
COMMENT white wall
w_wall.ent
< 1.0 1.6 1.0 >
< 0.0 270.0 0.0 >
< 1.0 0.0 0.0 >
COMMENT light #1
light.ent
< 0.8 0.05 1.0 >
< 180.0 0.0 0.0 >
< 0.1 0.2 0.8 >
COMMENT light #2
light.ent
< 0.8 0.05 1.0 >
< 180.0 0.0 0.0 >
< 0.1 1.4 0.8 >
COMMENT bench
bench.ent
< 0.16 0.16 0.08 >
< 0.0 0.0 0.0 >
< 0.1 0.2 0.0 >
END_FILE

Listing 6.9 - ROOM.WLD

This gives us an environment with 9 instances, 22 surfaces, 48 patches, 197 elements and 326 vertices.

6.12.1 Taking It For A Test Drive

We have an environment and three versions of HELIOS to examine it with. Their user interfaces are

almost identical, so we can choose whichever one we please for a test drive.

To display a view of the room, we first need to ensure that the following files are in the same directory:

 BENCH.ENT CEILING.ENT FLOOR.ENT LIGHT.ENT

Solving the Radiosity Equation 429
__

 R_WALL.ENT W_WALL.ENT ROOM.WLD

Figure 6.12 - ROOM enviroment data files

and run HELIOS as a MS-Windows program. Once its main window is displayed, we can:

1. Choose File from the menu bar.

2, Choose the Open… menu item to display the Open common dialog box.

3. Select the ROOM.WLD file.

An Environment Statistics dialog box will appear with an enumeration of the instances, surfaces, patches,

elements, and vertices in the environment.

If the entity files are not in the same directory as ROOM.WLD, an error message will appear in a dialog

box. Rather than exiting HELIOS, we can:

1. Choose File from the menu bar.

2. Choose the Directories… menu item to display the Directories dialog box.

3. Enter the correct file path in the Entities File Path edit control.

and repeat the previous three steps to select the ROOM.WLD file again.

With the environment file parsed and loaded into memory, we can now:

1. Choose Camera from the menu bar.

2. Choose the Set Parameters menu item to display the Camera Parameters dialog box.

3. Enter “2” in the View Distance edit control.

This sets the camera view distance at 2.0 units, giving a field of view roughly equivalent to a 35 mm lens

on a 35 mm camera. The default Window Dimensions values tell HELIOS to display the image as a

horizontally-oriented bitmap of pixels. We can change this to whatever size we want, from a

minimum of 32 to a maximum of 1,024 pixels.

480640×

The synthetic camera’s position and orientation must be specified next:

1. Choose View from the menu bar.

2. Choose the Specify View… menu item to display the View Parameters dialog box.

3. Enter “-1.5” (note the minus sign) in the Eye Position X-Axis edit control.

4. Enter “1.9” in the Eye Position Y-Axis edit control.

430 Solving the Radiosity Equation
__

5. Enter “0.5” in the Eye Position Z-Axis edit control.

6. Enter “-30” (note the minus sign) in the View Direction Horizontal Degrees edit control.

The View Direction Vertical Degrees and View-Up Vector edit controls remain unchanged.

The synthetic camera is now set up to display an image, starting with:

1. Choose Render from the menu bar.

2. Choose the Wireframe menu item.

A wireframe image of the room will be displayed (Fig. 6.13). Recalling Chapter Four, this image will

automatically resize itself whenever the display window size is changed. We can also go back and change

any of the previous entries to change the view or camera parameters; the wireframe image will update itself

accordingly.

Figure 6.13 - ROOM.WLD wireframe display

To display a full-color shaded bitmap image:

1. Choose Render from the menu bar.

2. Choose the Shaded menu item.

It may take a few seconds or more to display the image, depending on the CPU speed and whether a math

coprocessor is present. Increasing the bitmap size in either direction increases display calculation time

accordingly. Remember that we are using floating point operations here; an integer-only version (Section

4.12) would speed this up considerably for an 80x86-based computer.

Solving the Radiosity Equation 431
__

Now, remember that:

HELIOS needs a computer system capable of displaying at least 32,768 colors.

We can use a computer with a 256-color display, but the images as displayed by HELIOS will appear

posterized. The diskette accompanying this book includes C++ source code and an executable file for a

color quantization utility (Section 3.5.2) that converts 24-bit color bitmaps to 8-bit (256 color) bitmaps.

As an aside, it is worth noting that an MS-Windows program operating in 256-color mode does not

automatically map 24-bit RGB colors to the current palette of 256 colors when the MS-Windows API

function SetPixel is called. Unless specifically programmed to do otherwise, the Windows GDI (Graphical

Device Interface) merrily maps the color to one of 20 default system colors that have been specified via the

Control Panel for the window borders, title bars, menu bars, background and so forth. This explains why

24-bit color images displayed using Microsoft Paintbrush and similar programs usually appear so garish

when a 256-color display adapter is used.

Remember also that even though our computer may be capable of displaying 32,768 or more colors, the

Microsoft Windows environment may be set up to use an 8-bit (256-color) display driver for speed

reasons. You may have to use the Windows Setup program to change to the appropriate display driver (see

your documentation for details).

Ready then? Here we go:

1. Choose Render from the menu bar.

2. Choose the Rendering menu item.

and … wait … and there you have it: a photorealistic rendering of the room. The Convergence Statistics

dialog box will tell us how many steps were required to achieve the default stopping criterion of 0.001.

How long do we have to wait? On a typical 66-Mhz 486 machine, execution times were as follows:

HELIOS/CT: 35 seconds

HELIOS/HC: 44 seconds

HELIOS/RC: 196 seconds

432 Solving the Radiosity Equation
__

which included five seconds for Gouraud shading and bitmap display calculations. Our execution times

will obviously vary, depending on the CPU speed of our machine and whether it has a numeric coprocessor

(which is highly recommended). Radiosity rendering is almost entirely concerned with floating point

calculations. As such, it will not matter much whether we are running under 16-bit MS-Windows 3.1 or

32-bit Windows NT. The execution times will be roughly comparable for the same CPU clock speed.

As promised, there are no discernable differences between the images produced by the hemi-cube and

cubic tetrahedral algorithms. On the other hand, there are marked differences between these images and the

ray cast image. The former clearly shows the effects of nodal averaging (Section 4.16) in smoothing out

differences between element exitances, while the ray cast image shows some rather obvious Mach bands.

Despite these problems, you have to admit that the images show none of the plastic surfaces we so

often see in ray traced images. Achieving similar results with an unoptimized ray tracing programs would

consume hours to days of CPU time. As the color plates show, HELIOS is quite capable of rendering more

complex environments with very aesthetic results.

There are two other points to be made here concerning the relative execution times. First, the cubic

tetrahedron algorithm appears to offer approximately 25 percent better execution times than the hemi-cube

algorithm. Remember, however, that this only applies for the particular implementations of these

algorithms we have developed. The discussion at the end of Section 5.19.1 presented a number of possible

acceleration techniques that may skew the performance results in either direction.

Second, the ray casting algorithm is nearly six times slower than the cubic tetrahedron algorithm–but

only for this particular environment. Section 5.23.3 noted that a naive implementation of the ray casting

algorithm has a time complexity of for m patches and n elements, whereas the hemi-cube and

cubic tetrahedron algorithms have a time complexity of

)(2mnO

()mnO . This means that the difference in

execution times will increase with increasing environment complexity. This clearly indicates the need for

implementing one or more ray tracing acceleration techniques within the RayCast class, again as discussed

in Section 5.23.3. Remember that HELIOS is a testbed for experimentation; it is not a production-quality

radiosity renderer!

Solving the Radiosity Equation 433
__

Having performed the radiosity calculations for the environment, we do not need to choose Rendering

again until we load in a new environment data file. That is, we can change the camera and view parameters

to look at the environment from whatever direction we choose, using the Wireframe display to provide a

quick preview. Once we have what we want, we can:

1. Choose Render from the menu bar.

2. Choose the Redisplay menu item.

to redisplay a photorealistic image of the room.

We can redisplay the image in grayscale or pseudocolor by:

1. Choose Options from the menu bar.

2. Choose the Set Display… menu item to display the Display Parameters dialog box.

3. Select either the Grayscale or Pseudocolor radio button.

4. Select the OK button.

5. Choose Render from the menu bar.

6. Choose the Redisplay menu item.

The Display Parameters dialog box also allows us to specify the gamma correction value (Section

3.5.1). The default value is 2.2; increasing it has the effect of increasing the image contrast and lightening

the image. We can disable gamma correction by unchecking the Enable checkbox.

If the display is only capable of 32,768 or 65,536 colors, there will be some noticeable color banding in

the image. This is not an aliasing artifact, but a slight posterization of the image. This is also where color

reduction comes in (Section 3.5.2). It is disabled by default, but we can enable it by checking the Enable

checkbox and redisplaying the image. The default Noise Level value is 1, but we can set it to any integer

value from 1 to 8 (which results in a very grainy image).

We can also do the following:

1. Choose Options from the menu bar.

2. Choose the Set Convergence… menu item to display the Convergence Parameters dialog box.

3. Enter an integer value between 1 and 2000 in the Maximum Steps edit control. (The default value is

100).

434 Solving the Radiosity Equation
__

4. Enter a floating point value between 0.0 and 1.0 in the Stopping Criterion edit control. (The default

value is 0.001).

5. Check or uncheck the Ambient Exitance checkbox as desired. (Ambient exitance is disabled by default).

6. Check or uncheck the Positive Overshoot checkbox (positive overshooting is enabled by default. It also

does not appear in the HELIOS/RC version of the dialog box.)

ROOM.WLD takes between 40 and 50 steps to converge to the default stopping citerion of 0.001 with

positive overshooting enabled. As an experiment, we might try setting the maximum steps to 1 and

enabling or disabling ambient exitance. We can select Rendering again and see what the difference is

between the images. We might also disable positive overshooting to see how long ROOM.WLD takes to

converge without it.

To save the image to a BMP file:

1. Choose File from the menu bar.

2. Choose the Save As… menu item to display the Save As common dialog box.

and specify an appropriate directory and file name. The file can later be viewed using Microsoft Paintbrush

or any other BMP-compatible graphics program capable of displaying at least 32,768 colors.

Finally, we can:

1. Choose Help from the menu bar.

2. Choose the About Helios… menu item to display the About HELIOS dialog box.

to confirm which version of HELIOS we are currently running.

The preface promised that radiosity is “… fascinating to experiment with.” This demonstration of

HELIOS should fulfill that promise.

6.13 Conclusions

We began this chapter with a promise that solving the radiosity equation would be easy in comparison

to the material presented in the preceding chapters. Looking back, you may be inclined to disagree.

However, look again at the progressive refinement radiosity algorithm outlined in Figure 6.4. This is the

radiosity approach in its entirety! Everything else can be considered bothersome implementation details.

Solving the Radiosity Equation 435
__

More to the point, we can take some pride in having developed three functional versions of HELIOS.

At some 7,000 lines of C++ source code, it represents a medium-sized software engineering project for one

person. Seen from a different perspective, it offers a surprising amount of functionality for its size. This is

due in no small part to the underlying graphical user interface provided by MS-Windows … can you

imagine implementing HELIOS under MS-DOS?

So, we finally have our radiosity-based rendering program. True, we have to create our environment

and entity data files by hand, which can be a nuisance. Do this enough times and you will be ready and

willing to write your own AutoCAD DXF translator. (See the accompanying diskette for a simple

example.) Before then, however, we need to determine how an environment should be meshed to produce

the best radiosity rendering results.

References

Baum, D.R., H.E. Rushmeier and J.M. Winget [1989]. “Improving Radiosity Solutions Through the Use of

Analytically Determined Form Factors”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 325 -

334.

Burden, R.L. and J.D. Faires [1985]. Numerical Analysis, Prindle, Weber & Schmidt, Boston MA.

Cohen, M.F. and D.P. Greenberg [1985]. “The Hemi-Cube: A Radiosity Solution for Complex

Environments”, Computer Graphics 19:3 (Proc. ACM SIGGRAPH ‘85), 31 - 40.

Cohen, M.F., D.P. Greenberg, D.S. Immel and P.J. Brock [1986]. “An Efficient Radiosity Approach for

Realistic Image Synthesis”, IEEE Computer Graphics and Applications 6:3, 26 - 35.

Cohen, M.F. and J.R. Wallace [1993]. Radiosity and Realistic Image Synthesis, Academic Press, San

Diego, CA.

Cohen, M.F., S.E. Chen, J.R. Wallace and D.P. Greenberg [1988]. “A Progressive Refinement Approach to

Fast Radiosity Image Generation”, Computer Graphics 22:4 (Proc. ACM SIGGRAPH ‘88), 75 - 84.

Feda, M. and W. Purgathofer [1992]. “Accelerating Radiosity by Overshooting”, Proc. Third

Eurographics Workshop on Rendering, Bristol, England.

Gastinel, N. [1970]. Linear Numerical Analysis, Academic Press, San Diego, CA.

436 Solving the Radiosity Equation
__

Golub, G.H. and C.F. Van Loan [1983]. Matrix Computations, John Hopkins University Press, Baltimore,

MD.

Gortler, S. and M.F. Cohen [1993a]. Radiosity and Relaxation Methods: Progressive Refinement is

Southwell Relaxation, Technical Report CS-TR-408-93, Princeton University.

Greiner, G., W. Heidrich and P. Slusallek [1993], “Blockwise Refinement - A New Method for Solving the

Radiosity Problem”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France, 233 - 245.

Heckbert, P.S. [1991]. “Simulating Global Illumination Using Adaptive Meshing”, Ph.D. Thesis, U. of

California Berkeley Technical Report UCB/CSD 91/636.

Kajiya, J.T. [1986]. “The Rendering Equation”, Computer Graphics 20:4 (Proc. ACM SIGGRAPH ‘86),

143 - 150.

Noble, B. [1969]. Applied Linear Algebra, Prentice Hall, Englewood Cliffs, NJ.

Shao, M. and N.I. Badler [1993a]. A Gathering and Shooting Progressive Refinement Radiosity Method,

Technical Report MS-CIS-93-03, Department of Computer and Information Science, University of

Pennsylvania.

Shao, M. and N.I. Badler [1993b]. “Analysis and Acceleration of Progressive Refinement Radiosity

Method”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France.

Wallace, J.R., K.A. Elmquist and E.A. Haines [1989]. “A Ray Tracing Algorithm for Progressive

Radiosity”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 315 - 324.

Chapter 7
Meshing Strategies

7.0 Introduction

Looking at our first radiosity-based images, we quickly become aware that the accuracy of the radiosity

approach is very much dependent on the underlying mesh of elements used to represent each surface.

While the images may display soft shadows and subtle color bleeding effects, their details are limited by

the size and shape of the underlying elements. This is particularly evident where surfaces are close to one

another–there are no sharp shadow edges.

We can see this problem more clearly in Figure 7.1. The continuous curve represents the “true”

exitance distribution that we might measure across a surface in a physical environment. Looking at

this surface, we would see the steeply sloped portions of the curve as reasonably well defined shadow

edges.

()xM

M(x) M(x)

A B C

Figure 7.1 - Interpolating shadow details requires a closely spaced mesh

Now, suppose we model this surface as an array of elements. The vertical lines then indicate the

positions of the element vertices, while the height of each line represents the exitance at that vertex. The

shaded gray area connecting these lines represents the linearly interpolated exitance at each point on the

surface. In a 3-D environment, this interpolation would be the result of Gouraud shading (Section 4.13).

This demonstrates the need to choose an appropriately spaced mesh of elements. If the mesh is too

coarse, there may be excessive interpolation errors between the vertices (C). These become evident in the

Meshing Strategies 439
__

rendered image as missing shadow details (B) and unrealistically soft shadow edges. In some cases, the

outlines of the elements themselves may become visible.

One brute force solution to this problem is to finely mesh each surface such that individual elements are

too small to be visible in any rendered image. This works, but the cost in terms of memory requirements

and execution times quickly becomes unmanageable. It is also inefficient, since there is no reason to finely

mesh the surface where the change in exitance is relatively constant (A).

7.1 Non-Uniform Meshing Techniques

A better approach is to employ a non-uniform element spacing such as that shown in Figure 7.2. Here,

the element vertices are placed such that the interpolation error at any point on the surface does not exceed

some predetermined maximum value. Large, smoothly shaded areas of the surface can be represented by

relatively few elements, while the shadow edges and other areas where the true surface exitance

changes abruptly can be represented by small and closely spaced elements.

()xM

M(x)

Figure 7.2 - Interpolating shadows details with a non-uniform mesh

Of course, the problem with this scheme is that we need to know the distribution of shadows in the

environment before we begin solving the radiosity equation. Rephrasing this slightly, we need to know the

solution to the radiosity equation in order to create an appropriate mesh that allows us to solve the radiosity

equation.

There are several solutions to this circular reasoning. We can attempt to predict a priori where the

shadows will occur when we generate our initial mesh for an environment. This allows us to concentrate

elements where we suspect the exitance distribution will change rapidly across a surface. We can also

iteratively refine our mesh after each step in solving the radiosity equation. We can split or merge

elements, move element vertices or create an entirely new mesh as required.

440 Meshing Strategies
__

The great advantage of these solutions is that they can be automated. That is, we can provide our

radiosity renderer with a geometric description of an environment and let these meshing algorithms decide

how to mesh each surface. There may be some touch-up work required to obtain a suitable mesh, but most

of the work will have been done for us.

7.2 Meshing Strategies

Having said this, there are two disadvantages that prevent us from implementing these algorithms

within the context of HELIOS. First, they require a detailed knowledge of the geometry of each object in

the environment. This information is available from our environment data structure, but it can be difficult

and time-consuming to obtain. A more flexible geometrical representation is generally required.

The second disadvantage is more immediate. We have a limited amount of space remaining in which to

discuss both meshing techniques and other radiosity approaches. This book is about radiosity, not

automatic meshing algorithms. Moreover, a detailed discussion and implementation of these algorithms

properly deserves an entire book.

This leaves us with one option. We will have to create our initial meshes by hand and modify them

based on our analysis of the rendered images. To this end, we need to develop a set of heuristic rules, or

meshing strategies, that will allow us to understand and predict the cause-and-effect relationship between

element meshes and what we see in the images.

HELIOS is admittedly incomplete. Entering thousands of vertices by hand is obviously impractical for

truly complex environments. Also, a professional implementation should include an automatic meshing

algorithm that relieves the user of having to understand the following strategies. To this end, the following

discussions include numerous references for further study. HELIOS was designed from the beginning to be

extensible; the challenge is to use it as a testbed for your own experiments and investigations.

7.3 Generating Input Files

The easiest way to create an entity data file is to use a commercial 3-D CAD program such as

AutoDesk’s AutoCAD. As we noted in Chapter Three, these programs offer many more features than we

shall ever require. On the other hand, their ability to model complex 3-D surfaces is essential for any truly

Meshing Strategies 441
__

serious radiosity rendering efforts. While we do not have the space needed to develop a CAD file

translation utility here, we should nevertheless examine the issues involved in generating input files.

7.3.1 Surface Orientation

One problem common to many 3-D CAD programs is that they do not enforce the concept of a surface

having a visible side. The user is expected to specify a surface as an ordered sequence of vertices, but the

concept of a surface normal is undefined. If these vertices are imported as is into our entity files, there is no

guarantee that the surfaces will be properly oriented. This includes the popular AutoCAD DXF file format

(Autodesk [1992a-c]).

One practical solution is to display the CAD files using shaded surfaces. If a surface faces away from

the camera, it should be displayed as a wireframe. A user interface command then allows the user to

identify and interactively “flip” incorrectly oriented surfaces by reordering their vertices. Smith [1991],

Baum et al. [1991] (which is an expanded version of Smith [1991]) and Blinn [1993] offer several practical

suggestions on how to perform this interactive preprocessing of CAD files.

7.3.2 Surfaces Versus Solids

Another problem–and this also applies to our own entity data files–is that a physical surface has two

sides. There is no problem in an exterior wall of our test environment room (Section 6.12), for example,

having only one visible side. The radiant flux in the room will never encounter the invisible side of these

surfaces. Similarly, each surface of our solid light fixtures and bench need only one visible side. However,

consider a sheet of paper suspended in mid-air. (This is, after all, virtual reality.) While we may see its

visible side from our camera position in the room, we must remember that light is flowing though the

environment in all directions. The paper may cast a shadow on the floor, which is reasonable. However, the

light subsequently reflected from within this shadow will pass right through the invisible side of the paper

if it is modeled as a single surface. To avoid this anomaly, we need to model the paper as having two

visible sides; that is, with two identical and coplanar surfaces facing in opposite directions.

This highlights an important point: the radiosity approach interacts with solid objects in an

environment. This implies that the environment data file should be created with a solid modeling program

442 Meshing Strategies
__

that intrinsically enforces this concept. Until such programs become widely available, however, we shall

have to expect data input from less capable 3-D CAD programs.

7.3.3 Coplanar Surfaces

Coplanar surfaces present yet another problem. Suppose we have a (single-sided) sheet of paper lying

on a desktop surface. This appears reasonable until we remember that our vertex co-ordinates and Z-

buffering algorithm have a finite depth precision. It may well be that the two surfaces are no longer exactly

coplanar after their vertex co-ordinates have been independently scaled, translated, rotated and interpolated

during perspective projection and clipping. At worst, the paper may appear to be partially embedded in the

desktop when the two surfaces are rendered.

It is not always evident which of two coplanar surfaces should be visible. Baum et al. [1991] adopted

the heuristic that the smaller of the two surfaces should remain visible. The larger, underlying surface is

then topologically modified by “cutting a hole” in it to accommodate the visible surface.

7.3.4 Merging Surfaces

A CAD user will often build a complex surface piece by piece. While the final result may look correct

when rendered as a shaded image, it may be that adjoining vertices are almost but not quite coincident

(e.g., Segal [1990]). Baum et al. [1991] simplified these surfaces by first determining whether adjoining

surfaces consisted of the same material (i.e., they had the same reflectance properties). If so, then any

vertices whose 3-D co-ordinates were less than some minimum distance apart are merged. (Vertex co-

ordinates were stored in an octree data structure to simplify their comparison.) Once this was done, the

edges were then merged as well to create a contiguous set of surfaces (e.g., Fig. 7.3).

Before vertex merging After vertex merging After edge merging

Figure 7.3 - Vertex and edge merging for complex surfaces

Meshing Strategies 443
__

Baum et al. [1991] also found it convenient to merge complex surface sets into single (but possibly

topologically complex) surfaces (e.g., Fig. 7.4). This made subsequent division of these maximally

connected surfaces into a mesh of elements a more controllable process with fewer geometric constraints.

Figure 7.4 - Merging surfaces

7.3.5 T-Vertex Elimination

A second reason to merge complex sets of common surfaces is that it eliminates T-vertices (Fig. 7.5).

As Baum et al. [1991] observed, these create several problems. For example, the additional vertex along a

common edge between two elements can create discontinuities when they are Gouraud-shaded. In Figure

7.5, the calculated exitance at vertex C will likely differ from the exitance interpolated at that point from

the vertices A, D and E (see Section 4.13 for details). The resultant differences in shading may be visible as

a line extending from vertices A to D.

B

A

C E

D

Figure 7.5 - Vertex C is a T-vertex

A more serious problem may occur due to the finite precision of the floating point arithmetic used to

manipulate the vertex co-ordinates. Suppose in Figure 7.5 that vertices A, D and E represent one element.

If the T-vertex C is not exactly coincident with the edge defined by A and D, there may be a noticeable gap

between the elements in the rendered edges.

444 Meshing Strategies
__

A

E
D

B

C

Figure 7.6 - T-vertices may create gaps between elements

T-vertices are less of a problem when they occur on the edges separating different surfaces, since each

surface is independently shaded. However, gaps between these surfaces (also referred to as “pixel

dropouts”) may still occur due to floating point roundoff. These gaps will also occur between elements of

the same surface. They are never more than a single pixel wide, which makes them easy to distinguish from

errors in the entity data files.

Baum et al. [1991] proposed that edges of adjoining polygons be “ziplocked” by using identical sets of

vertices for each edge. For example, if the triangle A-D-E in Figure 7.5 were a different surface from

A-B-C and B-D-C, ziplocking would change it into the quadrilateral A-C-D-E. (The addition of vertices

may require that the original elements be split into quadrilaterals and triangles to limit their number of

edges to four. Alternatively, ziplocking can be done immediately before displaying the image if the 3-D

graphics package supports more complex polygons.)

While eliminating T-vertices from a mesh is highly recommended, it is not essential. Cohen and

Wallace [1993] describe their use as slave vertices. A mesh is developed with T-vertices and solved using

one of the radiosity algorithms presented in Chapter Six. However, the exitances of the T-vertices are not

used when it comes time to display the elements using Gouraud shading. Instead, they are linearly

interpolated from those of the edge endpoint vertices (e.g., A and D in Fig. 7.5). This may introduce some

small amount of error into the radiosity solution. However, it ensures that the Gouraud-shaded elements of

a surface do not exhibit any visible discontinuities at their edges.

7.3.6 Preprocessing CAD Files

Baum et al. [1991] incorporated the above rules in a series of filter programs that preprocessed

AutoCAD DXF files for radiosity rendering applications (see also Smith [1991]). While such programs are

Meshing Strategies 445
__

undeniably useful, they represent a major software development effort that clearly extends beyond the

scope of this book. Fortunately, much of the above can be applied equally well to input files that are

generated by hand.

A much simpler but still useful approach is to use a 3-D CAD program to create initial surface meshes

for our entity files. AutoCAD, for instance, can be used to model the surfaces as polygon meshes and

generate DXF files. Creating a program that reads these files and generates an output file of surfaces,

patches and elements is straightforward. The technical details of the DXF file format are described in

Autodesk [1992a-c], and an example DXF file parser is included on the diskette accompanying this book.

This relieves much of the tedium involved in creating entity files by hand using a text editor.

One of the problems inherent in the AutoCAD DXF and similar CAD file formats is that they do not

include the geometrical information needed by automatic meshing algorithms. However, Baum et al.

[1991] found that this information can be derived from such files during the process of merging vertices,

edges and surfaces and stored in a winged edge data structure. Thus, while they are by no means ideal,

most CAD file formats can be used to represent environments for radiosity-based rendering programs.

7.4 Meshing Considerations

There are many ways in which light can interact with a mesh of elements. We have already seen some

examples, including a) a non-uniform mesh is needed to capture exitance gradients efficiently, b) aliasing

effects can occur at shadow edges if the mesh is too coarse, and c) small shadow details can be missed

entirely by a coarse mesh. We need to consider these and other interactions, and from them develop more

heuristic rules for our mesh design strategies.

7.4.1 Aliasing Effects and Discontinuity Meshing

Aliasing effects require further explanation. Consider a sharply defined shadow edge that is diagonal to

a set of elements (Fig. 7.6). There are two related problems here. First, the expanded view of one element

indicates that the surface exitance should be zero inside the shadow and 100 otherwise. However, the

screen scan line drawn across the element indicates that Gouraud shading would show a continuous

decrease in screen luminance from left to right. Looking at the set of elements in a rendered image, we

would see the shadow as having a staircase appearance that clearly indicates the underlying element mesh.

446 Meshing Strategies
__

100 0
50

Figure 7.6 - Aliasing may occur at shadow boundaries

This problem has an obvious but difficult solution: orient the elements such that their edges follow the

shadow boundaries. This allows Gouraud-shaded elements to accurately follow the contours of the shadow

edges. We ideally want the boundaries to follow the edges of soft shadows as well (Fig. 7.7). The trick is to

determine where these boundaries occur.

Penumbra

Occluding surface

Figure 7.7 - Discontinuity meshing minimizes shadow aliasing artifacts

This is where automatic meshing algorithms are useful. We can perform an a priori geometrical

analysis of the environment to determine where shadows will most likely occur. Nishita and Nakamae

[1985] and Campbell and Fussell [1990] did this by shooting “shadow rays” from the light sources to

project silhouettes of objects onto surfaces. This defines both the umbrae (shadows) and penumbrae

(literally, “almost shadows”) cast by the object onto the surfaces, much as our ray casting radiosity

algorithm determines vertex-to-source form factors. These silhouettes provide the geometrical information

needed to align surface elements with the penumbra boundaries.

Heckbert [1991] referred to these boundaries as discontinuities in the surface exitance distribution.

Efficient discontinuity meshing algorithms for determining optimal element meshes are presented in

Meshing Strategies 447
__

Heckbert [1992], Lischinski et al. [1992] and Tampieri [1993]. (See also Cohen and Wallace [1993] for a

detailed summary). Unfortunately, these algorithms are too involved to discuss or implement here.

One problem with discontinuity meshing is that it can only identify shadows due to direct illumination

from light sources. There may be circumstances where well-defined soft shadows are a result of indirect

lighting from highly reflective surfaces. These generally cannot be identified until the radiosity equation

has been at least partially solved.

7.4.2 Gouraud Shading Anomalies

The second aliasing problem has to do with Gouraud shading in general. Remember that this is done in

screen space. That is, we are really interpolating pixel luminances rather than surface exitances. Every time

we reorient the quadrilateral element shown in Figure 7.8, the scan line has a different pair of endpoint

pixel luminances to interpolate between. From this, we can see that the appearance of the element will

change as we change our camera view position and orientation in an environment.

100

0

0

100

0

100

100

0
67 33

33 67
100

0

0

100

67 67

6767

33 33

33 33

Figure 7.8 - Gouraud shading results depend on screen space orientation

Note that this problem only applies to quadrilateral elements; it does not occur when triangular

elements are rendered. This suggests the simple solution of splitting quadrilaterals into triangles. Since this

problem only occurs during the shading process, we can perform this triangulation in screen space

immediately before Gouraud interpolation.

Airey et al. [1990] and Haines [1991] recommended splitting quadrilaterals such that the endpoints of

the diagonal edge have the least exitance difference (averaged over all three color bands). If, for example, a

quadrilateral element has average vertex exitances values of 1.0, 2.0, 3.0 and 7.0, it would be split with a

new edge extending from the first to the third vertex. This tends to smooth out aliasing at shadow

boundaries and alleviate other shading problems.

448 Meshing Strategies
__

A more rigorous (and computationally expensive) solution is to perform bilinear interpolation of

exitances in world space directly on the surface of each element (e.g., Cohen and Wallace [1993]). This

also solves another problem with Gouraud shading. The perspective projection of an element’s co-

ordinates from world space to screen space results in the element depth co-ordinates being distorted

(Section 4.3). Thus, linear interpolation between two points of an element’s edge is not entirely correct,

since the element depth along the scan line may change in a nonlinear fashion. On the other hand, linear

interpolation is itself an approximation, and so we can generally ignore this problem. (See Blinn [1992] for

another approach.)

7.4.3 Mach Banding

Mach banding is another issue that is exacerbated by Gouraud shading. The human visual system is

acutely sensitive to edges in its field of view. When we look at an edge between a dark gray and a white

surface, we often perceive the gray as being darker and the white as being whiter adjacent to the edge. This

is a purely physiological effect–measuring the surface luminance at these points would show no such

anomalies.

The problem is that Gouraud shading creates sudden changes in surface luminance at element edges

(e.g., Fig. 7.1). We perceive these changes as being edges within what should be smoothly shaded surfaces.

These become more noticeable when the surfaces are large in the rendered image. They also occur where

the slope of the exitance distribution changes rapidly across the surface, such as within soft shadows.

Mach banding problems can be minimizing by using a finer element mesh. Another approach is to

perform a higher order interpolation between vertex exitances. Referring to Figure 7.1, we can replace the

straight lines connecting the vertices with curves that are described by quadratic or cubic equations. In two

dimensions, this is equivalent to modeling a curved surface with Bézier or B-spline surfaces (e.g., Foley et

al. [1990]), except that the 2-D “surface” we are trying to model is the true exitance distribution . A

detailed review of these interpolation techniques is presented in Cohen and Wallace [1993].

()xM

7.4.4 Mesh Grading and Aspect Ratios

Mach banding problems can also be alleviated by ensuring that the mesh grading is relatively smooth.

That is, the difference in areas between adjacent elements should be kept as small as possible. This

Meshing Strategies 449
__

produces a mesh like that shown in Figure 7.9 (where T-vertices have been allowed for illustrational

clarity).

Figure 7.9 - A smooth mesh grading is desirable

One consequence of a smooth mesh grading is that the individual elements tend to have a small aspect

ratio, which is defined as the ratio of the inner and outer bounding circles (Fig. 7.10) for the element

vertices (e.g., Baum et al. [1991]). Such elements are referred to as being well-shaped. This has three

advantages. First, it maximizes the element area and thereby minimizes the number of elements needed to

mesh a surface. Second, it produces elements that approximate circular disks; this is one of the assumptions

of the ray casting radiosity algorithm (Section 5.23). Third, it improves the accuracy of the form factor

determination process and through it the radiosity solution (Baum et al. [1989]).

I
O

Aspect ratio - O / I

Element

Figure 7.10 - Element aspect ratio is determined by inner and outer bounding circles

Baum et al. [1991] suggested subdividing quadrilaterals and triangles into four by placing new vertices

at the midpoint of each element edge, as shown in Figure 7.11. If the parent element is well-shaped, then

each of its child elements will also be well-shaped. This is particularly convenient when it comes to

subdividing elements with an automatic meshing algorithm.

450 Meshing Strategies
__

Figure 7.11 - Four-to-one subdivision of well-shaped elements

7.4.5 Light and Shadow Leakage

Finally, we need to recognize the consequences of randomly placing one entity on top of another.

Consider a flat surface with a vertical partition dividing it (Fig. 7.12). The two gray elements on the flat

surface receive flux that is shot from the light source. However, these elements are divided by the partition.

When they later shoot their flux, it will be sent to both sides of the partition. In other words, there is light

leakage through the partition (Bullis [1989] and Campbell and Fussell [1990]).

Figure 7.12 - Mismatched element boundaries allow light and shadow leakage

Suppose the partition is a wall that divides two rooms. If only one of the rooms is illuminated, we will

see in the rendered image that the wall apparently has a gap between it and the floor, with light spilling

through to illuminate the darkened room. An interesting effect, but definitely not what was intended!

Similarly, this light is lost from the illuminated room. The floor elements adjacent to the wall will appear

darker than they should, so that we also have shadow leakage from the darkened room.

The solution is to ensure that element boundaries are aligned not only with the shadow boundaries (as

in discontinuity meshing), but also with the surface boundaries of other entity surfaces. Baum et al. [1991]

performed this alignment automatically using algorithms presented in Segal [1990] and Segal and Séquin

[1988].

Meshing Strategies 451
__

This is perhaps the most difficult and frustrating aspect of meshing, since one or more surfaces usually

need to be remeshed whenever an object is moved in the environment. On the other hand, it should be

recognized that remeshing is not necessary in each instance, nor will light and shadow leakage be

significant in many cases. It is largely a matter of experience, subjective judgment and most importantly,

trial and error.

7.5 Adaptive Subdivision

Most of the meshing considerations discussed above can be implemented manually as a set of rules to

follow when designing an initial mesh. However, there are limits to how many patches and elements we

can expect a user to generate. A better solution is to begin with a coarse mesh and let an automatic meshing

algorithm iteratively refine it after each step in solving the radiosity equation. This allows the program to

develop a mesh that concentrates elements at shadow boundaries and other regions where the exitance

distribution changes rapidly.

Again, we do not have the space to implement an automatic meshing algorithm within the context of

HELIOS. However, it is instructive to review how we might implement one.

There are several possibilities for mesh refinement (e.g., Cohen and Wallace [1993] and Ho-Le [1988]).

We can, for example, reposition the element vertices to align them with the shadow boundaries (e.g.,

Águas et al. [1993]). This is useful to some extent, but it assumes that the mesh spacing is such that the

number of elements is sufficient to represent the shadow details. It can also result in thin elements that are

not well-shaped.

A second possibility is to subdivide the elements. This adaptive subdivision allows us to generate new

elements only where they are most needed. Following the heuristic rules presented above, we ideally want

to:

1. Minimize element aspect ratios.

2. Minimize element vertex-to-vertex exitance differences.

3. Avoid T-vertices.

4. Ensure a smooth mesh grading.

452 Meshing Strategies
__

When should an element be subdivided? One criterion to compare the element vertex exitances and

subdivide only if they differ by more than some predetermined amount in any color band with respect to

the range of reflected vertex exitances in the environment. There are more involved criteria that result in

fewer elements being subdivided (e.g., Cohen and Wallace [1993]), but this criterion is usually sufficient.

We also need some sort of stopping criterion. This is relatively easy: we stop when the subdivided

element area becomes too small to be significant in a rendered image. Since each subdivision produces four

child elements that each has approximately one-quarter of the parent element’s area (Fig. 7.11), the process

will likely stop at third or fourth level.

If we begin with a smooth mesh grading, subdividing elements according to Figure 7.11 will ensure

that the mesh remains smoothly graded. It will also tend to minimize the subdivided element aspect ratios.

Baum et al. [1991] suggested that the initial mesh should be balanced by ensuring that each element of a

surface should be adjacent to no more than two other elements along any of its edges (Fig. 7.13a).

Figure 7.13a - A balanced mesh Figure 7.13b - A balanced and anchored mesh

Every subdivision will unavoidably generate new T-vertices. Baum et al. [1991] also suggested that

neighboring elements should be anchored to these vertices. That is, the neighboring elements are further

subdivided by connecting the T-vertex to another vertex in the same element (Fig. 7.13b). Assuming that

only triangular and quadrilateral elements are allowed and ignoring symmetry, there are only six

possibilities for anchoring (Fig. 7.14). This simplifies the development of an automatic meshing algorithm

that supports balanced and anchored mesh elements.

Figure 7.14 - Element anchor morphology

Meshing Strategies 453
__

7.5.1 Winged Edged Data Structures

So what is the mystique behind creating a meshing algorithm? It certainly looks simple enough: add a

few new elements and vertices to the environment data structure and the problem is mostly solved.

The real problem is in those minor implementation details. If we use one of the progressive refinement

radiosity algorithms from Chapter Six, we need to know which elements share a vertex in order to

interpolate its exitance. We also need to know this information before we can interpolate a vertex’s normal.

This is the reason why each of our Vertex3 objects maintains a linked list of pointers to the Element3

objects that share it.

Now, suppose we want to subdivide a parent element to create four child elements. The first step is to

insert new vertices midway between each pair of existing vertices (which define the element edges). This is

easy enough, although we should check beforehand to see whether a T-vertex belonging to an adjacent

element of the same surface is already at that position. If it is, then we must use it instead.

This poses a question: which other elements of the surface share this edge of the parent element? If

T-vertices are allowed, there could be any number of elements. We would have to check every edge of

every other element in the Instance object to determine whether it is collinear with current edge and

whether the new vertex intersects it.

We have to repeat this process for every vertex we consider when subdividing an element. This

includes existing T-vertices, since we have to update their element lists when we split the parent element at

that point. The process clearly becomes unmanageable for even moderately complex environments.

The proper solution to this situation is to redesign our environment data structures from Vertex3

upwards as a winged edge data structure. These are described in detail in Baumgart [1974] and Baumgart

[1975]. Further details are provided by Glassner [1991], Hanrahan [1982], Mäntlyä and Sulonen [1982],

Weiler [1985] and Wilson [1985].

The advantage of the winged edge data structure is that it provides a wealth of geometric connectivity

information concerning the vertices, edges and polygonal faces of a 3-D solid object. The above question

becomes trivial, since the winged edge data structure directly encodes information about which elements

share an edge.

454 Meshing Strategies
__

The disadvantage is that the winged edge data structure can be difficult to implement properly. For

example, an implementation described in part by Glassner [1991] requires nineteen algorithmic steps to

insert a new edge between two existing vertices. Glassner punctuates his description of the data structure

with such disclaimers as “you have to make sure you do things in just the right order, or disaster will

ensue” and “I have provided only some signposts around what I found to be the most twisting parts of the

road.” Comments like these indicate that designing a robust and efficient winged edge data representation

is not without its own perils.

Winged edge data structures have been used in many radiosity rendering programs (e.g., Cohen et al.

[1986), Baum et al. [1991] and Lischinski et al. [1992]), and with good reason. They offer an elegant

means of accessing the geometrical information needed by both adaptive subdivision and discontinuity

meshing algorithms. It is unfortunate that their complexity precluded their description in this book.

7.5.2 Patches and Form Factors

We have so far discussed the adaptive subdivision of element meshes. Cohen et al. [1986] noted that

there are two occasions where patches may need to be subdivided as well. For example, subdivision is

required when the differences between patch vertex exitances in any color band exceed some

predetermined limit, similar to the criterion we used for subdividing elements.

The second occasion is less obvious. Recalling the progressive refinement radiosity algorithm presented

in Figure 6.4, we calculate the form factor from a patch to all other elements in the

environment. This can be done using either the hemi-cube or cubic tetrahedral algorithms from Chapter

Five. However, we then calculate the delta exitance

ijF iE jE

M∆ to be sent to each of these elements as:

unsent
ijij

j

iunsent
iijj MF

A
A

MFM ∆=∆=∆ ρρ (7.1)

since the reciprocity relation (Section 2.5) states that jijiji FAFA = .

The problem is that we obtain an approximate value of by modeling as a differential element

located at the center of the patch. If the area of is much larger than that of , the calculated value of

ijF iE

EiE j

Meshing Strategies 455
__

the reciprocal form factor can clearly exceed unity at some point. This is a serious error, since it

implies that the element will receive more exitance than the patch has sent into the environment!

jiF

jE iE

jiF

There are several possible solutions. First, we can ensure that the range of element sizes does not

become excessive. The minimum value of is that of the smallest delta form factor for the hemi-cube or

cubic tetrahedron. By limiting the ratio

ijF

jAiA , we can guarantee that will never exceed unity.

Subdividing the patch is a second possibility that has the same effect. Its advantage is that the process

becomes transparent to the user. On the other hand, it will require a number of modifications to both the

element meshing and form factor determination algorithms.

The third possibility was suggested by Chen [1991], and was used in our implementation of the

progressive refinement radiosity algorithm (Listing 6.3). The reciprocal form factor is simply (and silently)

clipped to unity.

7.6 Conclusions

This chapter has outlined the issues involved in developing suitable meshes for the radiosity equation.

While we did not have the space to develop an adaptive subdivision algorithm, we now have a much better

understanding of the cause-and-effect relationship between an element mesh and the rendered images. The

meshing strategies developed in this chapter should help in improving the images that HELIOS creates.

There is a deep and fundamental relationship between the radiosity approach and finite element

methods. These are extremely important tools for scientists and engineers in a number of fields ranging

from fluid mechanics and structural engineering to cosmology. The radiosity approach models the field of

light in an environment. Finite element methods have been used to model everything from stresses in steel

and concrete structures to the magnetic fields of galaxies. The literature on this topic is vast and

multidisciplinary. Nevertheless, many of the techniques developed for finite element analysis can be

applied to the automatic generation and modification of element meshes for radiosity. Recommended

reading includes Baehann et al. [1987], Bank et al. [1983], Chew [1989], Frey [1987], Heckbert and

Winget [1991], Hugues [1987], Lalonde [1993], Schuierer [1989] and Watson [1984].

There are numerous challenges here for the ambitious reader. First, HELIOS would benefit from a

utility that automatically preprocesses CAD files. This could be modeled after the filter programs described

456 Meshing Strategies
__

in Baum et al. [1991]. Full technical details for the AutoCAD DXF file format are presented in Autodesk

[1992a-c].

A more challenging project is to redesign the environment data structure presented in Chapter Three to

incorporate the winged edge data structure. Unfortunately, the few complete sources of information on this

topic (e.g., Baumgart [1974] and Baumgart [1975]) may be difficult to obtain unless you have access to a

large university library or an interlibrary loan service.

With this in place, you could implement one or more adaptive subdivision or discontinuity meshing

algorithms (e.g., Lischinski et al. [1992]). With these, HELIOS would be well on its way to becoming a

professional-quality radiosity rendering tool.

Meshing is a difficult problem for which there are no easy solutions. While it is somewhat incidental to

the radiosity equation, a well-shaped mesh is essential to obtaining an accurate approximation to the true

radiosity solution, and from it truly photorealistic images. The best we can do for now is to develop our

initial meshes, modify them through trial and error, and in general practice what Heckbert [1991] aptly

called the “black art” of finite element meshing.

References

Águas, M.P.N. and S. Müller [1993]. “Mesh Redistribution in Radiosity”, Proc. Fourth Eurographics

Workshop on Rendering, Paris, France, 327 - 335.

Airey, J.M., J.H. Rohlf and F.P. Brooks, Jr. [1990]. “Towards Image Realism with Interactive Update

Rates in Complex Virtual Building Environments”, Computer Graphics 24:1 (Proc. ACM Workshop on

Interactive Graphics), 41- 50.

Arvo, J., Ed. [1991]. Graphic Gems II, Academic Press, San Diego, CA.

Autodesk [1992a]. AutoCAD Release 12 Reference Manual, Autodesk Inc. Publication #100186-02.

Autodesk [1992b]. AutoCAD Render Reference Manual (Release 12), Autodesk Inc. Publication #100190-

01.

Autodesk [1992c]. AutoCAD Development System Programmer’s Reference Manual (Release 12),

Autodesk Inc. Publication #100192-01.

Meshing Strategies 457
__

Baehann, P.L., S.L. Wittchen, M.S. Shepard, K.R. Grice and M.A. Yerry [1987]. “Robust, Geometrically

Based, Automatic 2D Mesh Generation”, Int’l. J. Numerical Methods in Engineering 24, 1043 - 1078.

Bank, R.E. A.H. Sherman and A. Weiser [1983]. “Refinement Algorithms and Data Structures for Regular

Local Mesh Refinement”, in Stepleman [1983], 3 - 17.

Baum, D.R., S. Mann, K.P. Smith and J.M. Winget [1991]. “Making Radiosity Usable: Automatic

Preprocessing and Meshing Techniques for the Generation of Accurate Radiosity Solutions”, Computer

Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 51 - 60.

Baum, D.R., H.E. Rushmeier and J.M. Winget [1989]. “Improving Radiosity Solutions Through the Use of

Analytically Determined Form Factors”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 325 -

334.

Baumgart, B.G. [1974]. “Winged-Edge Polyhedron Representation”, Technical Report STAN-CS-320,

Stanford University, Palo Alto, CA.

Baumgart, B.G. [1975]. “A Polyhedron Representation for Computer Vision”, Proc. National Computer

Conference ‘75, 589 - 596.

Blinn, J.F. [1992]. “Hyperbolic Interpolation”, IEEE Computer Graphics & Applications 12:4, 89 - 94.

Blinn, J. [1993]. “Jim Blinn’s Corner: Backface Culling Snags”, IEEE Computer Graphics & Applications

13:6, 94 - 97.

Bullis, J.M. [1989]. Models and Algorithms for Computing Realistic Images Containing Diffuse

Reflections, Master’s Thesis, U. of Minnesota.

Campbell, A.T. III and D.S. Fussell [1990]. “Adaptive Mesh Generation for Global Diffuse Illumination”,

Computer Graphics 24:4 (Proc. ACM SIGGRAPH ‘90), 155 - 164.

Chen, S.E. [1991]. “Implementing Progressive Radiosity with User-Provided Polygon Display Routines”,

in Arvo [1991], 295 - 298, 583 - 597.

Chew, L.P. [1989]. “Guaranteed-Quality Triangular Meshes”, Tech. Report 89-893, Dept. of Computer

Science, Cornell University, Ithaca, NY.

Cohen, M.F., D.P. Greenberg, D.S. Immel and P.J. Brock [1986]. “An Efficient Radiosity Approach for

Realistic Image Synthesis”, IEEE Computer Graphics and Applications 6:3, 26 - 35.

458 Meshing Strategies
__

Cohen, M.F., S.E. Chen, J.R. Wallace and D.P. Greenberg [1988]. “A Progressive Refinement Approach to

Fast Radiosity Image Generation”, Computer Graphics 22:4 (Proc. ACM SIGGRAPH ‘88), 75 - 84.

Cohen, M.F. and J.R. Wallace [1993]. Radiosity and Realistic Image Synthesis, Academic Press, San

Diego, CA.

Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes [1990]. Computer Graphics: Principles and Practice

(Second Edition), Addison-Wesley, Reading, MA.

Frey, W.H. [1987]. “Selective Refinement: A New Strategy for Automatic Node Placement in Graded

Triangular Meshes”, Int’l. J. Numerical Methods in Engineering 24, 2183-2200.

George, P. [1991]. Automatic Mesh Generation, Wiley, New York, NY.

Glassner, A.S. [1991]. “Maintaining Winged-Edge Models”, in Arvo [1991], 191 - 201.

Haines, E. [1991]. “Ronchamp: A Case Study for Radiosity”, ACM SIGGRAPH ‘91 Frontiers In Radiosity

Course Notes.

Hanrahan, P. [1982]. “Creating Volume Models From Edge-Vertex Graphs”, Computer Graphics 16:3

(Proc. ACM SIGGRAPH ‘82), 77 - 84.

Heckbert, P.S. [1991]. “Simulating Global Illumination Using Adaptive Meshing”, Ph.D. Thesis, U. of

California Berkeley Technical Report UCB/CSD 91/636.

Heckbert, P.S. [1992]. “Discontinuity Meshing for Radiosity”, Proc. Third Eurographics Workshop on

Rendering, Bristol, England.

Heckbert, P.S. and J.M. Winget [1991]. “Finite Element Methods for Global Illumination”, U. of

California Berkeley Technical Report UCB/CSD 91/643.

Ho-Le, K. [1988]. “Finite Element Mesh Generation Methods: A Review and Classification”, Computer-

Aided Design 20, 27 - 38.

Hugues, T.J.R. [1987]. The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ.

Lalonde, P. [1993]. “An Adaptive Discretization Method for Progressive Radiosity”, Graphics Interface

‘93, Toronto, Ontario, 78 - 86.

Languénou, E., K. Bouatouch and P. Tellier [1992]. “An Adaptive Discretization Method for Radiosity”,

Computer Graphics Forum 11:3 (Proc. Eurographics ‘92), C-205 - C-216.

Meshing Strategies 459
__

Lischinski, D., F. Tampieri and D.P. Greenberg [1992]. “Discontinuity Meshing for Accurate Radiosity”,

IEEE Computer Graphics and Applications 12:6, 25 - 39.

Mäntylä, M. and R. Sulonen [1982]. “Gwb - A Solid Modeler with Euler Operators”, IEEE Computer

Graphics & Applications 2:7, 17 - 31.

Nishita, T. and E. Nakamae [1985]. “Continuous Tone Representation of Three-Dimensional Objects

Taking Account of Shadows and Interreflection”, Computer Graphics 19:3 (Proc. ACM SIGGRAPH ‘85),

23 - 30.

Samet, H. [1989]. The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA.

Schuierer, S. [1989]. “Delaunay Triangulations and the Radiosity Approach”, Eurographics ‘89 (Proc.

European Computer Graphics Conference and Exhibition), W. Hansmann, F.R.A. Hopgood and W.

Strasser, Eds., Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 345 - 353.

Segal, M. [1990]. “Using Tolerances to Guarantee Valid Polyhedral Modeling Results”, Computer

Graphics 24:4 (Proc. ACM SIGRRAPH ‘90), 105 - 114.

Segal, M. and C.H. Séquin [1988]. “Partitioning Polyhedral Objects into Non-Intersecting Parts”, IEEE

Computer Graphics & Applications 8:1, 45 - 52.

Shephard, M.S. [1988]. “Approaches to the Automatic Generation and Control of Finite Element Meshes”,

Applied Mechanics Review 41:4, 169 - 185.

Sillion, F. [1991b]. “Detection of Shadow Boundaries for Adaptive Meshing in Radiosity”, in Arvo [1991],

311 - 315.

Smith, K.P. [1991]. “Fast and Accurate Radiosity-Based Rendering”, Master’s Project Report, U. of

California Berkeley Technical Report UCB/CSD 91/635.

Stepleman, R.S., Ed. [1983]. Scientific Computing: Applications of Mathematics and Computing to the

Physical Sciences, IMACS Trans. Scientific Computation Vol. 1, North-Holland, New York, NY.

Tampieri, F. [1993]. Discontinuity Meshing for Radiosity Image Synthesis, Ph.D. Thesis, Cornell

University, Ithaca, NY.

Toussaint, G. [1991]. “Efficient Triangulation of Simple Polygons”, The Visual Computer 7, 280 - 295.

Watson, D.F. and G.M. Philip [1984]. “Systematic Triangulations”, Computer Vision, Graphics and Image

Processing 26:2, 217 - 223.

460 Meshing Strategies
__

Weiler, K. [1985]. “Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments”,

IEEE Computer Graphics & Applications 3:1, 21 - 40.

Wilson, P.R. [1985]. “Euler Formulas and Geometric Modeling”, IEEE Computer Graphics &

Applications 5:8, 24 - 36.

Chapter 8
Looking to the Future

8.0 Introduction

For all the effort we have put into developing HELIOS, it is only the beginning. The full scope of

radiosity extends well beyond the limits of this book. We do not have the space to implement or even

discuss many important topics and techniques, including:

• modeling complex area and volumetric light sources (Ashdown [1993a, b], Bao and Peng [1993] and

Languénou and Tellier [1992]).

• semispecular and specular reflections (Chen et al. [1991], Hall and Rushmeier [1993], Immel et al.

[1986], Jessel et al. [1991], Kok et al. [1990], Le Saec and Schlick [1990], Rushmeier and Torrance

[1990], Sillion and Puech [1989], Sillion et al. [1991] and Wallace et al. [1987]).

• bump mapping (Chen and Wu [1990] and Chen and Wu [1991]).

• participating media (Rushmeier [1988] and Rushmeier and Torrance [1987]).

• parallel processor implementations (Airey et al. [1990], Baum and Winget [1990], Bu and Deprettere

[1987a, b], Chalmers and Paddon [1991], Chen [1991], Feda and Purgathofer [1991], Guitton et al.

[1991], Hermitage et al. [1990], Jessel et al. [1991], Ng and Slater [1993], Price [1989], Shen et al.

[1992] and Purgathofer and Zeller [1990]).

• higher order radiosity basis functions (Bian et al. [1992], Cohen and Wallace [1993], Gortler et al.

[1993], Lischinski et al. [1991], Schröder et al. [1993], Tampieri and Lischinski [1991], Troutman and

Max [1993] and Zatz [1993]).

• other radiosity approaches and related global illumination algorithms (Aupperle and Hanrahan [1993],

Baranoski [1992], DiLaura and Franck [1993], Dretakkis and Fiume [1991], Greiner et al. [1993],

Heckbert [1990], Kawai et al. [1993], Kok [1992], Kok et al. [1993], Liere [1991], Lischinksi et al.

[1991], Neumann and Keleman [1991], Neumann and Neumann [1989], Neumann and Neumann

462 Looking to the Future
__

[1990], Rushmeier et al. [1993], Salesin et al. [1992], Shao et al. [1988a, b], Tampieri and Lischinksi

[1991], Wang et al. [1992, Xu et al. [1989] and Zhou and Peng [1992]).

Some of these are interesting from a theoretical perspective, but too demanding in terms of execution

time and memory requirements to be of practical use. Others are practical and useful, and may have

important roles to play in future radiosity developments.

Fortunately, we do have the space to discuss, however briefly, some possible extensions to HELIOS

that you might consider. They vary from simple modifications to major programming projects.

8.1 Ray Tracing Techniques

One of the disadvantages of HELIOS and the radiosity algorithms discussed in this book is that they

can only model opaque and diffuse surfaces. Moreover, these surfaces are intrinsically featureless within

each surface. The only details we see are in their shading, due to the field of light in the environment.

This is in sharp contrast to the ray tracing paradigm, which can model specular and semispecular

reflections and transparent or semitransparent objects with relative ease. Texture mapping and Phong

illumination techniques–to name a few–offer the possibility of richly detailed images that radiosity

methods by themselves can never equal.

8.1.1 Texture Mapping

There is no reason, however, why we cannot borrow these techniques for our radiosity-based images.

Texture mapping is an excellent example. Suppose that we want to model an office environment as seen

from above a wooden desk. Using ray tracing, we would map an image of wood grain to the surface of the

desk. The details of this technique can be found in any book on advanced ray tracing algorithms such as

Wilt [1993]. (See also Cohen et al. [1986], who discuss it in relation to radiosity-based rendering, and

Heckbert [1986], for a comprehensive survey.)

Using radiosity methods, we can model the surface by computing its average spectral reflectance .

That is, we average the spectral reflectance of each pixel in the texture map image (for each color band)

and use this to represent the desktop as an otherwise featureless surface. Clearly, the details of the wood

grain will have a mostly insignificant effect on the global radiosity solution.

avgρ

Looking to the Future 463
__

Once we have solved the radiosity equation for the room and rendered (but not displayed) a preliminary

bitmapped image, we can perform a pixel-by-pixel texture mapping of the wood grain to the desk in the

image. This requires two operations. First, we need to warp and scale the rectangular wood grain image to

the 3-D view of the desktop (e.g., Foley et al. [1990]). This can become somewhat involved, especially

where there are intervening objects between the surface and the synthetic camera position. Fortunately, we

have already implemented most of the necessary algorithms in our viewing system.

Second, we need to incorporate the shading details we obtained from our radiosity solution. This is the

easy part. Given the Gouraud-interpolated radiant exitance for each color band and visible pixel of the

surface, its texture-mapped exitance is simply:

avg

xy
xyxy MM
ρ
ρ

=ˆ (8.1)

where Mxy is the Gouraud-interpolated spectral exitance for a pixel with screen co-ordinates x and y, xyρ

is the interpolated surface reflectance as determined from the texture map, and is the pixel’s texture-

mapped spectral exitance.

xyM̂

There is one caveat to this procedure: we cannot always assume that the effect of a texture-mapped

surface on the environment can be accurately approximated with a featureless surface having its average

spectral reflectance. A surface with large and prominent changes in texture (a black-and-white tiled floor,

for example) may locally affect the environment by reflecting patterns of light onto adjacent surfaces (such

as a wall). In cases like these, we may have to consider each textured area as a separate surface and model

its average reflectance accordingly.

Incorporating texture mapping in HELIOS is not exactly a “simple modification." Balanced against this,

however, is the marked increase in realism that the technique offers. If you do decide to attempt this

extension, the rewards should more than repay the effort.

8.1.2 Phong Illumination Model

One characterization of Gouraud shading is that the surfaces it renders appear uniformly lifeless. This is

due to the lack of specular highlights that we subconsciously expect to see in photorealistic images.

464 Looking to the Future
__

In ray tracing, one popular solution to this problem is the Phong illumination model (Phong [1975]). If

we consider the reflection of a ray of light from various surfaces (Fig. 8.1), we realize that a semi-specular

surface reflects some but not all of the light in a given direction. The more specular the surface, the more

light there will be reflected in the general direction of the specularly reflected ray.

Specular Semi-specular Diffuse

Figure 8.1 - Reflection from specular, semi-specular and diffuse surfaces

Referring to Figure 8.2, Phong illumination models semi-specular reflections as:

(f
rvisv LL uu ⋅= ρ) (8.2)

where is the luminance of a ray i emitted by a white light point source, is the luminance of the ray v

seen by the viewer,

iL vL

sρ is the specular reflectance of the surface (which can differ from the surface

reflectance), u is a normalized vector pointing in the direction of the viewer, u is a normalized vector

pointing in the direction of the reflected ray r, and f is a constant that determines the degree of specularity

and which typically ranges from 1 (diffuse) to 200 or so (highly specular).

v r

If the specular reflectance is equal for all three color bands, the resultant reflection will have the same

spectral distribution as the light source. This will give the surface a plastic-looking finish. Alternatively,

the specular reflectance can be made the same as the surface reflctance. The surface will then appear to

have a metallic finish.

Surface

ϕϕ
θ

n

i

r

v

Figure 8.2 - Phong illumination model parameters

Looking to the Future 465
__

The Phong illumination model can be combined with our ray casting radiosity algorithm as follows:

solving the radiosity equation gives us the diffuse exitance component for each vertex in the environment.

Using the existing code in our RayCast class, we can determine the visibility of each light source as seen

from each vertex. By modelling each source element as a point source located at the element’s center, we

can solve Equation 8.2 for any given viewpoint within the environment. This solves for the specular

exitance component at each vertex. Combining the diffuse and specular components for each vertex, we

can then use our Z-buffer and Gouraud shading algorithms as before to render an image.

As an alternative, and assuming that we have sufficient memory, we can store a linked list of light

source visibilities for each vertex when we perform our vertex-to-source form factor calculations. We

normally do not need much precision for the visibility value, so that one byte or even one bit could be used

for each source.

It is important to note that the Phong illumination model does not consider semi-specular reflections

within the environment. This means that the resultant image will be somewhat ad hoc in that the radiosity

solution does not take these reflections into account. On the other hand, the amount of radiant flux

represented by the specular highlights is minuscule compared to the total amount of flux in the

environment, and so it has little if any effect on the radiosity solution. Indeed, the only reason for

incorporating Phong illumination is to provide the specular and semi-specular highlights that add to the

realism of the final image.

Some high-end workstations support both texture mapping and Phong illumination in hardware (see

Cohen and Wallace [1993] for implementation details). For the rest of us, we must replicate these features

in software. While it may be a non-trivial programming project, the increased realism of the rendered

images should more than repay the effort.

8.2 Radiosity In Motion

Given the ease and speed with which simple radiosity environments can be rendered, you might

consider something more challenging. Creating a full-color image with subtle color bleeding effects and

realistic soft shadows is impressive enough. However, think of the possibilities in creating a “walkthrough”

that can be displayed in full motion on a multimedia computer.

466 Looking to the Future
__

Modifying HELIOS to generate a sequence of images according to a script file of camera positions and

orientations is trivial. Once the radiosity equation has been solved for a given environment, you can

repeatedly call the various SynCamera member functions to update the camera viewpoint and shoot

images.

From here, it is mostly an issue of recording the images in some suitable form. Given the appropriate

software and hardware, they can be written to a motion-compressed digital video file or sent frame by

frame to a video recorder. Depending on the supporting software provided by the hardware manufacturers,

this can be an evening-long programming project or a major software development effort.

Of course, this assumes that the radiosity equation needs to be solved only once for a static

environment. The true challenge comes when the environment is dynamic.

8.2.1 Changes In Lighting

Suppose we want to change the lighting as our camera moves through the environment. The form factor

matrix remains unchanged, but this is little consolation where progressive refinement radiosity is

concerned. In general, we have to solve the radiosity equation, form factors and all, whenever the initial

exitance of a light source is changed.

There are some shortcuts we can consider, however. To begin with, an environment with a single light

source will require no recalculation at all–we only need to dim or brighten the entire environment

accordingly when its initial exitance is changed. Of course, this will require a minor change to

ToneRep::Normalize to ensure that the bitmap pixel luminances are properly calculated.

A complex environment will likely have more than one light source. Changing the initial exitance of

one source will require us to find a new solution to the radiosity equation. However, we already have a

good approximation with the current solution. We can model the change in initial exitance as an additional

quantity of unsent exitance. This requires a minor change to RadEqnSolve::InitExitance to prevent it from

resetting the final vertex exitances. ProgRad::Calculate or RayCast::Calculate will then simply calculate

the changes in exitance and add them to the current solution. In most situations, the radiosity algorithm will

converge to a solution much more quickly, since the stopping criterion is still based on the total quantity of

flux in the environment.

Looking to the Future 467
__

Of course, if the light source is dimmed, this implies a negative quantity of unsent exitance (Chen

[1990]). Several minor changes to the radiosity equation solver functions will be needed to accommodate

this physically impossible but eminently useful possibility.

If there are many lighting changes to be modeled–theater lighting, for example–it may be useful to

calculate separate solutions for each individual group of light sources (Airey et al. [1990]). These solutions

are independent of one another. You can scale and sum them to represent any possible combination of light

sources and their initial exitances. Dorsey et al. [1991] and Dorsey [1993] describe a similar approach,

except that images are prerendered for a fixed camera position and each group of light sources. Lighting

changes can then be represented at interactive rates by simply blending the rendered images.

8.2.2 Changes In Surface Reflectance

A second challenge comes when the surface reflectances are changed. One typical example is in

architectural design, where the viewer may want to compare the visual appearance of different wall or floor

finishes. Again, the form factor matrix remains unchanged. However, the solution may change drastically

if the surface area is large and its spectral reflectance in one or more color bands is changed by any

significant amount.

Once again, we have to solve the radiosity equation whenever a surface reflectance is changed. Chen

[1990] noted that the current solution often provides a good starting point, particularly when the number of

surfaces that have changed are small in number. From Equation 2.21, we know that the exitance of an

element is given by:

ij

n

j
jioii FMMM ∑

=

+=
1

ρ (8.3)

If we define as the new initial exitance and oiM ′ iρ′ as the new reflectance of the element, then the

incremental change in final exitance is given by:

()∑
=

−′+−′=∆
n

j
ijjiioioii FMMMM

1
ρρ (8.4)

Substituting Equation 8.3 into this equation gives us:

()()
i

oiiii
oioii

MM
MMM

ρ
ρρ −−′

+−′=∆ (8.5)

468 Looking to the Future
__

where the current surface reflectance iρ is assumed to be greater than zero. We can add this value (which

may be negative) to the current calculated element exitance and also the unsent exitance of the parent

patch. From this, we can shoot the exitance until the radiosity algorithm converges to a new solution.

iM

This technique becomes less helpful as the number of surfaces with changed reflectances or initial

exitances increases. Another, more general approach to this problem–eigenvector radiosity–is described by

DiLaura and Franck [1993]. It has the distinct advantage that its solution to the radiosity equation is

independent of the surface reflectances. In other words, the radiosity equation for a given environment only

has to be solved once. The effects of changing the surface reflectances or initial patch exitances can be

trivially solved thereafter. Unfortunately, it is a full radiosity method in that the entire form factor matrix

must be precalculated and stored in memory while the radiosity equation is being solved.

8.2.3 Changes In Environment Geometry

Changes to the geometry of the environment, even something as simple as moving one small object,

can have global effects on the radiosity solution. It can be difficult to predict these effects, especially when

the objects are close to a light source. Moving an object or modifying its geometry changes the form factor

matrix, and so a new solution to the radiosity equation is required.

As before, there are advantages in beginning with the current solution. If the changes to the radiosity

equation are small, convergence to a new solution will proceed rapidly.

There are other possibilities. Baum et al. [1986] present an algorithm for situations where the changes

to the geometry are known in advance and can be precomputed. More general approaches are taken by

Chen [1990] and George et al. [1990], who discuss several techniques for isolating those portions of the

environment whose form factors are affected by moving, modifying, adding or deleting objects. Positive or

negative exitance is then shot as required to account for these changes. The discussions include practical

implementation details and pseudocode for algorithms that are unfortunately beyond the scope of this

book. If you need to account for geometric changes in the environment, however, these two references are

definitely worth investigating.

8.3 Monte Carlo Radiosity

Looking to the Future 469
__

Most radiosity-based rendering programs use either progressive refinement or ray casting to solve the

radiosity equation. While these are certainly the two most popular algorithms, there are others. They range

from simple probabilistic ray tracing techniques to bleeding-edge research in higher mathematics.

Monte Carlo radiosity takes a brute force approach to radiosity rendering. Like progressive refinement

radiosity, it begins by dividing surfaces into arrays of elements. It then shoots rays of light in random

directions from the light sources. Each ray is followed until it intersects a surface, at which point it is

multiplied by the surface reflectance and reshot. Again, a set of random rays is used. This is continued until

most of the radiant flux has been absorbed.

Monte Carlo radiosity is essentially a variant of progressive refinement radiosity, where the form

factors are implicitly calculated using ray casting. In pseudocode, the algorithm becomes (adapted from

Shirley [1991a]):

FOR each element i
 oi

unsent
ii Φ=∆Φ=Φ

ENDFOR

WHILE ε>∆Φ∑
=

n

i

unsent
i

1

 Select element i with greatest unsent flux unsent
i∆Φ

 Send ∆Φ to other elements unsent
i

 0=∆Φunsent
i

ENDWHILE
FOR each element i
 iii AM Φ=
ENDFOR

Figure 8.3 - Monte Carlo radiosity algorithm

Recalling that , this can be seen to be identical in outline to our progressive refinement

radiosity algorithm pseudocode in Figure 6.4. The only difference is the line “Send to other

elements." Monte Carlo radiosity does this by dividing the flux into a number r of equal “packets” and

shooting each as a ray in a random direction from the element into the environment. The origin of the ray is

chosen at random across the sending element’s surface.

iii AM=Φ

unsent
i∆Φ

470 Looking to the Future
__

The number r depends on the quantity of unsent flux. By ensuring that each ray has an approximately

constant amount of flux, r will depend on the value of . This results in each ray having an

approximately equal effect on the environment.

unsent
i∆Φ

The random direction of the ray is weighted by the flux distribution or reflectance characteristics of the

source or reflecting surface. A Lambertian surface, for example, reflects flux in a cosine distribution (i.e.,

Lambert’s Cosine Law, Eqn. 1.9). Thus, the probability of a ray being shot at a vertical angle θ from the

surface normal is proportional to ()θcos .

In pseudocode then, “Send to other elements” becomes: unsent
i∆Φ

FOR each ray
 Choose a random origin
 Choose a weighted random direction
 Shoot ray in random direction
 Find nearest intersecting element j
 runsent

ij∆Φ=∆Φ ρ

 ∆Φ+Φ=Φ jj

 ∆Φ+Φ=Φ unsent
j

unsent
j

ENDFOR

Figure 8.3 - Sending flux between two elements

Further implementation details are presented in Shirley [1991a]. Also, Ashdown [1992] presented an

implementation of the above pseudocode (written in C) as part of an overview of radiosity methods.

Monte Carlo radiosity offers several important advantages in comparison to progressive refinement and

ray casting radiosity. First, there is no need to calculate form factors. This is done implicitly when the rays

are shot into the environment.

Second, the Monte Carlo radiosity algorithm is not limited to modeling Lambertian light sources and

surfaces. The random ray direction weighting approximates the flux distribution or reflectance

characteristics of the light source or surface. This allows us to easily model semispecular surfaces and non-

Lambertian light sources. There are a variety of illumination models (e.g., Foley et al. [1990]) that can be

directly represented within the context of the Monte Carlo radiosity algorithm. Even transparent and fully

specular surfaces such as glass and mirrors can be accommodated.

Looking to the Future 471
__

Given these advantages, why do we even bother with other radiosity methods? The answer is that it can

take a very large number of rays to accurately model the lighting of a complex environment. We are trading

the simplicity of ray tracing for long (and sometimes very long) execution times.

Feda and Purgathofer [1993] present an adaptation that adds an outer loop to the pseudocode shown in

Figure 8.3. More rays are shot at each iteration, thereby incrementally increasing the overall accuracy of

the solution while generating increasingly accurate intermediate images as the algorithm progresses. This

makes Monte Carlo radiosity somewhat more competitive with progressive refinement and ray casting

radiosity in terms of user interaction.

Further information and discussions of Monte Carlo radiosity can be found in Kajiyama and Kodaira

[1989], Pattanaik and Mudur [1992], Rushmeier [1986], Shirley [1990a-c], Shirley [1991b], Shirley et al.

[1991], Shirley and Wang [1991], Stanger [1984], Tregenza [1983] and Ward et al. [1988].

Finally, no discussion of Monte Carlo radiosity is complete without mentioning Radiance, a superlative

ray tracing program that incorporates a wide variety of shading and illumination models aimed at

producing photorealistic images of physically-based phenomena. It also features the view-dependent

Monte Carlo radiosity algorithm presented in Ward et al. [1988].

Radiance was developed by Greg Ward of Lawrence Berkeley Laboratory under the sponsorship of the

U.S. Department of Energy. Originally written for UNIX-based platforms, it has since been ported to the

80x86 and Amiga environments. It is production-quality software with features that rival those of the best

commercial products.

The source code to Radiance is freely distributed, and is currently available on the Internet via

anonymous ftp from hobbes.lbl.gov.

8.4 Other Radiosity Algorithms

There are several other important but mathematically complex algorithms for solving the radiosity

equation. They are at the forefront of radiosity research and well beyond the scope of this text.

Nevertheless, a few brief comments are in order regarding their advantages and significance.

Hierarchical radiosity extends the concept of patches and elements to its logical limit. Recall from

Section 5.10 that patches were divided into elements in order to limit the number of element-to-element

472 Looking to the Future
__

form factors that must be calculated while solving the radiosity equation. As long as the Five Times Rule

(Section 5.5) is satisfied, we can group elements and calculate the form factor from an element to each

group. Each patch constitutes a group of elements.

Suppose, however, that elements are grouped such that each element sees a minimum number of groups

where the Five Times Rule is still satisfied for each group. The two-level hierarchy of patches and

elements is extended to whatever depth is needed to link individual elements to appropriate groups of other

elements in the environment.

At first, this suggests the need for a truly gargantuan data structure of linked lists, possibly one for each

element. It also implies that every form factor has to be precomputed in order to group the elements seen

by each element.

Hanrahan and Salzman [1990a, b] and Hanrahan et al. [1991] demonstrated that this is not the case.

(See also Cohen and Wallace [1993] for a more accessible discussion and detailed pseudocode.) An

“oracle” function can be used to quickly estimate form factors and indicate which elements should be

grouped together. Furthermore, surfaces are adaptively subdivided into a hierarchy of elements, thereby

minimizing the number of elements needed to represent an environment. (Each element is subdivided into

at most four child elements.) In a test environment consisting of 98 polygons, their hierarchical radiosity

algorithm (Hanrahan et al. [1991]) created 4,280 elements arranged in a quadtree with 5,674 nodes, and

computed 11,800 element-to-element interactions. By comparison, a naive radiosity algorithm would have

required as many as 175,000 elements and computed some 15 billion interactions.

There is a deeper mathematical basis to hierarchical radiosity than that of simply minimizing the

number of element-to-element form factor calculations. It can be described in terms of hierarchical “basis

functions” (e.g., Cohen and Wallace [1993]) that have interesting parallels with the mathematics of the Fast

Fourier Transform and various lossy image compression algorithms (such as the Discrete Cosine and Haar

transforms). This has led to the development of wavelet radiosity (Gortler et al. [1993b] and Galerkin

radiosity (Zatz [1993]). These in turn are related to the independently derived eigenvector radiosity

algorithm (DiLaura and Franck [1993]). This iterative algorithm has been recently superceded by a very

efficient direct algorithm (DiLaura [1994]) and a novel technique that precalculates much of the radiosity

equation solution for dynamic environments where changes in the environment geometry are likely.

Looking to the Future 473
__

Finally, there is importance-based radiosity (Smits et al. [1992]), which borrows its inspiration from the

nuclear physicist’s neutron transport theory. This radiosity method differs from those previously described

in that it generates view-dependent solutions. While this may limit its usefulness in some applications, it

offers an important advantage when extremely complex environments must be rendered. Importance-based

radiosity identifies those components of a scene that will significantly affect the radiosity solution for a

given viewpoint. This brings the number of elements that must be considered in form factor calculations

down to manageable levels.

These advanced radiosity algorithms have only been introduced within the past two years, and are for

the most part ongoing research projects. Given time, they may lead to practical and useful radiosity

rendering techniques that outperform any algorithms currently in use.

8.5 Conclusions

Shenchang Eric Chen (Chen [1991]) was right: implementing a radiosity program is indeed “an

enormous task.” It has taken us more than 500 pages and over 7,000 lines of C++ source code to develop

HELIOS. Even so, there are numerous finishing touches–in particular, anti-aliasing, integer-based polygon

fill, ray casting acceleration techniques, winged-edge data structures and adaptive subdivision–that had to

be left as those infamous “exercises for the reader.”

Despite these shortcomings, we can be proud of HELIOS. It opens the door to new opportunities in

computer graphics. It was not designed to be a “user friendly” (whatever that means) program for the

madding crowd. Rather, it is a software development platform, a testbed for your ideas and experiments

with radiosity.

The radiosity approach has been the domain of a small coterie of academic researchers for the past ten

years. We must thank these people for their interest in what was at first a mathematical curiosity, and their

dedication to transforming it into a powerful computer graphics tool. We must also encourage them to

continue their studies, for there are undoubtedly other fascinating and useful radiosity techniques still

waiting to be discovered.

For us, however, the excitement is here and now. This book has given you a lengthy and practical

introduction to the radiosity approach. If you want to learn more, begin with Cohen and Wallace [1993]–

474 Looking to the Future
__

there is no better introduction to the intricacies of advanced radiosity methods. Beyond this, there are many

excellent academic papers that cover all aspects of radiosity. The Bibliography lists most (but certainly not

all) of those that have been published to date. While some of them may be difficult to obtain, they all have

something to offer.

More to the point, however, we have HELIOS. This program–and this book–were written to bring

radiosity into the wider world of computer science students and those who love to program. Remember:

radiosity is easy to understand and fascinating to experiment with. Try HELIOS and see for yourself.

8.6 Postscript

At the risk of communication overload, the author extends an invitation to readers interested in sending

e-mail messages regarding the contents of this book. Bug reports, comments, and questions are welcomed.

(Please recognize, however, that questions regarding porting the code to different environments and

compiler-related problems are often difficult to answer.)

The author’s current e-mail address is: ian_ashdown@helios32.com

References

Airey, J.M., J.H. Rohlf and F.P. Brooks, Jr. [1990]. “Towards Image Realism with Interactive Update

Rates in Complex Virtual Building Environments”, Computer Graphics 24:1 (Proc. ACM Workshop on

Interactive Graphics), 41- 50.

Arvo, J., Ed. [1991]. Graphic Gems II, Academic Press, San Diego, CA.

Ashdown, I. [1992]. “Radiosity and Realism”, The C Users Journal 10:8 (August), 33 - 42.

Ashdown, I. [1993a]. “Near-Field Photometry: A New Approach”, Journal of the Illuminating Engineering

Society 22:1 (Winter), 163 - 180.

Ashdown, I. [1993b]. “Modeling Complex 3-D Light Sources”, ACM SIGGRAPH ‘93 Course 22 (Making

Radiosity Practical) Notes.

Aupperle, L. and P. Hanrahan [1993]. “A Hierarchical Illumination Algorithm for Surfaces with Glossy

Reflections”, Computer Graphics Proceedings (ACM SIGGRAPH ‘93), 155 - 162.

Looking to the Future 475
__

Bao, H. and Q. Peng [1993]. “Shading Models for Linear and Area Light Sources”, Computers & Graphics

17:2, 137 - 145.

Baranoski, G.V.G. [1992]. “The Parametric Differential Method: An Alternative to the Calculation of

Form Factors”, Computer Graphics Forum 11:3 (Proc. Eurographics ’92), C193 - C-204.

Baum, D.R., J.R. Wallace, M.F. Cohen and D.P. Greenberg [1986]. “The Back-Buffer Algorithm: An

Extension of the Radiosity Method to Dynamic Environments”, The Visual Computer 2, 298 - 306.

Baum, S.E. and J.M. Winget [1990]. “Real Time Radiosity Through Parallel Processing and Hardware

Acceleration”, Computer Graphics 24:2 (1990 Symposium on Interactive 3D Graphics), 67 - 75.

Bian, B., N. Wittels and D.S. Fussell [1992]. “Non-Uniform Patch Luminance for Global Illumination”,

Graphics Interface ‘92, 310 - 318.

Bouatouch, K. and C. Bouville, Eds. [1992]. Photorealism in Computer Graphics, Springer-Verlag, Berlin.

Bu, J. and E.F. Deprettere [1987a]. “A VLSI System Architecture for High-Speed Radiative Transfer 3D

Image Synthesis”, Eurographics ‘87 (Proc. European Computer Graphics Conference and Exhibition), G.

Marechal, Ed., Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 221 - 235.

Bu, J. and E.F. Deprettere [1987b]. “A VLSI Algorithm for Computing Form-Factors in Radiative Transfer

Computer Image Synthesis”, Computer Graphics 1987 (Proc. CG International ‘87), T.L. Kunii, Ed.,

Springer-Verlag, London, 181 - 193.

Chalmers, A.G. and D.J. Paddon [1991]. “Parallel Processing of Progressive Refinement Radiosity

Methods”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain.

Chen, H. and E. Wu [1990]. “An Efficient Radiosity Solution for Bump Texture Generation”, Computer

Graphics 24:4 (Proc. ACM SIGGRAPH ‘90), 125 - 134.

Chen, H. and E. Wu [1991]. “Radiosity for Furry Surfaces”, Eurographics ‘91 (Proc. European Computer

Graphics Conference and Exhibition), F.H. Post and W. Barth, Eds., Elsevier Science Publishers B.V.

(North-Holland), 447 - 457.

Chen, S.E. [1990]. “Incremental Radiosity: An Extension of Progressive Radiosity to an Interactive Image

Synthesis System”, Computer Graphics 24:4 (Proc. ACM SIGGRAPH ‘90), 135 - 144.

Chen, S.E. [1989]. A Progressive Radiosity Method and Its Implementation in a Distributed Processing

Environment, Master’s Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

476 Looking to the Future
__

Chen, S.E. [1991]. “Implementing Progressive Radiosity with User-Provided Polygon Display Routines”,

in Arvo [1991], 295 - 298, 583 - 597.

Chen, S.E., H.E. Rushmeier, G. Miller and D. Turner [1991]. “A Progressive Multi-Pass Method for

Global Illumination”, Computer Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 165 - 174.

Cohen, M.F., D.P. Greenberg, D.S. Immel and P.J. Brock [1986]. “An Efficient Radiosity Approach for

Realistic Image Synthesis”, IEEE Computer Graphics and Applications 6:3, 26 - 35.

Cohen, M.F. and J.R. Wallace [1993]. Radiosity and Realistic Image Synthesis, Academic Press, San

Diego, CA.

DiLaura, D.L. [1994]. Private communication.

DiLaura, D.L. and P.J. Franck [1993]. “On Setting Up and Solving Large Radiative Transfer Systems”, J.

Illuminating Engineering Society 22:2 (Summer), 3 - 7.

Dorsey, J. O’B. [1993]. Computer Graphics Techniques for Opera Lighting Design and Simulation, Ph.D.

Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

Dorsey, J. O’B., F.X. Sillion and D.P. Greenberg [1991]. “Design and Simulation of Opera Lighting and

Projection Effects”, Computer Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 41 - 50.

Dretakkis, G. and E. Fiume [1991]. “Structure-Directed Sampling, Reconstruction and Data Representation

for Global Illumination”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain.

Feda, M. and W. Purgathofer [1991]. “Progressive Refinement Radiosity on a Transputer Network”, Proc.

Second Eurographics Workshop on Rendering, Barcelona, Spain.

Feda, M. and W. Purgathofer [1993]. “Progressive Ray Refinement for Monte Carlo Radiosity”, Proc.

Fourth Eurographics Workshop on Rendering, Paris, France, 15 - 25.

Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes [1990]. Computer Graphics: Principles and Practice

(Second Edition), Addison-Wesley, Reading, MA.

George, D.W. [1990]. A Radiosity Redistribution Algorithm for Dynamic Environments, Master’s thesis,

Program of Computer Graphics, Cornell University, Ithaca, NY.

George, D.W., F. X. Sillion and D.P. Greenberg [1990]. “Radiosity Redistribution in Dynamic

Environments”, IEEE Computer Graphics and Applications 10:6, 26 - 34.

Looking to the Future 477
__

Gortler, S.J., P. Schröder, M.F. Cohen and P. Hanrahan [1993b]. “Wavelet Radiosity”, Computer Graphics

Proceedings (ACM SIGGRAPH ‘93), 221 - 230.

Greiner, G., W. Heidrich and P. Slusallek [1993], “Blockwise Refinement - A New Method for Solving the

Radiosity Problem”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France, 233 - 245.

Guitton, P., J. Roman and C. Schlick [1991]. “Two Parallel Approaches for a Progressive Radiosity”, Proc.

Second Eurographics Workshop on Rendering, Barcelona, Spain.

Hall, D.E. and H.E. Rushmeier [1993]. “Improved Explicit Radiosity Method for Calculating Non-

Lambertian Reflections”, The Visual Computer 9, 278 - 288.

Hammersley, J.M. and D.C. Handscomb [1964]. Monte Carlo Methods, Methuen, London.

Hanrahan, P. and D.B. Salzman [1990a]. A Rapid Hierarchical Radiosity Algorithm for Unoccluded

Environments, Technical Report CS-TR-281-90, Princeton University.

Hanrahan, P. and D. Salzman [1990b]. “A Rapid Hierarchical Radiosity Algorithm for Unoccluded

Environments”, in Bouatouch and Bouville [1992], 151 - 170.

Hanrahan, P., D. Salzman and L. Aupperle [1991]. “A Rapid Hierarchical Radiosity Algorithm”, Computer

Graphics 24:4 (Proc. ACM SIGGRAPH ‘91), 197 - 206.

Heckbert, P.S. [1986]. “Survey of Texture Mapping”, IEEE Computer Graphics & Applications 6:11, 56 -

67.

Heckbert, P.S. [1990]. “Adaptive Radiosity Textures for Bidirectional Ray Tracing”, Computer Graphics

24:4 (Proc. ACM SIGGRAPH ‘90), 145 - 154.

Hermitage, S.A., T.L. Huntsberger and B.A. Huntsberger [1990]. “Hypercube Algorithm for Radiosity in a

Ray Traced Environment”, Proc. Fifth Distributed Memory Computing Conference, IEEE Society Press,

206 - 211.

Immel, D.S., M.F. Cohen and D.P. Greenberg [1986]. “A Radiosity Method for Non-Diffuse

Environments”, Computer Graphics 20:4 (Proc. ACM SIGGRAPH ‘86), 133 - 142.

Jessel, J.P., M. Paulin and R. Caubet [1991]. “An Extended Radiosity Using Parallel Ray-Traced Specular

Transfers”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain.

Kajiyama, H. and S. Kodaira [1989]. “An Illuminance Analysis in Partitioned Spaces Using the Monte

Carlo Method”, J. Illuminating Engineering Society 18:2 (Summer), 93 - 108.

478 Looking to the Future
__

Kawai, J.K., J.S. Painter and M.F. Cohen [1993]. “Radiooptimization–Goal Based Rendering”, Computer

Graphics Proceedings (Proc. ACM SIGGRAPH ‘93), 147 - 154.

Kok, A.J.F. [1992]. “Grouping of Patches in Progressive Radiosity”, Proc. Fourth Eurographics Workshop

on Rendering, Paris, France, 221 - 231.

Kok, A.J.F., F.W. Jansen and C. Woodward [1993]. “Efficient, Complete Radiosity Ray Tracing Using a

Shadow-Coherence Method”, The Visual Computer 10, 19 - 33.

Kok, A.J.F., A.C. Yilmaz and L.H.J. Bierens [1990]. “A Two-Pass Radiosity Method for Bézier Patches”,

in Bouatouch and Bouville [1992], 115 - 124.

Languénou, E. and P. Tellier [1992]. “Including Physical Light Sources and Daylight in Global

Illumination”, Proc. Third Eurographics Workshop on Rendering, Bristol, England, 217 - 225.

Le Saec, B. and C. Schlick [1990]. “A Progressive Ray Tracing Based Radiosity with General Reflectance

Functions”, in Bouatouch and Bouville [1992], 101 - 113.

Lischinski, D., F. Tampieri and D.P. Greenberg [1993]. “Combining Hierarchical Radiosity and

Discontinuity Meshing”, Computer Graphics Proceedings (ACM SIGGRAPH ‘93), 199 - 208.

Neumann, L. and A. Neumann [1989]. “Photosimulation: Interreflection with Arbitrary Reflectance

Models and Illumination”, Computer Graphics Forum 8, 21 - 34.

Neumann, L. and A. Neumann [1990]. “Efficient Radiosity Methods for Non-Separable Reflectance

Models”, in Bouatouch and Bouville [1992], 85 - 97.

Ng, A. and M. Slater [1993]. “A Multiprocessor Implementation of Radiosity”, Computer Graphics Forum

12:5, 329 - 342.

Pattanaik, S. and S. Mudur [1992]. “Computation of Global Illumination by Monte Carlo Simulation of the

Particle Light”, Proc. Third Eurographics Workshop on Rendering, Bristol, England.

Phong, B. [1975]. “Illumination for Computer Generated Images”, Comm. ACM 18:6, 311 - 317.

Price, M. and G. Truman [1989]. “Parallelism Makes Light Work”, Computer Graphics ‘89, November,

London, 409 - 418.

Purgathofer, W. and M. Zeller [1990]. “Fast Radiosity by Parallelization”, in Bouatouch and Bouville

[1992], 171 - 181.

Looking to the Future 479
__

Rushmeier, H. [1988]. Realistic Image Synthesis for Scenes with Radiatively Participating Media, Ph.D.

Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

Rushmeier, H., C. Patterson and A. Veerasamy [1993]. “Geometric Simplification for Indirect Illumination

Calculations”, Graphics Interface ‘93, Toronto, Ontario, 227 - 236.

Rushmeier, H. and K. Torrance [1987]. “The Zonal Method for Calculating Light Intensities in the

Presence of a Participating Medium”, Computer Graphics 21:4 (Proc. ACM SIGGRAPH ‘87), 293 - 302.

Rushmeier, H.E. and K.E. Torrance [1990]. “Extending the Radiosity Method to Include Specularly

Reflecting and Translucent Materials”, ACM Trans. Computer Graphics 9:1, 1 - 27.

Salesin, D., D. Lischinski and T. DeRose [1992]. “Reconstructing Illumination Functions with Selected

Discontinuities”, Proc. Third Eurographics Workshop on Rendering, Bristol, England.

Shao, M. and N.I. Badler [1993b]. “Analysis and Acceleration of Progressive Refinement Radiosity

Method”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France.

Shao, M., Q. Peng and Y. Liang [1988a]. “Form Factors for General Environments”, Eurographics ‘88

(Proc. European Computer Graphics Conference and Exhibition), D.A. Duce and P. Jancene, Eds., Elsevier

Sciences Publishers B.V. (North-Holland), Amsterdam, 499 - 510.

Shao, M., Q. Peng and Y. Liang [1988b]. “A New Radiosity Approach by Procedural Refinements for

Realistic Image Synthesis”, Computer Graphics 22:4 (Proc. ACM SIGGRAPH ‘88), 93 - 101.

Shen, L., E. Deprettere and P. Dewilde [1992]. “A New Space Partitioning for Mapping Computations of

the Radiosity Method onto a Highly Pipelined Parallel Architecture”, Advances in Computer Graphics V,

Springer-Verlag, Berlin, Germany.

Shirley, P. [1990a]. Physically Based Lighting Calculations for Computer Graphics, Ph.D. Thesis, Dept. of

Computer Science, U. of Illinois, Urbana-Champaign, IL.

Shirley, P. [1990b]. “Physically Based Lighting Calculations for Computer Graphics: A Modern

Perspective”, in Bouatouch and Bouville [1992], 73 - 83.

Shirley, P. [1990c]. “A Ray Tracing Method for Illumination Calculation in Diffuse-Specular Scenes”,

Graphics Interface ‘90, 205 - 212.

Shirley, P. [1991a]. “Radiosity Via Ray Tracing”, in Arvo [1991], 306 - 310.

480 Looking to the Future
__

Shirley, P. [1991b]. “Time Complexity of Monte Carlo Radiosity”, Eurographics ‘91 (Proc. European

Computer Graphics Conference and Exhibition), F.H. Post and W. Barth, Eds., Elsevier Science Publishers

B.V. (North-Holland), Amsterdam, 459 - 465.

Shirley, P., K. Sung and W. Brown [1991]. “A Ray Tracing Framework for Global Illumination Systems”,

Graphics Interface ‘91, 117 - 128.

Shirley, P. and C. Wang [1991]. “Direct Lighting Calculations by Monte Carlo Integration”, Proc. Second

Eurographics Workshop on Rendering, Barcelona, Spain.

Sillion, F.X. and C. Puech [1989]. “A General Two-Pass Method Integrating Specular and Diffuse

Reflection”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 335 - 344.

Sillion, F.X., J.R. Arvo, S.H. Westin and D.P. Greenberg [1991]. “A Global Illumination Solution for

General Reflectance Distributions”, Computer Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 187 - 196.

Smits, B.E., J.R. Arvo and D.H. Salesin [1992]. “An Importance-Driven Radiosity Algorithm”, Computer

Graphics 26:4 (Proc. ACM SIGGRAPH ‘92), 273 - 282.

Stanger, D. [1984]. “Monte Carlo Procedures in Lighting Design”, J. Illuminating Engineering Society

13:4, 368 - 371.

Tampieri, F. and D. Lischinski [1991]. “The Constant Radiosity Assumption Syndrome”, Proc. Second

Eurographics Workshop on Rendering, Barcelona, Spain.

Tregenza, P.R. [1983]. “The Monte Carlo Method in Lighting Calculations”, Lighting Research &

Technology 15:4, 163 - 170.

Troutman, R. and N. Max [1993]. “Radiosity Algorithms Using Higher Order Finite Element Methods”,

Computer Graphics Proceedings (ACM SIGGRAPH ‘93), 209 - 212.

van Liere, R. [1991]. “Divide and Conquer Radiosity”, Proc. Second Eurographics Workshop on

Rendering, Barcelona, Spain.

Wallace, J.R., M.F. Cohen and D.P. Greenberg [1987]. “A Two-Pass Solution to the Rendering Equation:

A Synthesis of Ray Tracing and Radiosity Methods”, Computer Graphics 21:4 (Proc. ACM SIGGRAPH

‘87), 311 - 320.

Wang, M., H. Bao and Q. Peng [1992]. “A New Progressive Radiosity Algorithm Through the Use of

Accurate Form-Factors”, Computers & Graphics 16:3, 303 - 309.

Looking to the Future 481
__

Ward, G.J., F.M. Rubinstein and R.D. Clear [1988]. “A Ray Tracing Solution for Diffuse Interreflection”,

Computer Graphics 22:4 (Proc. ACM SIGGRAPH ‘88), 85 - 92.

Wilt, N. [1993]. Objected-Oriented Ray Tracing in C++, Wiley, New York, NY.

Xu, H., Q.S. Peng and Y.D. Liang [1989]. “Accelerated Radiosity Method for Complex Environments”,

Eurographics ‘89 (Proc. European Computer Graphics Conference and Exhibition), W. Hansmann, F.R.A.

Hopgood and W. Strasser, Eds., Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 51 - 61.

Zatz, H. [1993]. “Galerkin Radiosity: A Higher Order Solution Method for Global Illumination”,

Computer Graphics Proceedings (ACM SIGGRAPH ‘93), 213 - 220.

Zhou, Y. and Q. Peng [1992]. “The Super-Plane Buffer: An Efficient Form-Factor Evaluation Algorithm

for Progressive Radiosity”, Computers & Graphics 16:2, 151 - 158.

Appendix A
Photometric and Radiometric
Definitions
A.0 Introduction

The photometric and radiometric definitions presented in Chapter One are those commonly used in

illumination engineering, and are in accordance with the American National Standards Institute publication

“Nomenclature and Definitions for Illuminating Engineering” (ANSI/IES [1986]). This booklet is a

veritable encyclopedia of photometric and radiometric terminology. However, interested readers are

forewarned: it is anything but light bedside reading!

As noted in Chapter One, the photometric and radiometric terminology presently used by the computer

graphics community differs somewhat from that promoted by ANSI/IES [1986]. The concepts are the

same; the differences are in name only. Hopefully this situation will change in the future–ANSI/IES [1986]

offers a consistent and useful set of definitions for both the computer graphics and illumination engineering

communities.

The following definitions have been excerpted (with some minor editing) from ANSI/IES [1986] with

the kind permission of the Illuminating Engineering Society of North America.

A.1 ANSI/IES Definitions

2. Electromagnetic Radiation
2.1 Radiant energy, Q. Energy traveling in the form of electromagnetic waves. It is measured in units of
energy such as joules or kilowatt-hours.

2.1.1 Spectral radiant energy, Qλ = dQ/dλ. Radiant energy per unit wavelength interval; e.g., joules per
nanometer. Qλ(λ) = dQ/dλ at wavelength λ.

2.4 Radiant flux (radiant power), Φ = dQ/dt. The time rate of flow of radiant energy. It is expressed
preferably in watts.

2.4.1 Spectral radiant flux, Φλ = dΦ/dλ. Radiant flux per unit wavelength interval at wavelength λ;
e.g., watts per nanometer.

2.5 Radiant flux areal density, dΦ/dA, (at a point on a surface). The quotient of the radiant flux incident
on or emitted by an element of surface area at the point, by the area of the element. Radiant flux density
emitted from a surface has been called emittance (a deprecated term). The preferred term for radiant flux
density leaving a surface is exitance, (M). Radiant flux density incident on a surface is irradiance, (E).

484 Photometric and Radiometric Definitions
__

2.5.1 Spectral radiant exitance, Mλ, and irradiance Eλ. Spectral concentration of radiant exitance, Mλ
= dM/dλ, and spectral concentration of irradiance, Eλ = dE/dλ.

2.6 Radiant intensity, I = dΦ/dω (in a given direction). The radiant flux proceeding from a source per
unit solid angle in the given direction; e.g., watts per steradian.

Note: Mathematically, a solid angle must have a point at its apex; the definition of radiant intensity,
therefore, applies strictly only to a point source. In practice, however, radiant energy emanating from a
source whose dimensions are negligible in comparison with the distance from which it is observed may
be considered as coming from a point. Specifically, this implies that with change of distance (1) the
variation in solid angle subtended by the source at the receiving point approaches 1/(distance)2; and that
(2) the average radiance of the projected source area as seen from the receiving point does not vary
appreciably.
2.6.1 Spectral radiant intensity, Iλ = dI/dλ. Radiant intensity per unit wavelength interval; e.g., watts

per (steradian-nanometer).

2.7 Radiance, L = d2Φ/[dω(dA · cos θ)] = dI/(dA · cos θ) (in a given direction at a point on the surface
of a source, of a receiver, or of any other real or virtual surface). The quotient of the radiant flux
leaving, passing through, or arriving at an element of the surface surrounding the point, and propagated in
directions defined by an elementary cone containing the given direction, by the product of the solid angle
of the cone and the area of the orthogonal projection of the element of the surface on a plane perpendicular
to the given direction.

Note: In the defining equation θ is the angle between the normal to the element of the surface and the
given direction.
2.7.1 Spectral radiance, Lλ. Spectral concentration of radiance:

Lλ = d3Φ/[dω(dA · cos θ)dλ].

2.10 Radiant sterisent, L*(x), (at a point along a ray path). Rate of increase in radiance, per unit path
length, at the point and in the direction of the ray, due to “generated” (emitted or scattered) radiance, or the
“generated” radiant intensity per unit volume, at the point and in the direction of the ray, by which a
distributed source can be characterized. L* = dLg/dx = dIg/dV, where dx is an element of distance along the
ray path, dV is an element of volume at the point, and the subscript g denotes a “generated” quantity.

2.10.1 Spectral radiant sterisent, L*λ. Spectral concentration of sterisent, L*λ = dL*/dλ.

3. Light
3.1 Light. Radiant energy that is capable of exciting the retina and producing a visual sensation. The
visible portion of the electromagnetic spectrum extends from about 380 to 770 nanometers.

3.2 Luminous flux Φ. Radiant flux (radiant power); the time rate of flow of radiant energy, evaluated in
terms of a standardized visual response.

Φν = Km ∫ΦeλV(λ)dλ
where

Φν = lumens
Φeλ = watts per nanometer
λ = nanometers
V(λ) = spectral luminous efficiency
Km = maximum spectral luminous efficacy in lumens/watt (lm/W)

Unless otherwise indicated, the luminous flux is defined for photopic vision. For scotopic vision, the
corresponding spectral luminous efficiency V’(λ) and the corresponding maximum spectral luminous
efficacy K’m are substituted in the above equation. Km and K’m are derived from the basic SI definition of
luminous intensity and have the values 683 lm/W and 1754 lm/W respectively.

3.2.1 Lumen, lm. SI unit of luminous flux. Radiometrically, it is determined from the radiant power.
Photometrically, it is the luminous flux emitted within a unit solid angle (one steradian) by a point source
having a uniform luminous intensity of one candela.

Photometric and Radiometric Definitions 485
__

3.3 Luminous flux density at a surface, dΦ/dA. The luminous flux per unit area at a point on a surface.
Note: This need not be a physical surface; it may also be a mathematical plane.
3.3.1 Illuminance, E = dΦ/dA. The areal density of the luminous flux incident at a point on a surface.

3.3.1.1 Illumination. An alternative, but deprecated, term for illuminance.
3.3.1.2 Lux, lx. The SI unit of illuminance. One lux is one lumen per square meter (lm/m2).
3.3.1.3 Footcandle, fc. A unit of illuminance. One footcandle is one lumen per square foot (lm/ft2).
3.3.2 Luminous exitance, M = dΦ/dA. The areal density of luminous flux leaving a surface at a point.

Formerly, luminous emittance (deprecated).

3.4 Luminous intensity, I = dΦ/dω (of a point source of light in a given direction). The luminous flux
per unit solid angle in the direction in question. Hence, it is the luminous flux on a small surface centered
on and normal to that direction divided by the solid angle (in steradians) which the surface subtends at the
source. Luminous intensity may be expressed in candelas or in lumens per steradian (lm/sr).

Note: Mathematically, a solid angle must have a point at its apex; the definition of luminous intensity,
therefore, applies strictly only to a point source. In practice, however, light emanating from a source
whose dimensions are negligible in comparison with the distance from which it is observed may be
considered as coming from a point. Specifically, this implies that with change of distance (1) the
variation in solid angle subtended by the source at the receiving point approaches 1/(distance)2; and that
(2) the average luminance of the projected source area as seen from the receiving point does not vary
appreciably.

The word intensity as defined above is used to designate luminous intensity (or candlepower). It is also
widely used in other ways ... Intensity has been used to designate the level of illuminance on a surface or
the flux density in the cross section of a beam of light. In physical optics, intensity usually refers to the
square of the wave amplitude.
3.4.1 Candela, cd. The SI unit of luminous intensity. One candela is one lumen per steradian (lm/sr).

Formerly, candle.
Note: The fundamental luminous intensity definition in the SI is the candela. The candela is the luminous
intensity, in a given direction of a source that emits monochromatic radiation of frequency 540 · 1012
Hertz that has a radiant intensity inn that direction of 1/683 watt per steradian.
3.4.2 Candlepower, cp. Luminous intensity expressed in candelas.

3.5 Luminance, L = d2Φ/(dωdA · cos θ) (in a direction and at a point on a real or imaginary surface).
See Fig. A.1. The quotient of the luminous flux at an element of the surface surrounding the point, and
propagated in directions defined by an elementary cone containing the given direction, by the product of
the solid angle of the cone and the area of orthogonal projection of the element of the surface on a plane
perpendicular to the given direction. The luminous flux may be leaving, passing through, and/or arriving at
the surface. Formerly, photometric brightness.

By introducing the concept of luminous intensity, luminance may be expressed as L = dI/(dA · cos θ).
Here, luminance at a point on a surface in a given direction is interpreted as the quotient of luminous
intensity in the given direction, produced by an element of the surface surrounding the point, by the area of
the orthogonal projection of the element of surface on a plane, perpendicular to the given direction.
(Luminance may be measured at the receiving surface by using

L = dE/(dω · cos θ)
This value may be less than the luminance of the emitting surface due to attenuation of the transmitting
media.)

3.5.1 SI unit of luminance. Candela per square meter (cd/m2).
3.5.2 Inch-pound (formerly English [USA]) unit of luminance. Candela per square foot (cd/ft2).

486 Photometric and Radiometric Definitions
__

L

θ

dA

dω

φd
N

Figure A.1 - Luminance

3.8 Luminous sterisent, L*(x), (at a point along a ray path). Rate of increase in luminance, per unit path
length, at the point and in the direction of the ray, due to “generated” (emitted or scattered) luminance, or
the “generated” luminous intensity per unit volume, at the point and in the direction of the ray, by which a
distributed source can be characterized. L* = dLg/dx = dIg/dV, where dx is an element of distance along the
ray path, dV is an element of volume at the point, and the subscript g denotes a “generated” quantity.

3.9 Quantity of light (Luminous energy, Q = ∫Φdt). The product of the luminous flux by the time it is
maintained. It is the time integral of luminous flux.

3.10 Spectral luminous efficacy of radiant flux, K(λ) = Φνλ/Φeλ. The quotient of the luminous flux at a
given wavelength by the radiant flux at that wavelength. It is expressed in lumens per watt.

3.10.1 Spectral luminous efficiency of radiant flux. The ratio of the luminous efficacy for a given
wavelength to the value at the wavelength of maximum efficacy. It is dimensionless.

References
ANSI/IES [1986]. American National Standard Nomenclature and Definitions for Illuminating
Engineering, ANSI/IES RP-16-1986, Illuminating Engineering Society of North America, N.Y., N.Y.

Appendix B
Memory Management Issues

B.0 Introduction

Memory, memory and more memory. It always seems that our applications require more memory than

we currently have available. This curse of the computer is nowhere more evident than in radiosity

rendering. Depending on the radiosity methods we employ, we may need to store both vertices and form

factors as floating point data types for thousands to hundreds of thousands of polygons. Tens of megabytes

can disappear in the blink of an eye as a complex environment is read into memory.

While we may not be able to avoid these requirements, we can at least curb our programs’ appetite for

memory by carefully examining how memory is allocated, used and released. Dynamic memory allocation

is an obvious and well-documented candidate; other software engineering techniques include dynamic

multidimensional arrays, non-rectangular array allocation and class-specific memory managers.

For whatever reason, most C and C++ programming texts dismiss multidimensional arrays and memory

management in a few paragraphs. This is unfortunate in the extreme, since dynamic multidimensional

arrays and class-specific memory management techniques are essential to many computer graphics and

scientific programming applications. Thus, while they not be directly related to radiosity rendering

methods, we are advised to examine them carefully. The effective use of memory can make the difference

between a demonstration program and a production-quality application.

B.1 The Default Memory Manager

Calling new in C++ or malloc in C invokes the default memory manager provided by the compiler. This

gives us convenient and nearly transparent access to dynamically allocated memory blocks of almost any

size. It also, however, brings with it some hidden costs in terms of execution time and memory

requirements.

488 Memory Management Issues
__

When your program first starts, its memory manager receives a pointer to a large block of memory

(called the heap or free store) from the operating system. The memory manager then typically initializes

this block with a header similar to:

struct BlockHeader
{
 size_t size; // Block size (less block header)
 void *pnext; // Next block pointer
};

where size is set to the size of the block in bytes (less that occupied by the BlockHeader structure) and

pnext is set to NULL. It then saves a global FreeMemoryList pointer to this header.

A call to new or malloc with a request for n bytes results in the following sequence of events:

1. The size member of the block header pointed to by the FreeMemoryList pointer is compared to the

requested size n.

2. If size greater than n, then a null pointer is returned, indicating memory allocation failure.

3. The size member is set to n ; the n bytes following the block header will become the allocated memory

block.

4. Another block header is initialized, starting at n + sizeof(BlockHeader) bytes beyond the current block

header. The current header’s pnext pointer and the FreeMemoryList pointer are both set to point to this

new header.

5. The new header’s size member is set to the size of the remaining block in bytes, less

sizeof(BlockHeader). Its pnext pointer is again set to NULL.

6. If the call was to new, the class constructor (if any) is executed to initialize the allocated block.

7. A pointer to the allocated block (not the block header) is returned.

Successive calls to new or malloc results in the same sequence being repeated until the heap is exhausted,

in which case it stops at the second step.

Calling delete or free is more interesting. The pointer received is to the allocated block, but of course

the block header immediately precedes it in memory. The memory manager sets pnext to point to the block

header currently pointed to by FreeMemoryList, then sets FreeMemoryList to point to the allocated block.

This effectively frees the block by adding it to the linked list of free memory blocks. (If the next free block

Memory Management Issues 489
__

in the list immediately follows the current block in memory, the memory manager will likely coalesce the

two blocks into one by setting the current pnext to the value of the following block’s pnext pointer.)

Further calls to new or delete will now execute the above sequence of events with the exception of the

second step. It becomes:

2. If size greater than n, then check the block header pointed to by pnext; continue doing so until either

size is less than or equal to n or pnext is NULL. If pnext is NULL, return a null pointer (no suitably-

sized block is available); otherwise continue to the next step.

The memory manager effectively walks the linked list of free memory blocks, looking for a free

memory block large enough to satisfy the allocation request.

There are several problems with this scheme. First, a hidden header block is used for every successful

allocation of memory. This may be only eight bytes or so in size, but it quickly adds up when many small

objects must be allocated.

Second, it takes time to scan the free memory list looking for suitably sized blocks, particularly when a

large number of blocks have already been allocated. (This is more important in real-time systems, where

some functions may have to execute within specific and guaranteed time limits.)

Third, and most importantly, randomly allocating and releasing blocks of memory of varying sizes

quickly fragments the heap. The memory manager first looks for memory on the free memory list. If it

finds one that is larger than necessary, it simply splits it into two, allocating one block and adding the

second to the free memory list. The result is that each free block tends to become smaller and smaller until

adjacent blocks are releasing, whereupon they are coalesced into a larger block.

Finally, dynamically allocating large contiguous blocks of memory creates a certain amount of havoc

for the memory manager. To begin with, it may not be able to satisfy the allocation request if the heap is

too fragmented. There may be plenty of memory available, but only in small, scattered blocks. (Some

programming languages–Lisp, for example–support “garbage collection”, where the blocks of allocated

memory in the heap are physically copied to other locations such that the resulting free blocks can be

coalesced. This is impractical in C and C++, since it means that every pointer to dynamic memory has to be

somehow updated at the same time.)

490 Memory Management Issues
__

Even if one or more large contiguous blocks (one or two megabytes for a Z-buffer, for example) can be

allocated, this drastically limits the ability of the memory manager to allocate other blocks without running

into memory fragmentation problems.

There are two solutions to these problems. The simpler one involves a close look at how C and C++

address multidimensional arrays; the second is to write our own memory manager.

B.2 Dynamic Multidimensional Arrays

Multidimensional arrays are often required in computer graphics and scientific programming. With

access to megabytes of RAM, it becomes possible to solve large and complex problems quickly and

efficiently. However, both C and C++ make it difficult to dynamically allocate and access

multidimensional arrays unless the array dimensions are known at compile time. The general lack of

documentation on programming in C and C++ using multidimensional arrays only exacerbates the

problem.

The solution is to understand in detail how C and C++ access multidimensional arrays at run-time.

Consider this quote from “The Annotated C++ Reference Manual” (Ellis and Stroustrup [1990]):

A consistent rule is followed for multidimensional arrays. If E is an n-dimensional array of rank
, then E appearing in an expression is converted to a pointer to an kji ××× K ()1−n -dimensional array

with rank . If the * operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is a pointed-to

k×Kj ×
(1)−n -dimensional array, which itself is immediately converted into

a pointer.
For example, consider

int x[3][5];

Here x is a 3 array of integers. When x appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expression

5×
[]ix , which is equivalent to * , x is first

converted to a pointer as described; then
(ix +)

ix + is converted to the type of x, which involves multiplying i
by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the
first of the integers. If there is another subscript the same argument applies again; this time the result is an
integer.

It follows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays no
other part in subscript calculations.

This explanation also applies to ISO Standard C (ISO/IEC [1990]) and the original Unix C (Kernighan

and Ritchie [1988]). Hidden in the jargon is the key phrase:

“ … is equivalent to * ” []ix ()ix +

Memory Management Issues 491
__

Suppose we have a one-dimensional array F of n values. The data type doesn’t matter, but let’s make it

float for convenience. It can be dynamically allocated with a call to new or malloc (followed by casting to a

pointer to float). Unfortunately, we can only access F as a one-dimensional array of float values …

Not true! Suppose we also have a one-dimensional array D of m pointers to float, and that each points

to an element in F. Given an integer index i for D, we could access the element in F that points to as: []iD

value = *(D[i]);

However, this is equivalent to:

value = D[i][0];

We could also use a second index j to access the jth element in F beyond []iD . This can be expressed

as:

value = *(D[i] + j);

or even:

value = *(*(D + i) + j);

However, the most succinct expression is:

value = D[i][j];

In other words, we can use two one-dimensional arrays to simulate a two-dimensional array. Each

pointer in D points to a fixed span of values in F (Fig. B.1). Furthermore, we never have to explicitly

access the second array F. Generalizing this approach, we can use 1−n one-dimensional arrays of pointers

and a single one-dimensional array of values to simulate an n-dimensional array (e.g., Ashdown [1988]).

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3D

F

D[0][0] D[1][0] D[2][0] D[3][0]

Figure B.1 - Dynamically allocated 2-D array

True multidimensional arrays are those that are statically allocated and optionally initialized at compile

time. They fill contiguous block of memory, and form part of the executable program that must be loaded

from disk along with the program code. The arrays themselves are stored in contiguous blocks of memory.

492 Memory Management Issues
__

The compiler must be told the sizes of the first 1−n dimensions of a static n-dimensional array. With

these, it can calculate array offsets using integer multiplication and addition. These calculations can be

performed very quickly, especially if the code ends up being cached by the CPU.

The interesting point here is that while a multidimensional array subscript expression such as [][]jiD

can be interpreted in terms of pointers and pointer arithmetic, the compiler only needs to access the address

of D; the rest is integer arithmetic.

Dynamically allocated multidimensional arrays are a different story. The compiler doesn’t know the

array dimensions, and so it must generates code to physically read each pointer implied by the expression

. This may lead to slightly slower array access times if the necessary pointers aren’t stored

in the CPU’s internal cache. Usually, however, the difference in performance will negligible.

()(jiD ++**)

What does make a difference–a big difference–is that there is no requirement for F to be a single

contiguous array. In other words, each pointer in D can point to a separate one-dimensional array of values.

This allows the memory manager to allocate memory in small chunks, one row at a time. It’s the perfect

solution to the problem of dynamically allocating large arrays. It’s even better for MS-Windows 3.1

applications, since it allows us to evade the 64 Kbyte maximum array size limitation without declaring the

array as a _huge data type and suffering the considerable expense of _huge pointer arithmetic.

Another advantage of dynamically allocated multidimensional arrays is that the memory manager

considers each allocated row to be an independent block of memory. This allows truly gargantuan arrays to

be stored in virtual memory while still providing reasonably fast and efficient access to their row elements.

We used these techniques without fanfare in our PolyRender, HemiClip and CubicClip classes to

dynamically allocate depth buffers and delta form factor arrays. In PolyRender, it allowed us to allocate

arrays larger than 64 Kbytes under MS Windows 3.1. CubicClip made use of yet another advantage of

dynamic allocation: non-rectangular arrays.

B.3 Triangular Arrays

A seeming disadvantage of the cubic tetrahdral algorithm (Section 5.8) is that it requires a triangular

array in which to store delta form factors. We could of course use a square array and simply not use half of

it. However, this is an unnecessary waste of memory, particularly for high cubic tetrahedron resolutions.

Memory Management Issues 493
__

Figure B.1 shows each pointer in D pointing to a fixed span of values in F. In other words, each of the

“rows” in F has the same length. Clearly, however, this does not need to be the case. Each row can be

whatever length we choose. If we decrement the row length by one for each successive pointer in D, we

can simulate a triangular array with no wasted space other than the array of pointers needed for D itself.

We need to know the length of each row in F when we access it through D, but this is no different from our

need to know the number of rows and columns in a rectangular 2-D array.

A clear understanding of pointers and pointer arithmetic allows us to effectively manage dynamic

multidimensional arrays in C and C++. It’s only unfortunate that most programming texts fail to adequately

address these capabilities.

B.4 Class-Specific Memory Management

From our perspective of writing an efficient radiosity renderer, the default memory manager underlying

the global new and malloc operators has the undesirable trait of using a block header for every object it

allocates. It would be much better if we could allocate small objects (such as polygon vertices) as arrays

and eliminate the hidden headers.

Fortunately, we can, and on a per-class basis. When it comes to memory management, C++ provides

the ultimate solution: if you don’t like how the default memory manager works for a particular class,

replace it with one of your own design by overloading new and delete.

Write your own memory manager? It’s not as onerous a project as you might think. Following an

example presented in Stroustrup [1991], a user-defined class with its own built-in memory manager can be

as simple as:

// Class-specific new and delete operators - EXAMPLE ONLY

#include <stdlib.h>

static int ObjectsPerChunk = 128;

class MyClass
{
 private:
 ... class-specific data

 static MyClass *FreeListPtr; // Free list pointer

 MyClass *pnext; // Next object pointer

 public:

494 Memory Management Issues
__
 ... class-specific data access functions

 void *operator new(size_t);
 void operator delete(void *);
};

// Global free object list pointer
MyClass *MyClass::FreeListPtr = NULL;

void *MyClass::operator new(size_t size)
{
 int i; // Loop index
 MyClass *pfree = FreeListPtr; // Free object pointer

 if (pfree != NULL) // Free object available ?
 {
 // Update free object list pointer
 FreeListPtr = FreeListPtr->pnext;
 }
 else
 {
 // Allocate new chunk
 pfree = new MyClass[ObjectsPerChunk];

 // Link chunk to free object list
 FreeListPtr = pfree;

 // Link objects in chunk
 for (i = 1; i < ObjectsPerChunk; i++)
 {
 pfree->pnext = pfree + 1;
 pfree++;
 }
 pfree->pnext = NULL; // Terminate free list

 // Point to first free object in chunk
 pfree = FreeListPtr;
 }

 return pfree;
}

void operator delete(void *pobj)
{
 MyClass *pcurr = (MyClass *) pobj;

 // Link object to free object list
 pcurr->pnext = FreeListPtr;
 FreeListPtr = pcurr;
}

Figure B.2 - A simple example of class-specific memory management

The basis of this class is almost self-explanatory. Each MyClass object consists of user-defined data

and a pointer to the next object. There’s also a global MyClass object pointer called FreeListPtr that is

initialized to NULL at program startup.

Memory Management Issues 495
__

When the overloaded new operator is first called, it allocates an array of uninitialized MyClass objects

in a block of memory called a “chunk”. The call to new is not recursive; the default (i.e., global) new

operator is always called when arrays of objects are to be allocated.

As shown, there are 128 objects in a chunk. In practice, ObjectsPerChunk would be defined such that

the chunk is reasonably sized, say 4 Kbytes. The object pointers are initialized to form a linked list of

objects within the chunk, with the last object’s pointer set to NULL. The first object in the chunk is linked

to FreeListPtr, and a pointer to it is returned by new.

Successive calls to new simply advance the FreeListPtr pointer and return a pointer to the next object in

the list. If the free object list is exhausted (i.e., the chunk is full), another chunk is allocated and the process

started over.

Calling delete links the object to be deleted to the head of the free object list, ready for the next call to

new. This means that after a while, the linked list of free objects may span several allocated chunks in

possibly random order.

This is a very simple memory manager. Once a chunk has been allocated, there is no mechanism to

delete it short of program termination. You also can’t derive anything from MyClass without providing a

rewritten new operator, and even then you end up with multiple free memory lists, one for each class. It

would be more useful to have a generic memory manager that allocates several sizes of chunks for various

classes, depending on the size parameter passed to new. It should also indicates memory allocation failure

and delete chunks that are no longer in use.

More comprehensive memory manager classes that perform intelligent chunk allocation are

occasionally presented in computer programming magazines. Examples include Burk and Custer [1992],

Peterson [1992] and Weller [1990]. The discussion provided by Burk and Custer is very informative and

well worth reading. Despite its title, their generic “chunk allocator” is applicable to any environment that

supports a C++ compiler.

Our radiosity rendering program doesn’t need a chunk allocator, but it could benefit from a class-

specific memory managers for Vertex3 and Element3. Relying on the default memory manager incurs a

memory overhead of approximately 20 percent for each allocated object. The (incomplete) code in Figure

496 Memory Management Issues
__

B.2 outlines how these classes can be extended to include built-in memory management. The

implementation details are left to the interested reader as an exercise.

References

Ashdown, I. [1988]. "Dynamic Multidimensional Arrays in C", Computer Language 5:6 (June), 83 - 88.

Burk, R. and H. Custer [1992]. “A Reusable C++ Chunk Allocator for DOS and Windows”, Windows/DOS

Developer’s Journal 3:2 (February), 5 - 13.

Ellis, M.A. and B. Stroustrup [1990]. The Annotated C++ Reference Manual, Addison-Wesley, Reading,

MA.

ISO/IEC [1990]. International Standard for Programming Language C, ISO/IEC 9899:1990.

Kernighan, B.W. and D.M. Ritchie [1988]. The C Programming Language, 2nd Ed., Prentice Hall,

Englewood Cliffs, NJ.

Peterson, M.E. [1992]. “WINMEM: An Efficient Subsegment Memory Allocator for Windows 3.x”,

Windows/DOS Developer’s Journal 3:7 (July), 5 - 11.

Stroustrup, B. [1991]. The C++ Programming Language, 2nd Ed., Addison-Wesley, Reading, MA.

Weller, S. [1990]. “Fast Memory Allocation Scheme”, The C Users Journal 8:4 (April), 103 - 107.

Bibliography
Águas, M.P.N. and S. Müller [1993]. “Mesh Redistribution in Radiosity”, Proc. Fourth Eurographics

Workshop on Rendering, Paris, France, 327 - 335.

Airey, J.M. and M. Ouh-young [1989]. “Two Adaptive Techniques Let Progressive Radiosity Outperform

the Traditional Radiosity Algorithm”, U. of North Carolina Dept. of Computer Science Technical Report

TR89-020.

Airey, J.M., J.H. Rohlf and F.P. Brooks, Jr. [1990]. “Towards Image Realism with Interactive Update

Rates in Complex Virtual Building Environments”, Computer Graphics 24:1 (Proc. ACM Workshop on

Interactive Graphics), 41- 50.

Anderson, A. and M. Grant [1991]. “VISULUX: A Radiosity Based Lighting Design Tool”, Proc. Second

Eurographics Workshop on Rendering, Barcelona, Spain.

Arnauldi, B., X. Pueyo and J. Vilaplana [1991]. “On the Division of Environments by Virtual Walls for

Radiosity Computation”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain.

Arvo, J., Ed. [1991]. Graphic Gems II, Academic Press, San Diego, CA.

Asensio, A.F. [1992]. “A Hierarchical Ray-Casting Algorithm for Radiosity Shadows”, Proc. Third

Eurographics Workshop on Rendering, Bristol, UK, 179-188.

Ashdown, I. [1992]. “Radiosity and Realism”, The C Users Journal 10:8 (August), 33 - 42.

Ashdown, I. [1993a]. “Near-Field Photometry: A New Approach”, Journal of the Illuminating Engineering

Society 22:1 (Winter), 163 - 180.

Ashdown, I. [1993b]. “Modeling Complex 3-D Light Sources”, ACM SIGGRAPH ‘93 Course 22 (Making

Radiosity Practical) Notes.

Aupperle, L. and P. Hanrahan [1993a]. “Importance and Discrete Three Point Transport”, Proc. Fourth

Eurographics Workshop on Rendering, Paris, France, 85 - 94.

498 Bibliography
__

Aupperle, L. and P. Hanrahan [1993b]. “A Hierarchical Illumination Algorithm for Surfaces with Glossy

Reflections”, Computer Graphics Proceedings (ACM SIGGRAPH ‘93), 155 - 162.

Bao, H. and Q. Peng [1993a]. “Shading Models for Linear and Area Light Sources”, Computers &

Graphics 17:2, 137 - 145.

Bao, H. and Q. Peng [1993b]. “A Progressive Radiosity Algorithm for Scenes Containing Curved

Surfaces”, Computer Graphics Forum 12:3 (Proc. Eurogrpahics ‘93), C-399 - C-408.

Bastos, R.M., A.A. de Sousa and F.N. Ferreira [1993]. “Reconstruction of Illumination Functions Using

Bicbic Hermite Interpolation”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France, 317 -

324.

Baranoski, G.V.G. [1992]. “The Parametric Differential Method: An Alternative to the Calculation of

Form Factors”, Computer Graphics Forum 11:3 (Proc. Eurographics ‘92), C193 - C-204.

Baum, D.R., S. Mann, K.P. Smith and J.M. Winget [1991]. “Making Radiosity Usable: Automatic

Preprocessing and Meshing Techniques for the Generation of Accurate Radiosity Solutions”, Computer

Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 51 - 60.

Baum, D.R., H.E. Rushmeier and J.M. Winget [1989]. “Improving Radiosity Solutions Through the Use of

Analytically Determined Form Factors”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 325 -

334.

Baum, D.R., J.R. Wallace, M.F. Cohen and D.P. Greenberg [1986]. “The Back-Buffer Algorithm: An

Extension of the Radiosity Method to Dynamic Environments”, The Visual Computer 2:5, 298 - 306.

Baum, S.E. and J.M. Winget [1990]. “Real Time Radiosity Through Parallel Processing and Hardware

Acceleration”, Computer Graphics 24:2 (1990 Symposium on Interactive 3D Graphics), 67 - 75.

Beran-Koehn, J.C. and M.J. Pavicic [1991]. “A Cubic Tetrahedral Adaptation of the Hemi-Cube

Algorithm”, in Arvo [1991], 299 - 302.

Beran-Koehn, J.C. and M.J. Pavicic [1992], “Delta Form-Factor Calculation for the Cubic Tetrahedral

Algorithm”, in Kirk [1992], 324 - 328, 575 - 576.

Bibliography 499
__

Bhate, N. [1993]. “Application of Rapid Hierarchical Radiosity to Participating Media”,

First Bilkent Computer Graphics Conference, ATARV-93, Ankara, Turkey.

Bhate, N. and A. Tokuta [1992]. “Photorealistic Volume Rendering of Media with Directional Scattering”,

Proc. Third Eurographics Workshop on Rendering, Bristol, UK, 227-245.

Bian, B. [1990]. Accurate Simulation of Scene Luminance, Ph.D. Thesis, Worcester Polytechnic Institute,

Worcester, MA.

Bian, B. [1992]. “Hemispherical Projection of a Triangle”, in Kirk [1992], 314 - 317, 569 - 574.

Bian, B., N. Wittels and D.S. Fussell [1991]. “Accurate Image Simulation by Hemisphere Projection”,

Proc. SPIE/IS&T Vol. 1453, San Jose, CA.

Bian, B., N. Wittels and D.S. Fussell [1992]. “Non-Uniform Patch Luminance for Global Illumination”,

Graphics Interface ‘92, 310 - 318.

Borel, C.C., S.A.W. Gerstl and B.J. Powers [1991]. “The Radiosity Method in Optical Remote Sensing of

Structured 3-D Surfaces”, Remote Sensing of the Environment 36, 13-44.

Borel, C.C. and S.A.W. Gerstl [1991]. “Simulation of Partially Obscured Scenes Using the Radiosity

Method”, Proc. SPIE on Characterization, Propagation, and Simulation of Sources and Backgrounds Vol.

1486, 271-277.

Bouatouch, K. and C. Bouville, Eds. [1992]. Photorealism in Computer Graphics, Springer-Verlag, Berlin.

Bouatouch, K. and P. Tellier [1992]. “A Two-Pass Physics-Based Global Lighting Model”, Graphics

Interface ‘92, 319 - 328.

Bouville, C., K. Bouatouch, P. Tellier and X. Pueyo [1990]. “A Theoretical Analysis of Global

Illumination Models”, in Bouatouch and Bouville [1992], 57 - 72.

Bu, J. and E.F. Deprettere [1987a]. “A VLSI System Architecture for High-Speed Radiative Transfer 3D

Image Synthesis”, Eurographics ‘87 (Proc. European Computer Graphics Conference and Exhibition), G.

Marechal, Ed., Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 221 - 235.

500 Bibliography
__

Bu, J. and E.F. Deprettere [1987b]. “A VLSI Algorithm for Computing Form-Factors in Radiative Transfer

Computer Image Synthesis”, Computer Graphics 1987 (Proc. CG International ‘87), T.L. Kunii, Ed.,

Springer-Verlag, London, 181 - 193.

Bu, J. and E.F. Deprettere [1989]. “A VLSI System Architecture for High-speed Radiative Transfer 3D

Image Synthesis”, The Visual Computer 5:2, 121 - 133.

Buckalew, C. [1990]. Illumination Networks, Ph.D. Thesis, U. of Texas at Austin, Austin, TX.

Buckalew, C. and D.S. Fussell [1989]. “Illumination Networks: Fast Realistic Rendering with General

Reflectance Functions”, Computers Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 89 - 98.

Buckalew, C. and D.S. Fussell [1990]. An Energy-Balance Method for Animation, Technical Report TR-

90-06, Dept. of Computer Sciences, U. of Texas at Austin, Austin, TX.

Bullis, J.M. [1989]. Models and Algorithms for Computing Realistic Images Containing Diffuse

Reflections, Master’s Thesis, U. of Minnesota.

Campbell, A.T. III [1991a]. Modeling Global Diffuse Illumination for Image Synthesis, Ph.D. Thesis, U. of

Texas at Austin, Austin, TX.

Campbell, A.T., III and D.S. Fussell [1990]. “Adaptive Mesh Generation for Global Diffuse Illumination”,

Computer Graphics 24:4 (Proc. ACM SIGGRAPH ‘90), 155 - 164.

Carter, M.B. and J.L. Gustafson [1993a]. The Symmetric Radiosity Formulation, Technical Report IS-J

4880, Ames Laboratory.

Carter, M.B. and J.L. Gustafson [1993b]. An Improved Hierarchical Radiosity Method, Technical Report

IS-J 4881, Ames Laboratory.

Chalmers, A.G. and D.J. Paddon [1991]. “Parallel Processing of Progressive Refinement Radiosity

Methods”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain.

Chen, H. and E. Wu [1990a]. “An Efficient Radiosity Solution for Bump Texture Generation”, Computer

Graphics 24:4 (Proc. ACM SIGGRAPH ‘90), 125 - 134.

Bibliography 501
__

Chen, H. and E. Wu [1990b]. “An Adapted Solution of Progressive Radiosity and Ray-Tracing Methods

for Non-Diffuse Environments”, in Chua and Kunii [1990], 477 - 490.

Chen, H. and E. Wu [1991]. “Radiosity for Furry Surfaces”, Eurographics ‘91 (Proc. European Computer

Graphics Conference and Exhibition), F.H. Post and W. Barth, Eds., Elsevier Science Publishers B.V.

(North-Holland), 447 - 457.

Chen, S.E. [1989]. A Progressive Radiosity Method and Its Implementation in a Distributed Processing

Environment, Master’s Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

Chen, S.E. [1990]. “Incremental Radiosity: An Extension of Progressive Radiosity to an Interactive Image

Synthesis System”, Computer Graphics 24:4 (Proc. ACM SIGGRAPH ‘90), 135 - 144.

Chen, S.E. [1991]. “Implementing Progressive Radiosity with User-Provided Polygon Display Routines”,

in Arvo [1991], 295 - 298, 583 - 597.

Chen, S.E., H.E. Rushmeier, G. Miller and D. Turner [1991]. “A Progressive Multi-Pass Method for

Global Illumination”, Computer Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 165 - 174.

Christensen, P.H., D.H. Salesin and T.D. DeRose [1993]. “A Continuous Adjoint Formulation for

Radiance Transport”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France, 95 - 104.

Chua, T.S. and T.L. Kunii [1990]. CG International ‘90: Computer Graphics Around the World, Springer-

Verlag, Tokyo, Japan.

Cohen, M.F. [1985]. A Radiosity Method for the Realistic Image Synthesis of Complex Environments,

Master’s Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

Cohen, M.F. [1991]. “Radiosity”, in Rogers and Earnshaw [1991], 59 - 90.

Cohen, M.F. and D.P. Greenberg [1985]. “The Hemi-Cube: A Radiosity Solution for Complex

Environments”, Computer Graphics 19:3 (Proc. ACM SIGGRAPH ‘85), 31 - 40.

Cohen, M.F., D.P. Greenberg, D.S. Immel and P.J. Brock [1986]. “An Efficient Radiosity Approach for

Realistic Image Synthesis”, IEEE Computer Graphics and Applications 6:3, 26 - 35.

502 Bibliography
__

Cohen, M.F., S.E. Chen, J.R. Wallace and D.P. Greenberg [1988]. “A Progressive Refinement Approach to

Fast Radiosity Image Generation”, Computer Graphics 22:4 (Proc. ACM SIGGRAPH ‘88), 75 - 84.

DiLaura, D.L. [1992]. “On the Development of a Recursive Method for the Solution of Radiative Transfer

Problems”, J. Illuminating Engineering Society 21:2 (Summer), 108 - 112.

DiLaura, D.L. and P. Franck [1993]. “On Setting Up and Solving Large Radiative Transfer Systems”, J.

Illuminating Engineering Society 22:2 (Summer), 3 - 7.

Dorsey, J. O’B. [1993]. Computer Graphics Techniques for Opera Lighting Design and Simulation, Ph.D.

Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

Dorsey, J. O’B., F.X. Sillion and D.P. Greenberg [1991]. “Design and Simulation of Opera Lighting and

Projection Effects”, Computer Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 41 - 50.

Drettakis, G. and E. Fiume [1991]. “Structure-Directed Sampling, Reconstruction and Data Representation

for Global Illumination”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain, 189 -

201.

Drettakis, G. and E. Fiume [1992]. “Concrete Computation of Global Illumination Using Structured

Sampling”, Proc. Third Eurographics Workshop on Rendering, Bristol, UK.

Drettakis, G. and E. Fiume [1993]. “Accurate and Consistent Reconstruction of Illumination Functions

Using Structured Sampling”, Computer Graphics Forum 12:3 (Eurographics ‘93), 273 - 284.

Drucker, S.M. and P. Schröeder [1992], “Fast Radiosity Using a Data Parallel Architecture”, Proc. Third

Eurographics Workshop on Rendering, Bristol, UK, 247-258.

Emery, A.F., O. Johansson, M. Lobo and A. Abrous [1991]. “A Comparative Study of Methods for

Computing the Diffuse Radiation Viewfactors for Complex Structures”, J. Heat Transfer 113, 413 - 422.

Feda, M. and W. Purgathofer [1991]. “Progressive Refinement Radiosity on a Transputer Network”, Proc.

Second Eurographics Workshop on Rendering, Barcelona, Spain.

Feda, M. and W. Purgathofer [1992]. “Accelerating Radiosity by Overshooting”, Proc. Third

Eurographics Workshop on Rendering, Bristol, UK, 21 - 32.

Bibliography 503
__

Feda, M. and W. Purgathofer [1993]. “Progressive Ray Refinement for Monte Carlo Radiosity”, Proc.

Fourth Eurographics Workshop on Rendering, Paris, France, 15 - 25.

Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes [1990]. Computer Graphics: Principles and Practice

(Second Edition), Addison-Wesley, Reading, MA.

Franck, P. [1990]. Mathematical Approaches to Solving the Luminous Radiative Transfer Problem,

Independent Study Report, Dept. of Civil and Architectural Engineering, U. of Colorado, Boulder, CO.

Gatenby, N. and W.T. Hewitt [1991]. “Radiosity in Computer Graphics: A Proposed Alternative to the

Hemi-cube Algorithm”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain.

George, D.W. [1990]. A Radiosity Redistribution Algorithm for Dynamic Environments, Master’s Thesis,

Program of Computer Graphics, Cornell University, Ithaca, NY.

George, D.W., F. X. Sillion and D.P. Greenberg [1990]. “Radiosity Redistribution in Dynamic

Environments”, IEEE Computer Graphics and Applications 10:6, 26 - 34.

Goldfeather, J. [1989]. Progressive Radiosity Using Hemispheres, Technical Report TR89-002, Dept. of

Computer Science, U. of North Carolina at Chapel Hill.

Goral, C. [1985]. A Model for the Interaction of Light Between Diffuse Surfaces, Master’s Thesis, Program

of Computer Graphics, Cornell University, Ithaca, NY.

Goral, C. M., K.E. Torrance, D.P. Greenberg and B. Battaile [1984]. “Modeling the Interaction of Light

Between Diffuse Surfaces”, Computer Graphics 18:3 (Proc. ACM SIGGRAPH ‘84), 213 - 222.

Gortler, S. and M.F. Cohen [1993]. Radiosity and Relaxation Methods: Progressive Refinement is

Southwell Relaxation, Technical Report CS-TR-408-93, Princeton University.

Gortler, S.J., P. Schröder, M.F. Cohen and P. Hanrahan [1993]. “Wavelet Radiosity”, Computer Graphics

Proceedings (ACM SIGGRAPH ‘93), 221 - 230.

Greene, N., M. Kass and G. Miller 1993]. “Hierarchical Z-Buffer Visibility”, Computer Graphics

Proceedings (ACM SIGGRAPH ‘93), 231 - 240.

504 Bibliography
__

Greenberg, D.P., M.F. Cohen and K.E. Torrance [1986]. “Radiosity: A Method for Computing Global

Illumination”, The Visual Computer 2:5, 291- 297.

Greenberg, D.P. and F. Sillion [1991]. Global Illumination Algorithms, Eurographics Technical Report EG

91 TN 7, Eurographics Association, Aire-la-Ville, Switzerland.

Greiner, G., W. Heidrich and P. Slusallek [1993], “Blockwise Refinement - A New Method for Solving the

Radiosity Problem”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France, 233 - 245.

Guitton, P., J. Roman and C. Schlick [1991]. “Two Parallel Approaches for a Progressive Radiosity”, Proc.

Second Eurographics Workshop on Rendering, Barcelona, Spain.

Haines, E. [1991]. “Radiosity Bibliography”, in Greenberg and Sillion [1991], 55 - 60.

Haines, E. and J. Wallace [1991]. “Shaft Culling for Efficient Ray-Traced Radiosity”, Proc. Second

Eurographics Workshop on Rendering, Barcelona, Spain.

Hall, D.E. [1990]. An Analysis and Modification of Shao’s Radiosity Method for Computer Graphics

Image Synthesis, Master’s Thesis, School of Mechanical Engineering, Georgia Institute of Technology.

Hall, D.E. and H.E. Rushmeier [1993]. “Improved Explicit Radiosity Method for Calculating Non-

Lambertian Reflections”, The Visual Computer 9, 278 - 288.

Hall, R. [1989]. Illumination and Color in Computer Generated Imagery, Springer-Verlag, New York,

NY.

Hamid, T.P. [1988]. The Radiosity Model, Project Report, Dept. of Computer Science, U. of Glasgow,

Glasgow, Scotland.

Hanrahan, P. and D.B. Salzman [1990a]. A Rapid Hierarchical Radiosity Algorithm for Unoccluded

Environments, Technical Report CS-TR-281-90, Princeton University.

Hanrahan, P. and D. Salzman [1990b]. “A Rapid Hierarchical Radiosity Algorithm for Unoccluded

Environments”, in Bouatouch and Bouville [1992], 151 - 170.

Hanrahan, P., D. Salzman and L. Aupperle [1991]. “A Rapid Hierarchical Radiosity Algorithm”, Computer

Graphics 24:4 (Proc. ACM SIGGRAPH ‘91), 197 - 206.

Bibliography 505
__

Heckbert, P.S. [1990]. “Adaptive Radiosity Textures for Bidirectional Ray Tracing”, Computer Graphics

24:4 (Proc. ACM SIGGRAPH ‘90), 145 - 154.

Heckbert, P.S. [1991]. Simulating Global Illumination Using Adaptive Meshing, Ph.D. Thesis, U. of

California Berkeley Technical Report UCB/CSD 91/636.

Heckbert, P.S. [1992a]. “Discontinuity Meshing for Radiosity”, Proc. Third Eurographics Workshop on

Rendering, Bristol, UK, 203 - 226.

Heckbert, P. [1992b]. “Radiosity in Flatland”, Computer Graphics Forum 11:3 (Proc. Eurographics ‘92),

C-181 - C-192.

Heckbert, P.S. and J.M. Winget [1991]. “Finite Element Methods for Global Illumination”, U. of

California Berkeley Technical Report UCB/CSD 91/643.

Hermitage, S.A., T.L. Huntsberger and B.A. Huntsberger [1990]. “Hypercube Algorithm for Radiosity in a

Ray Traced Environment”, Proc. Fifth Distributed Memory Computing Conference, IEEE Society Press,

206 - 211.

Immel, D.S., M.F. Cohen and D.P. Greenberg [1986]. “A Radiosity Method for Non-Diffuse

Environments”, Computer Graphics 20:4 (Proc. ACM SIGGRAPH ‘86), 133 - 142.

Jessel, J.P., M. Paulin and R. Caubet [1991]. “An Extended Radiosity Using Parallel Ray-Traced Specular

Transfers”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain.

Jones, G.R., C.G. Christou, B.G. Cumming, A.J. Parker and A. Zisserman [1993]. “Accurate Rendering of

Curved Shadows and Interreflections”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France,

337 - 347

Kajiya, J.T. [1986]. “The Rendering Equation”, Computer Graphics 20:4 (Proc. ACM SIGGRAPH ‘86),

143 - 150.

Kajiyama, H. and S. Kodaira [1989]. “An Illuminance Analysis in Partitioned Spaces Using the Monte

Carlo Method”, J. Illuminating Engineering Society 18:2 (Summer), 93 - 108.

506 Bibliography
__

Kawai, J.K., J.S. Painter and M.F. Cohen [1993]. “Radiooptimization–Goal Based Rendering”, Computer

Graphics Proceedings (Proc. ACM SIGGRAPH ‘93), 147 - 154.

Kirk, D., Ed. [1992]. Graphic Gems III, Academic Press, San Diego, CA.

Kokcsis, F. and J.F. Böhme [1992]. “Fast Algorithms and Parallel Structures for Form Factor Evaluation”,

The Visual Computer 8, 205 - 216.

Kok, A.J.F. [1992a]. “Grouping of Patches in Progressive Radiosity”, Proc. Fourth Eurographics

Workshop on Rendering, Paris, France, 221 - 231.

Kok, A.J.F. and F.W. Jansen [1992b]. “Adaptive Sampling of Area Light Sources in Ray Tracing

Including Diffuse Interreflection”, Computer Graphics Forum 11:3 (Eurographics '92), 289-298.

Kok, A.J.F., F.W. Jansen and C. Woodward [1993]. “Efficient, Complete Radiosity Ray Tracing Using a

Shadow-Coherence Method”, The Visual Computer 10, 19 - 33.

Kok, A.J.F., A.C. Yilmaz and L.H.J. Bierens [1990]. “A Two-Pass Radiosity Method for Bézier Patches”,

in Bouatouch and Bouville [1992], 115 - 124.

Kok, A.J.F, C. Yilmaz and L.H.J. Bierens [1991]. “Source Selection for the Direct Lighting Computation

in Global Illumination”, Proc. Second Eurographics Workshop on Rendering, Barcelona, Spain.

Kwok, B. [1992]. Analysis of Radiosity Techniques in Computer Graphics, Master’s Thesis, York

University, Toronto, Ontario.

Lalonde, P. [1993]. “An Adaptive Discretization Method for Progressive Radiosity”, Graphics Interface

‘93, Toronto, Ontario, 78 - 86.

Languénou, E., K. Bouatouch and P. Tellier [1992]. “An Adaptive Discretization Method for Radiosity”,

Computer Graphics Forum 11:3 (Proc. Eurographics ‘92), C-205 - C-216.

Languénou, E. and P. Tellier [1992]. “Including Physical Light Sources and Daylight in Global

Illumination”, Proc. Third Eurographics Workshop on Rendering, Bristol, UK, 217 - 225.

Le Saec, B. and C. Schlick [1990]. “A Progressive Ray Tracing Based Radiosity with General Reflectance

Functions”, in Bouatouch and Bouville [1992], 101 - 113.

Bibliography 507
__

Lewis, R.R. [1992]. “Solving the Classic Radiosity Equation Using Multigrid Techniques”, Proc. 1992

Western Computer Graphics Symposium, Banff, Alberta, 157 - 164.

Lischinski, D., F. Tampieri and D.P. Greenberg [1991]. Improving Sampling and Reconstruction

Techniques for Radiosity, Tech. Report 91-1202, Dept. of Computer Science, Cornell University, Ithaca,

NY.

Lischinski, D., F. Tampieri and D.P. Greenberg [1992]. “Discontinuity Meshing for Accurate Radiosity”,

IEEE Computer Graphics and Applications 12:6, 25 - 39.

Lischinski, D., F. Tampieri and D.P. Greenberg [1993]. “Combining Hierarchical Radiosity and

Discontinuity Meshing”, Computer Graphics Proceedings (ACM SIGGRAPH ‘93), 199 - 208.

Magnenat-Thalmann, N. and D. Thalmann [1987]. Image Synthesis: Theory and Practice, Springer-Verlag,

Tokyo, Japan.

Max, N.L. and M.J. Allison [1992]. “Linear Radiosity Approximation Using Vertex-to-Vertex Form

Factors”, in Kirk [1992], 318 - 323.

Max, N. and R. Troutman [1993]. “Optimal Hemicube Sampling”, Proc. Fourth Eurographics Workshop

on Rendering, Paris, France, 185 - 200 and Addendum.

Maxwell, G.M., M.J. Bailey and V.W. Goldschmidt [1986]. “Calculations of the Radiation Configuration

Factor Using Ray Tracing”, Computer-Aided Design 18:7, 371- 379.

Meyer, G.W., H.E. Rushmeier, M.F. Cohen, D.P. Greenberg and K.E. Torrance [1986]. “An Experimental

Evaluation of Computer Graphics Imagery”, ACM Trans. Computer Graphics 5:1, 30 - 50.

Michelin, S., G. Maffies, D. Arques and J.C. Grossetie [1993]. “Form Factor Calculation: A New

Expression with Implementations on a Parallel T.Node Computer”, Computer Graphics Forum 12:3,

(Eurographics '93), 421-432.

Mistrick, R.G. and D.L. DiLaura [1987]. “A New Finite Orthogonal Transform Applied to Radiative

Transfer Calculations”, J. Illuminating Engineering Society 16:1 (Winter), 115 - 128.

508 Bibliography
__

Neumann, L. and C. Kelemen [1991]. “Solution of Interreflection Problem for Very Complex

Environments by Transillumination Method”, Proc. Second Eurographics Workshop on Rendering,

Barcelona, Spain.

Neumann, L. and A. Neumann [1989]. “Photosimulation: Interreflection wiith Arbitrary Reflectance

Models and Illumination”, Computer Graphics Forum 8, 21 - 34.

Neumann, L. and A. Neumann [1990]. “Efficient Radiosity Methods for Non-Separable Reflectance

Models”, in Bouatouch and Bouville [1992], 85 - 97.

Ng, A. and M. Slater [1993]. “A Multiprocessor Implementation of Radiosity”, Computer Graphics Forum

12:5, 329 - 342.

Nishita, T. and E. Nakamae [1985]. “Continuous Tone Representation of Three-Dimensional Objects

Taking Account of Shadows and Interreflection”, Computer Graphics 19:3 (Proc. ACM SIGGRAPH ‘85),

23 - 30.

Nishita, T. and E. Nakamae [1993]. “A New Radiosity Apporach Using Area Sampling for Parametric

Patches”, Computer Graphics Forum 12:3 (Eurographics '93), 385-398.

Paddon, D. [1993]. “Multiprocessor Models for the Radiosity Method”, First Bilkent Computer Graphics

Conference, ATARV-93, Ankara, Turkey.

Pattanaik, S. [1990]. Computational Methods for Global Illumination and Visualization of Complex 3D

Environments, Ph.D. Thesis, Birla Institute of Technology and Science, Pilani, India.

Pattanaik, S. and S. Mudur [1992]. “Computation of Global Illumination by Monte Carlo Simulation of the

Particle Light”, Proc. Third Eurographics Workshop on Rendering, Bristol, UK, 71 - 83.

Pattanaik, S. and S. Mudur [1993a]. “Efficient Potential Equation Solutions for Global Illumination

Computation”, Computers & Graphics 17:4, 387 - 396.

Pattanaik, S. and S. Mudur [1993b]. “The Potential Equation and Importance in Illumination

Computations”, Computer Graphics Forum 12:2, 131 - 136.

Bibliography 509
__

Perry, R.L. and E.P. Speck [1959]. “Geometric Factors for Thermal Radiation Exchange Between Cows

and Their Surroundings”, J. American Society of Agricultural Engineering Tech. Report 59-323.

Priol, T., K. Bouatouch and D. Menard [1993]. “Parallel Radiosity Using a Shared Virtual Memory”, First

Bilkent Computer Graphics Conference, ATARV-93, Ankara, Turkey.

Pietrek, G. [1993]. “Fast Calculation of Accurate Formfactors”, Proc. Fourth Eurographics Workshop on

Rendering, Paris, France, 201 - 220.

Price, M. and G. Truman [1989]. “Parallelism Makes Light Work”, Computer Graphics ‘89, November,

London, 409 - 418.

Puech, C., F. Sillion and C. Vedel [1990]. “Improving Interaction with Radiosity-based Lighting

Simulation Programs”, Computer Graphics 24:1 (Proc. ACM Workshop on Interactive Graphics), 51- 57.

Pueyo, X. [1991]. “Diffuse Interreflections. Techniques for Form-factor Computation: A Survey”, The

Visual Computer 7, 200 - 209.

Purgathofer, W. and M. Zeller [1990]. “Fast Radiosity by Parallelization”, in Bouatouch and Bouville

[1992], 171 - 181.

Recker, R.J. [1990]. Improved Techniques for Progressive Refinement Radiosity, Master’s Thesis, Program

of Computer Graphics, Cornell University, Ithaca, NY.

Recker, R.J., D.W. George and D.P. Greenberg [1990]. “Acceleration Techniques for Progressive

Refinement Radiosity”, Computer Graphics 24:2 (1990 Symposium on Interactive 3D Graphics), 59 - 66.

Reichert, M. [1992]. A Two-Pass Radiosity Method Driven by Lights and Viewer Position, Master’s

Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

Rogers, D.E. and R.A. Earnshaw [1991]. State of the Art in Computer Graphics: Visualization and

Modeling, Springer-Verlag, New York, NY.

Rushmeier, H. [1988]. Realistic Image Synthesis for Scenes with Radiatively Participating Media, Ph.D.

Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

510 Bibliography
__

Rushmeier, H., D.R. Baum and D.E. Hall [1991]. “Accelerating the Hemi-Cube Algorithm for Calculating

Radiation Form Factors”, J. Heat Transfer 113, 1044 - 1047.

Rushmeier, H., C. Patterson and A. Veerasamy [1993]. “Geometric Simplification for Indirect Illumination

Calculations”, Graphics Interface ‘93, Toronto, Ontario, 227 - 236.

Rushmeier, H. and K. Torrance [1987]. “The Zonal Method for Calculating Light Intensities in the

Presence of a Participating Medium”, Computer Graphics 21:4 (Proc. ACM SIGGRAPH ‘87), 293 - 302.

Rushmeier, H.E. and K.E. Torrance [1990]. “Extending the Radiosity Method to Include Specularly

Reflecting and Translucent Materials”, ACM Trans. Computer Graphics 9:1, 1 - 27.

Salesin, D., D. Lischinski and T. DeRose [1992]. “Reconstructing Illumination Functions with Selected

Discontinuities”, Proc. Third Eurographics Workshop on Rendering, Bristol, UK.

Sbert, M. [1993]. “An Integral Geometry Based Method for Fast Form-Factor Computation”, Computer

Graphics Forum 12:3 (Proc. Eurographics ‘93), C-409 - 420.

Schröder, P. [1993]. “Numerical Integration for Radiosity in the Presence of Singularities”, Proc. Fourth

Eurographics Workshop on Rendering, Paris, France, 177 - 184.

Schröder, P., S.J. Gortler, M.F. Cohen and P. Hanrahan [1993]. “Wavelet Projections for Radiosity”, Proc.

Fourth Eurographics Workshop on Rendering, Paris, France, 105 - 114.

Schuierer, S. [1989]. “Delaunay Triangulations and the Radiosity Approach”, Eurographics ‘89 (Proc.

European Computer Graphics Conference and Exhibition), W. Hansmann, F.R.A. Hopgood and W.

Strasser, Eds., Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 345 - 353.

Shao, M. and N.I. Badler [1993a]. A Gathering and Shooting Progressive Refinement Radiosity Method,

Technical Report MS-CIS-93-03, Department of Computer and Information Science, University of

Pennsylvania.

Shao, M. and N.I. Badler [1993b]. “Analysis and Acceleration of Progressive Refinement Radiosity

Method”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France, 247 - 258.

Bibliography 511
__

Shao, M., Q. Peng and Y. Liang [1988a]. “Form Factors for General Environments”, Eurographics ‘88

(Proc. European Computer Graphics Conference and Exhibition), D.A. Duce and P. Jancene, Eds., Elsevier

Sciences Publishers B.V. (North-Holland), Amsterdam, 499 - 510.

Shao, M., Q. Peng and Y. Liang [1988b]. “A New Radiosity Approach by Procedural Refinements for

Realistic Image Synthesis”, Computer Graphics 22:4 (Proc. ACM SIGGRAPH ‘88), 93 - 101.

Shen, L., E. Deprettere and P. Dewilde [1992]. “A New Space Partitioning for Mapping Computations of

the Radiosity Method onto a Highly Pipelined Parallel Architecture”, Advances in Computer Graphics V,

Springer-Verlag, Berlin, Germany.

Shirley, P. [1990a]. Physically Based Lighting Calculations for Computer Graphics, Ph.D. Thesis, Dept. of

Computer Science, U. of Illinois, Urbana-Champaign, IL.

Shirley, P. [1990b]. “Physically Based Lighting Calculations for Computer Graphics: A Modern

Perspective”, in Bouatouch and Bouville [1992], 73 - 83.

Shirley, P. [1990c]. “A Ray Tracing Method for Illumination Calculation in Diffuse-Specular Scenes”,

Graphics Interface ‘90, 205 - 212.

Shirley, P. [1991a]. “Radiosity Via Ray Tracing”, in Arvo [1991], 306 - 310.

Shirley, P. [1991b]. “Time Complexity of Monte Carlo Radiosity”, Eurographics ‘91 (Proc. European

Computer Graphics Conference and Exhibition), F.H. Post and W. Barth, Eds., Elsevier Science Publishers

B.V. (North-Holland), Amsterdam, 459 - 465.

Shirley, P., K. Sung and W. Brown [1991]. “A Ray Tracing Framework for Global Illumination Systems”,

Graphics Interface ‘91, 117 - 128.

Shirley, P. and C. Wang [1991]. “Direct Lighting Calculations by Monte Carlo Integration”, Proc. Second

Eurographics Workshop on Rendering, Barcelona, Spain.

Siegel, R. and J.R. Howell [1992]. Thermal Radiation Heat Transfer, Third Edition, Hemisphere

Publishing, Washington DC.

512 Bibliography
__

Sillion, F. [1991b]. “Detection of Shadow Boundaries for Adaptive Meshing in Radiosity”, in Arvo [1991],

311 - 315.

Sillion, F.X. and C. Puech [1989]. “A General Two-Pass Method Integrating Specular and Diffuse

Reflection”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 335 - 344.

Sillion, F.X. and C. Puech [1994]. Radiosity and Global Illumination, Morgan Kaufmann, San Mateo, CA.

Sillion, F.X., J.R. Arvo, S.H. Westin and D.P. Greenberg [1991]. “A Global Illumination Solution for

General Reflectance Distributions”, Computer Graphics 25:4 (Proc. ACM SIGGRAPH ‘91), 187 - 196.

Smith, K.P. [1991]. “Fast and Accurate Radiosity-Based Rendering”, Master’s Project Report, U. of

California Berkeley Technical Report UCB/CSD 91/635.

Smits, B.E., J.R. Arvo and D.H. Salesin [1992]. “An Importance-Driven Radiosity Algorithm”, Computer

Graphics 26:4 (Proc. ACM SIGGRAPH ‘92), 273 - 282.

Spencer, S. [1990]. “The Hemisphere Radiosity Method: A Tale of Two Algorithms”, in Bouatouch and

Bouville [1992], 127 - 135.

Sturzlinger, W. “Radiosity with Voronoi Diagrams”, Proc. Third Eurographics Workshop on Rendering,

Bristol, UK, 169-177.

Sun, J., L.Q. Zou and R.L. Grimsdale [1993]. “The Determination of Form-Factors by Lookup Table”,

Computer Graphics Forum 12:4, 191 - 198.

Tampieri, F. [1990]. Global Illumination Algorithms for Parallel Computer Architectures, Master's Thesis,

Program of Computer Graphics, Cornell University, Ithaca, NY.

Tampieri, F. [1991]. “Fast Vertex Radiosity Update”, in Arvo [1991], 303 - 305, 598.

Tampieri, F. [1992]. “Accurate Form-Factor Computation”, in Kirk [1992], 329 - 333, 577 - 581.

Tampieri, F. [1993]. Discontinuity Meshing for Radiosity Image Synthesis, Ph.D. Thesis, Cornell

University, Ithaca, NY.

Bibliography 513
__

Tampieri, F. and D. Lischinski [1991]. “The Constant Radiosity Assumption Syndrome”, Proc. Second

Eurographics Workshop on Rendering, Barcelona, Spain.

Teller, S.J. [1991]. Computing the Antipenumbra of an Area Light Source, U. of California Berkeley

Technical Report UCB/CSD 91/666.

Teller, S.J. [1992]. “Computing the Antipenumbra of an Area Light”, Computer Graphics 26:4 (Proc.

SIGGRAPH '92), 139-148.

Tellier, P., E. Maisel, K. Bouatouch and E. Languénou [1993]. “Exploiting Spatial Coherence to

Accelerate Radiosity”, The Visual Computer 10, 46 - 53.

Troutman, R. and N. Max [1993]. “Radiosity Algorithms Using Higher Order Finite Element Methods”,

Computer Graphics Proceedings (ACM SIGGRAPH ‘93), 209 - 212.

van Liere, R. [1991]. “Divide and Conquer Radiosity”, Proc. Second Eurographics Workshop on

Rendering, Barcelona, Spain.

Varshney, A. [1991]. Parallel Radiosity Techniques for Mesh-Connected SIMD Computers, Master's

Thesis, Technical Report TR91-028, Department of Computer Science, University of North Carolina at

Chapel Hill.

Varshney, A. and J.F. Prins [1992]. “An Environment-Projection Approach to Radiosity for Mesh-

Connected Computers”, Proc. Third Eurographics Workshop on Rendering, Bristol, UK, 271-281.

Vedel, C. and C. Puech [1991]. “A Testbed for Adaptive Subdivision in Progressive Radiosity”, Proc.

Second Eurographics Workshop on Rendering, Barcelona, Spain.

Vedel, C. [1992]. “Improved Storage and Reconstruction of Light Intensities on Surfaces”, Proc. Third

Eurographics Workshop on Rendering, Bristol, UK, 113-121.

Vilaplana, J. [1992]. “Parallel Radiosity Solutions Based on Partial Result Messages”, Proc. Third

Eurographics Workshop on Rendering, Bristol, UK, 259-270.

Vilaplana, J. and X. Pueyo [1990]. “Exploiting Coherence for Clipping and View Transformation in

Radiosity Algorithms”, in Bouatouch and Bouville [1992], 137 - 149.

514 Bibliography
__

Wallace, J.R. [1988]. A Two-Pass Solution to the Rendering Equation: A Synthesis of Ray Tracing and

Radiosity Methods, Master’s Thesis, Program of Computer Graphics, Cornell University, Ithaca, NY.

Wallace, J.R., M.F. Cohen and D.P. Greenberg [1987]. “A Two-Pass Solution to the Rendering Equation:

A Synthesis of Ray Tracing and Radiosity Methods”, Computer Graphics 21:4 (Proc. ACM SIGGRAPH

‘87), 311 - 320.

Wallace, J.R., K.A. Elmquist and E.A. Haines [1989]. “A Ray Tracing Algorithm for Progressive

Radiosity”, Computer Graphics 23:3 (Proc. ACM SIGGRAPH ‘89), 315 - 324.

Wang, M., H. Bao and Q. Peng [1992]. “A New Progressive Radiosity Algorithm Through the Use of

Accurate Form-Factors”, Computers & Graphics 16:3, 303 - 309.

Wang, Y. [1990]. Image Synthesis Using Radiosity Methods, Ph.D. Thesis, University of Alberta, Calgary,

Alberta.

Wang, Y. and W.A. Davis [1990]. “Octant Priority for Radiosity Image Rendering”, Graphics Interface

‘90, 83 - 91.

Wanuga, P.H. [1991]. Accelerated Radiosity Methods for Rendering Complex Environments, Master's

Thesis, Program of Computer Graphics, Cornell Univiversity, Ithaca, NY.

Ward, G.J, F.M. Rubinstein and R.D. Clear [1988]. “A Ray Tracing Solution for Diffuse Interreflection”,

Computer Graphics 22:4, 85 - 92.

Ward, G.J. and P. Heckbert [1992]. “Irradiance Gradients”, Proc. Third Eurographics Worskhop on

Rendering, Bristol, UK, 85 - 98.

Watt, A. [1990]. Fundamentals of Three-Dimensional Computer Graphics, Addison-Wesley, Reading,

MA.

Watt, A. and M. Watt [1992]. Advanced Animation and Rendering Techniques, Addison-Wesley, Reading,

MA.

Bibliography 515
__

Xu, H., Q.S. Peng and Y.D. Liang [1989]. “Accelerated Radiosity Method for Complex Environments”,

Eurographics ‘89 (Proc. European Computer Graphics Conference and Exhibition), W. Hansmann, F.R.A.

Hopgood and W. Strasser, Eds., Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 51 - 61.

Zatz, H. [1993]. “Galerkin Radiosity: A Higher Order Solution Method for Global Illumination”,

Computer Graphics Proceedings (ACM SIGGRAPH ‘93), 213 - 220.

Zhang, N. [1991]. “Two Methods for Speeding Up Form-Factor Calculation”, Proc. Second Eurographics

Workshop on Rendering, Barcelona, Spain.

Zhang, X. [1987]. The Finite Fourier Transform for Radiative Transfer Analysis in Complicated

Geometries, M.Sc. Thesis, University of Colorado, Boulder, CO.

Zhao, Z.H. and D. Dobkin [1993]. “Continuous Algorithms for Visibility: The Space Searching

Approach”, Proc. Fourth Eurographics Workshop on Rendering, Paris, France, 115 - 126.

Zhou, Y. and Q. Peng [1992]. “The Super-Plane Buffer: An Efficient Form-Factor Evaluation Algorithm

for Progressive Radiosity”, Computers & Graphics 16:2, 151 - 158.

	Cover
	Contents
	Foreword
	Preface
	Introduction
	Part I - Radiosity Models Light
	Chapter 1 - Measuring Light
	Chapter 2 - Radiosity Theory
	Part II - Tools of the Trade
	Chapter 3 - Building an Environment
	Chapter 4 - A Viewing System
	Part III - Radiosity and Realism
	Chapter 5 - Form Factor Determination
	Chapter 6 - Solving the Radiosity Equation
	Chapter 7 - Meshing Strategies
	Chapter 8 - Looking to the Future
	Appendix A - Photometric and Radiometric Definitions
	Appendix B - Memory Mangement Issues
	Bibliography

